1
|
Schaubeder JB, Fürk P, Amering R, Gsöls L, Ravn J, Nypelö T, Spirk S. Deciphering heterogeneous enzymatic surface reactions on xylan using surface plasmon resonance spectroscopy. Carbohydr Polym 2024; 337:122137. [PMID: 38710567 DOI: 10.1016/j.carbpol.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024]
Abstract
Xylans' unique properties make it attractive for a variety of industries, including paper, food, and biochemical production. While for some applications the preservation of its natural structure is crucial, for others the degradation into monosaccharides is essential. For the complete breakdown, the use of several enzymes is required, due to its structural complexity. In fact, the specificity of enzymatically-catalyzed reactions is guided by the surface, limiting or regulating accessibility and serving structurally encoded input guiding the actions of the enzymes. Here, we investigate enzymes at surfaces rich in xylan using surface plasmon resonance spectroscopy. The influence of diffusion and changes in substrate morphology is studied via enzyme surface kinetics simulations, yielding reaction rates and constants. We propose kinetic models, which can be applied to the degradation of multilayer biopolymer films. The most advanced model was verified by its successful application to the degradation of a thin film of polyhydroxybutyrate treated with a polyhydroxybutyrate-depolymerase. The herein derived models can be employed to quantify the degradation kinetics of various enzymes on biopolymers in heterogeneous environments, often prevalent in industrial processes. The identification of key factors influencing reaction rates such as inhibition will contribute to the quantification of intricate dynamics in complex systems.
Collapse
Affiliation(s)
- Jana B Schaubeder
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria
| | - Peter Fürk
- Graz University of Technology, Institute for Chemistry and Technology of Materials (ICTM), Stremayrgasse 9, 8010 Graz, Austria
| | - Richard Amering
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria
| | - Lena Gsöls
- Graz University of Technology, Institute of Molecular Biotechnology, Petersgasse 14, 8010 Graz, Austria; The COMET Center, Acib GmbH, Krenngasse 37, 8010 Graz, Austria
| | - Jonas Ravn
- Chalmers University of Technology, Department of Life Sciences, 412 96 Gothenburg, Sweden
| | - Tiina Nypelö
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, 412 96 Gothenburg, Sweden; Aalto University, Department of Bioproducts and Biosystems, Vuorimiehentie 1, 02150 Espoo, Finland
| | - Stefan Spirk
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria.
| |
Collapse
|
2
|
Lux C, Kerz S, Ribeiro CC, Bareuther J, Lützenkirchen J, Stock S, Tsintsaris M, Rehahn M, Stark RW, von Klitzing R. Conceptualizing flexible papers using cellulose model surfaces and polymer particles. SOFT MATTER 2024; 20:1333-1346. [PMID: 38251414 DOI: 10.1039/d3sm01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cellulose, as a naturally abundant and biocompatible material, is still gaining interest due to its high potential for functionalization. This makes cellulose a promising candidate for replacing plastics. Understanding how cellulose interacts with various additives is crucial for creating composite materials with diverse properties, as it is the case for plastics. In addition, the mechanical properties of the composite materials are assumed to be related to the mobility of the additives against the cellulose. Using a well-defined cellulose model surface (CMS), we aim to understand the adsorption and desorption of two polymeric particles (core-shell particles and microgels) to/from the cellulose surface. The nanomechanics of particles and CMS are quantified by indentation measurements with an atomic force microscope (AFM). AFM topography measurements quantified particle adsorption and desorption on the CMS, while peak force AFM measurements determined the force needed to move individual particles. Both particles and the CMS exhibited pH-dependent charge behavior, allowing a tunable interaction between them. Particle adsorption was irreversible and driven by electrostatic forces. In contrast, desorption and particle mobility forces are dominated by structural morphology. In addition, we found that an annealing procedure consisting of swelling/drying cycles significantly increased the adhesion strength of both particles. Using the data, we achieve a deeper understanding of the interaction of cellulose with polymeric particles, with the potential to advance the development of functional materials and contribute to various fields, including smart packaging, sensors, and biomedical applications.
Collapse
Affiliation(s)
- Cassia Lux
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | - Sabrina Kerz
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | - Catarina C Ribeiro
- Physics of Surfaces, Department of Material Science, 64287 Darmstadt, Germany
| | - Jennifer Bareuther
- Macromolecular Chemistry: Chemistry of Polymers, Department of Chemistry, 64287 Darmstadt, Germany
| | - Johannes Lützenkirchen
- Institute for Nuclear Disposal, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sebastian Stock
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | | | - Matthias Rehahn
- Macromolecular Chemistry: Chemistry of Polymers, Department of Chemistry, 64287 Darmstadt, Germany
| | - Robert W Stark
- Physics of Surfaces, Department of Material Science, 64287 Darmstadt, Germany
| | | |
Collapse
|
3
|
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica BM, Volf I. Cellulose-Based Metallogels-Part 3: Multifunctional Materials. Gels 2023; 9:878. [PMID: 37998968 PMCID: PMC10671087 DOI: 10.3390/gels9110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuxOy, ZnO, Al2O3, TiO2, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO2, Ag, and Fe3O4 nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (Fe2O3 and Fe3O4) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO2, ZnO, and Al2O3 is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- CellON AS, Lakkegata 75C, NO-0562 Oslo, Norway
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| |
Collapse
|
4
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
5
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
6
|
Synergistic effects on BiFeO3 based cellulose acetate composite and efficient photocatalytic activities for wastewater treatment application. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Heise K, Koso T, King AWT, Nypelö T, Penttilä P, Tardy BL, Beaumont M. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:23413-23432. [PMID: 36438677 PMCID: PMC9664451 DOI: 10.1039/d2ta05277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Tetyana Koso
- Materials Chemistry Division, Chemistry Department, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products 02044 Espoo Finland
| | - Tiina Nypelö
- Chalmers University of Technology 41296 Gothenburg Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering Abu Dhabi United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University Abu Dhabi United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University Abu Dhabi United Arab Emirates
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24 A-3430 Tulln Austria
| |
Collapse
|
8
|
Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydr Polym 2022; 294:119737. [DOI: 10.1016/j.carbpol.2022.119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
|
9
|
Nuutinen EM, Valle-Delgado JJ, Kellock M, Farooq M, Österberg M. Affinity of Keratin Peptides for Cellulose and Lignin: A Fundamental Study toward Advanced Bio-Based Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9917-9927. [PMID: 35930798 PMCID: PMC9387096 DOI: 10.1021/acs.langmuir.2c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Keratin is a potential raw material to meet the growing demand for bio-based materials with special properties. Keratin can be obtained from feathers, a by-product from the poultry industry. One approach for keratin valorization is to use the protein to improve the properties of already existing cellulose and lignin-based materials to meet the requirements for replacing fossil-based plastics. To ensure a successful combination of keratin with lignocellulosic building blocks, keratin must have an affinity to these substrates. Hence, we used quartz crystal microbalance with a dissipation monitoring (QCM-D) technique to get a detailed understanding of the adsorption of keratin peptides onto lignocellulosic substrates and how the morphology of the substrate, pH, ionic strength, and keratin properties affected the adsorption. Keratin was fractionated from feathers with a scalable and environmentally friendly deep eutectic solvent process. The keratin fraction used in the adsorption studies consisted of different sized keratin peptides (about 1-4 kDa), which had adopted a random coil conformation as observed by circular dichroism (CD). Measuring keratin adsorption to different lignocellulosic substrates by QCM-D revealed a significant affinity of keratin peptides for lignin, both as smooth films and in the form of nanoparticles but only a weak interaction between cellulose and keratin. Systematic evaluation of the effect of surface, media, and protein properties enabled us to obtain a deeper understanding of the driving force for adsorption. Both the structure and size of the keratin peptides appeared to play an important role in its adsorption. The keratin-lignin combination is an attractive option for advanced material applications. For improved adsorption on cellulose, modifications of either keratin or cellulose would be required.
Collapse
Affiliation(s)
- Emmi-Maria Nuutinen
- Sustainable
products and materials, VTT, Technical Research
Centre of Finland, Tietotie 2, FI-02044 Espoo, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Juan José Valle-Delgado
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Miriam Kellock
- Sustainable
products and materials, VTT, Technical Research
Centre of Finland, Tietotie 2, FI-02044 Espoo, Finland
| | - Muhammad Farooq
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| | - Monika Österberg
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
10
|
In situ green synthesis of cellulose nanocomposite films incorporated with silver/silver chloride particles: characterization and antibacterial performance. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
|
12
|
Zhang H, Luan Q, Li Y, Wang J, Bao Y, Tang H, Huang F. Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers. Int J Biol Macromol 2021; 199:61-68. [PMID: 34954297 DOI: 10.1016/j.ijbiomac.2021.12.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Here, we present highly porous, cellulose-based microspheres using (2,2,6,6-tetramethylpiperidine-1-oxyl) TEMPO-oxidized cellulose fibers (TOCFs) as starting materials. The TOCFs were first dissolved in NaOH/urea solvent and transformed into microspheres via an emulsification method. The carboxyl groups on the surface of TOCFs were successfully carried on the cellulose-based microspheres, which provides them numerous reacting or binding sites, allowing them to be easily functionalized or immobilized with biomolecules for multi-functional applications. Furthermore, the introduction of magnetic nanoparticles awards these microspheres magnetic properties, allowing them to be attracted by a magnetic field. As a proof of concept, we demonstrate the application of using these carboxylate cellulose-based microspheres for enzyme immobilization. The cellulose-based microspheres can successfully create stable covalent bonds with enzymes after the activation of carboxyl groups. The enhanced pH tolerance, thermal stability, convenient recovery, and reusability position the emulsified microspheres as promising carriers for enzyme immobilization.
Collapse
Affiliation(s)
- Hao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Qian Luan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yan Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Jiahui Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Yuping Bao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
13
|
Guo J, Zhang X, Tian J, Zhu W, Song J, Xiao H. Evaluating the refractive index, thickness and porosity of ultrathin cellulose nanocrystal films with different polymorphs by SPR technique. Int J Biol Macromol 2021; 193:1209-1214. [PMID: 34728306 DOI: 10.1016/j.ijbiomac.2021.10.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
It is of crucial importance to know the quality of ultrathin films deposited on surface plasmon resonance (SPR) sensors prior to adsorption experiments. In this study, the optical properties of ultrathin cellulose nanocrystal films with various polymorphs (cellulose I, cellulose II and the hybrid of cellulose I/II), which deposited on gold surface of SPR sensors, were determined by a two-medium SPR technique and the influences of the second medium were assessed as well. The measured refractive index for ultrathin cellulose nanocrystal films with polymorphs of cellulose I, I/II and II was 1.453, 1.462 and 1.464, respectively, with a low margin of error about 0.2%. The porosity of according CNC films on SPR sensors was assessed to be 20.8%, 19.0%, and 18.5%. The measured film thickness for all deposited cellulose nanocrystal films was in the range of 25-35 nm, with a margin of error about 5%, accorded well with that examined by quartz crystal microbalance. The results showed that SPR surveys combined with Winspall analysis allow for simultaneous determination of the thickness, refractive index and the derived porosity, and provide a facile in situ quality control for the modified SPR sensors prior to adsorption experiments.
Collapse
Affiliation(s)
- Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
14
|
Hoffellner L, Henögl EM, Petschacher P, Schennach R, Leitner E. The Interaction of Cellulose Thin Films With Small Organic Molecules-Comparability of Two Inherently Different Methods. Front Chem 2021; 9:769022. [PMID: 34869213 PMCID: PMC8639685 DOI: 10.3389/fchem.2021.769022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Paper is the material of choice for a large range of applications because it has many favorable environmental and economic characteristics. Especially in the packaging sector of dry goods and food products, paper has found unique applications. For that purpose, it has to fulfill certain requirements: Primarily it should protect the packaged goods. In order to ensure the compliance of a paper packaging, its interactions with the packaged goods should be investigated. Therefore, it is of utmost importance to understand how the paper interacts with chemicals of different nature and what factors influence these interactions-be that the nature of the paper or the characteristics of the substances. In this study, we investigated the surface interactions of cellulose thin films with n-decane and deuterated methanol using two different analytical methods: headspace solid-phase microextraction with gas chromatography and flame ionization detection (HS-SPME-GC/FID) and temperature-programmed desorption (TPD). Cellulose thin films were characterized with contact angle and FT-IR measurements and successfully applied as model systems for real paper samples. Regarding the interactions of the cellulose films with the model compounds, the two inherently different methods, HS-SPME-GC/FID and TPD, provide very comparable results. While the nonpolar n-decane was readily released from the cellulose films, the polar model compound deuterated methanol showed a strong interaction with the polar cellulose surface.
Collapse
Affiliation(s)
- Lisa Hoffellner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria.,CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria
| | - Elias M Henögl
- CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria.,Institute of Solid-State Physics, Graz University of Technology, Graz, Austria
| | - Patrick Petschacher
- Institute of Solid-State Physics, Graz University of Technology, Graz, Austria
| | - Robert Schennach
- CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria.,Institute of Solid-State Physics, Graz University of Technology, Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria.,CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria
| |
Collapse
|
15
|
Arumughan V, Nypelö T, Hasani M, Larsson A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv Colloid Interface Sci 2021; 298:102529. [PMID: 34773888 DOI: 10.1016/j.cis.2021.102529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The increasing need for new material applications based on cellulose demands increased functional diversity and thus new functionalisation/modification approaches. The non-covalent modification of cellulose fibres via the adsorption of functional polymers has emerged as a promising route for tailoring the properties of material. This review focuses on fundamental aspects of polymer adsorption on cellulose surfaces, where the adsorption of polyelectrolytes and non-polyelectrolytes are treated separately. Adsorption studies on model surfaces as well as cellulose macro-fibres are reviewed. A correlation of the adsorption findings with the Scheutjens-Fleer polymer adsorption theory is provided, allowing the fundamentals behind the polymer adsorption phenomenon and its context in utilization of cellulose fibres to be understood.
Collapse
|
16
|
Jinkins KR, Wang J, Dwyer JH, Wang X, Arnold MS. Confined Shear Alignment of Ultrathin Films of Cellulose Nanocrystals. ACS APPLIED BIO MATERIALS 2021; 4:7961-7966. [PMID: 35006777 DOI: 10.1021/acsabm.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) are a naturally abundant nanomaterial derived from cellulose which exhibit many exciting mechanical, chemical, and rheological properties, making CNCs attractive for use in coatings. Furthermore, the alignment of CNCs is important to exploit their anisotropic mechanical and piezoelectric properties. Here, we demonstrate and study the fabrication of submonolayer to 25 nm thick films of CNCs via solution-based shear alignment. CNC solution is forced through a sub-millimeter tall channel at high volumetric flow rates generating shear. The half-width at half-maximum of the spread in CNC alignment significantly improves from 78 to 17° by increasing the shear rate from 19 to 19,000 s-1. We demonstrate that the film thickness is increased by increasing the volume of CNC solution flowed over the substrate and/or increasing the CNC solution concentration, with a degradation in film uniformity at higher (≥7 wt %) concentrations, likely due to CNC aggregates in the solution. Deposition of ultrathin aligned CNC films occurs within seconds and the technique is inherently scalable, demonstrating the promise of solution-based shear for the fabrication of ultrathin aligned CNC films, thereby enabling the future study of their inherent material properties or use in high-performance coatings and applications.
Collapse
Affiliation(s)
- Katherine R Jinkins
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| | - Jingyu Wang
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| | - Jonathan H Dwyer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Xudong Wang
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Spirk S, Palasingh C, Nypelö T. Current Opportunities and Challenges in Biopolymer Thin Film Analysis—Determination of Film Thickness. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.755446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymer thin films with thickness below 100 nm are a fascinating class of 2D materials with commercial and research applications in many branches ranging from coatings to photoresists and insulating materials, to mention just a few uses. Biopolymers have extended the scope of polymer thin films with unique materials such as cellulose, cellulose nanocrystals, cellulose nanofibrils with tunable water uptake, crystallinity and optical properties. The key information needed in thin biopolymer film use and research is film thickness. It is often challenging to determine precisely and hence several techniques and their combinations are used. Additional challenges with hydrophilic biopolymers such as cellulose are the presence of humidity and the soft and often heterogenous structure of the films. This minireview summarizes currently used methods and techniques for biopolymer thin film thickness analysis and outlines challenges for accurate and reproducible characterization. Cellulose is chosen as the representative biopolymer.
Collapse
|
18
|
Jin SA, Khan SA, Spontak RJ, Rojas OJ. Anion-Specific Water Interactions with Nanochitin: Donnan and Osmotic Pressure Effects as Revealed by Quartz Microgravimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11242-11250. [PMID: 34520662 PMCID: PMC8516332 DOI: 10.1021/acs.langmuir.1c01585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of new materials emphasizes greater use of sustainable and eco-friendly resources, including those that take advantage of the unique properties of nanopolysaccharides. Advances in this area, however, necessarily require a thorough understanding of interactions with water. Our contribution to this important topic pertains to the swelling behavior of partially deacetylated nanochitin (NCh), which has been studied here by quartz crystal microgravimetry. Ultrathin films of NCh supported on gold-coated resonators have been equilibrated in aqueous electrolyte solutions (containing NaF, NaCl, NaBr, NaNO3, Na2SO4, Na2SO3, or Na3PO4) at different ionic strengths. As anticipated, NCh displays contrasting swelling/deswelling responses, depending on the ionic affinities and valences of the counterions. The extent of water uptake induced by halide anions, for instance, follows a modified Hofmeister series with F- producing the highest swelling. In marked contrast, Cl- induces film dehydration. We conclude that larger anions promote deswelling such that water losses increase with increasing anion valence. Results such as the ones reported here are critical to ongoing efforts designed to dry chitin nanomaterials and develop bio-based and sustainable materials, including particles, films, coatings, and other nanostructured assemblies, for various devices and applications.
Collapse
Affiliation(s)
- Soo-Ah Jin
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Saad A. Khan
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Richard J. Spontak
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Materials Science & Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J. Rojas
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Bioproducts
Institute, Departments of Chemical & Biological Engineering, Chemistry and Wood Science University of British Columbia, Vancouver V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 02150, Finland
| |
Collapse
|
19
|
Schölch S, Schäfer JL, Meckel T, Brandstetter T, Biesalski M, Rühe J. Diazo-Based Copolymers for the Wet Strength Improvement of Paper Based on Thermally Induced CH-Insertion Cross-Linking. Biomacromolecules 2021; 22:2864-2873. [PMID: 34126012 DOI: 10.1021/acs.biomac.1c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present an alternative to commonly used, but from an environmental point of view, problematic wet strength agents, which are usually added to paper to prevent a loss of mechanical stability and finally disintegrate when they get into contact with water. To this end, diazoester-containing copolymers are generated, which are coated onto paper and by heating to 110-160 °C for short periods of time become activated and form carbene intermediates, which undergo a CH-insertion cross-linking reaction. The process leads to a simultaneous cross-linking of the polymer and its attachment to the cellulose substrate. The immobilization process of copolymers consisting of a hydrophilic matrix based on N,N-dimethylacrylamide and a diazoester-based comonomer to a cellulose model surface and to laboratory-engineered, fibrous paper substrates is investigated as a function of time, temperature, and cross-linker composition. The distribution of the polymer in the fiber network is studied using confocal fluorescence microscopy. Finally, the tensile properties of modified wet and dry eucalyptus sulfate papers are measured to demonstrate the strong effect of the thermally cross-linked copolymers on the wet strength of paper substrates. Initial experiments show that the tensile indices of the modified and wetted paper samples are up to 50 times higher compared to the values measured for unmodified samples. When dry and wet papers coated with the above-described wetting agents are compared, relative wet strengths of over 30% are observed.
Collapse
Affiliation(s)
- Simon Schölch
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany.,Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Jan-Lukas Schäfer
- Makromolekulare Chemie und Papierchemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Tobias Meckel
- Makromolekulare Chemie und Papierchemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Thomas Brandstetter
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Markus Biesalski
- Makromolekulare Chemie und Papierchemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany.,Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
20
|
Sampl C, Eyley S, Thielemans W, Hirn U, Spirk S. Real-time adsorption of optical brightening agents on cellulose thin films. Carbohydr Polym 2021; 261:117826. [PMID: 33766333 DOI: 10.1016/j.carbpol.2021.117826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Optical brightening agents (OBAs) are commonly used in textile and paper industry to adjust product brightness and color appearence. Continuous production processes lead to short residence time of the dyes in the fiber suspension, making it necessary to understand the kinetics of adsorption. The interaction mechanisms of OBAs with cellulose are challenging to establish as the fibrous nature of cellulosic substrates complicates acquisition of real-time data. Here, we explore the real-time adsorption of different OBAs (di, tetra- and hexasulfonated compounds) onto different cellulose surfaces using surface plasmon resonance spectroscopy. Ionic strength, surface topography and polarity were varied and yielded 0.76-11.35 mg m-2 OBA on cellulose. We identified four independent mechanisms governing OBA-cellulose interactions. These involve the polarity of the cellulose surface, the solubility of the OBA, the ionic strength during adsorption and presence of bivalent cations such as Ca2+. These results can be exploited for process optimization in related industries as they allow for a simple adjustment and experimental testing procedures including performance assessment of novel OBAs.
Collapse
Affiliation(s)
- Carina Sampl
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria; CD-Laboratory for Fibre Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ulrich Hirn
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria; CD-Laboratory for Fibre Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria.
| | - Stefan Spirk
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria; CD-Laboratory for Fibre Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| |
Collapse
|
21
|
Lux C, Tilger T, Geisler R, Soltwedel O, von Klitzing R. Model Surfaces for Paper Fibers Prepared from Carboxymethyl Cellulose and Polycations. Polymers (Basel) 2021; 13:435. [PMID: 33573003 PMCID: PMC7866410 DOI: 10.3390/polym13030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
For tailored functionalization of cellulose based papers, the interaction between paper fibers and functional additives must be understood. Planar cellulose surfaces represent a suitable model system for studying the binding of additives. In this work, polyelectrolyte multilayers (PEMs) are prepared by alternating dip-coating of the negatively charged cellulose derivate carboxymethyl cellulose and a polycation, either polydiallyldimethylammonium chloride (PDADMAC) or chitosan (CHI). The parameters varied during PEM formation are the concentrations (0.1-5 g/L) and pH (pH = 2-6) of the dipping solutions. Both PEM systems grow exponentially, revealing a high mobility of the polyelectrolytes (PEs). The pH-tunable charge density leads to PEMs with different surface topographies. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) reveal the pronounced viscoelastic properties of the PEMs. Ellipsometry and atomic force microscopy (AFM) measurements show that the strong and highly charged polycation PDADMAC leads to the formation of smooth PEMs. The weak polycation CHI forms cellulose model surfaces with higher film thicknesses and a tunable roughness. Both PEM systems exhibit a high water uptake when exposed to a humid environment, with the PDADMAC/carboxymethyl cellulose (CMC) PEMs resulting in a water uptake up to 60% and CHI/CMC up to 20%. The resulting PEMs are water-stable, but water swellable model surfaces with a controllable roughness and topography.
Collapse
Affiliation(s)
| | | | | | | | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany; (C.L.); (T.T.); (R.G.); (O.S.)
| |
Collapse
|
22
|
Stimpson TC, Cathala B, Moreau C, Moran-Mirabal JM, Cranston ED. Xyloglucan Structure Impacts the Mechanical Properties of Xyloglucan–Cellulose Nanocrystal Layered Films—A Buckling-Based Study. Biomacromolecules 2020; 21:3898-3908. [DOI: 10.1021/acs.biomac.0c01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taylor C. Stimpson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | | | | | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Emily D. Cranston
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
23
|
Niinivaara E, Cranston ED. Bottom-up assembly of nanocellulose structures. Carbohydr Polym 2020; 247:116664. [PMID: 32829792 DOI: 10.1016/j.carbpol.2020.116664] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Nanocelluloses, both cellulose nanofibrils and cellulose nanocrystals, are gaining research traction due to their viability as key components in commercial applications and industrial processes. Significant efforts have been made to understand both the potential of assembling nanocelluloses, and the limits and prospectives of the resulting structures. This Review focuses on bottom-up techniques used to prepare nanocellulose-only structures, and details the intermolecular and surface forces driving their assembly. Additionally, the interactions that contribute to their structural integrity are discussed along with alternate pathways and suggestions for improved properties. Six categories of nanocellulose structures are presented: (1) powders, beads, and droplets; (2) capsules; (3) continuous fibres; (4) films; (5) hydrogels; and (6) aerogels and dried foams. Although research on nanocellulose assembly often focuses on fundamental science, this Review also provides insight on the potential utilization of such structures in a wide array of applications.
Collapse
Affiliation(s)
- Elina Niinivaara
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland.
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
24
|
Affiliation(s)
- Andreas Mautner
- Polymer and Composite Engineering (PaCE) GroupInstitute of Materials Chemistry and Research, University of Vienna Vienna Austria
| |
Collapse
|
25
|
Navon Y, Jean B, Coche-Guérente L, Dahlem F, Bernheim-Groswasser A, Heux L. Deposition of Cellulose Nanocrystals onto Supported Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1474-1483. [PMID: 31904979 DOI: 10.1021/acs.langmuir.9b02888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of cellulose nanocrystals (CNCs) on a supported lipid bilayer (SLB) was investigated at different length scales. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to probe the bilayer formation and to show for the first time the CNC deposition onto the SLB. Specifically, classical QCM-D measurements gave estimation of the adsorbed hydrated mass and the corresponding film thickness, whereas complementary experiments using D2O as the solvent allowed the quantitative determination of the hydration of the CNC layer, showing a high hydration value. Scanning force microscopy (SFM) and total internal reflection fluorescence microscopy (TIRF) were used to probe the homogeneity of the deposited layers, revealing the structural details at the particle and film length scales, respectively, thus giving information on the effect of CNC concentration on the surface coverage. The results showed that the adsorption of CNCs on the supported lipid membrane depended on lipid composition, CNC concentration, and pH conditions, and that the binding process was governed by electrostatic interactions. Under suitable conditions, a uniform film was formed, with thickness corresponding to a CNC monolayer, which provides the basis for a relevant 2D model of a primary plant cell wall.
Collapse
Affiliation(s)
- Yotam Navon
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
- Department of Chemical Engineering, Ilse Kats Institute for Nanoscale Science and Technology , Ben Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Bruno Jean
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | | | - Franck Dahlem
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | - Anne Bernheim-Groswasser
- Department of Chemical Engineering, Ilse Kats Institute for Nanoscale Science and Technology , Ben Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Laurent Heux
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| |
Collapse
|
26
|
Chen P, Shrotri A, Fukuoka A. Unraveling the hydrolysis of β-1,4-glycosidic bonds in cello-oligosaccharides over carbon catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00783h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Larger cello-oligosaccharides undergo faster hydrolysis over carbon catalysts. This is attributed to reduction in activation energy caused by conformational change in the structure of oligosaccharides as they adsorb within the micropores of carbon.
Collapse
Affiliation(s)
- Pengru Chen
- Institute for Catalysis
- Hokkaido University
- Sapporo
- Japan
- Graduate School of Chemical Sciences and Engineering
| | | | | |
Collapse
|
27
|
Inkjet-printed pH-independent paper-based calcium sensor with fluorescence signal readout relying on a solvatochromic dye. Anal Bioanal Chem 2019; 412:3489-3497. [PMID: 31773228 DOI: 10.1007/s00216-019-02218-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
A challenge for paper-based cation sensors relying on classical carrier-based ion-selective optodes (ISOs) is their pH-cross response caused by the use of H+-sensitive chromoionophores as optical signal transducers. This work demonstrates fully pH-independent fluorescence-based calcium detection with a paper-based plasticizer-free ISO. To achieve a pH-independent assay, a solvatochromic dye (SD) instead of a traditional H+-sensitive chromoionophore has been applied to the paper-based ISO by means of inkjet printing technology. The detection principle depends on an ionophore-driven phase-transfer ion-exchange reaction between target cations and the positively charged SD, which no longer involves H+ in the optical signal transduction process. The developed paper-based ISOs with the SD resulted in Ca2+ concentration-dependent response curves not affected by the sample pH (pH 6.0, 7.0, and 8.0). The dynamic range obtained for Ca2+ detection was from 10-5 to 1 mol L-1 with a detection limit of 19.3 μmol L-1. Additionally, excellent selectivity derived from the used ionophore has been confirmed. As a simple practical application, the determination of Ca2+ in mineral water has been achieved without the pH-buffering process required for conventional cation-exchange ISOs.
Collapse
|
28
|
The Microstructure and Mechanical Properties of Poplar Catkin Fibers Evaluated by Atomic Force Microscope (AFM) and Nanoindentation. FORESTS 2019. [DOI: 10.3390/f10110938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the microstructure and mechanical properties of poplar (Populus tomentosa) catkin fibers (PCFs) were investigated using field emission scanning electron microscope, atomic force microscopy (AFM), X-ray diffraction, and nanoindentation methods. Experimental results indicated that PCFs had a thin-wall cell structure with a large cell lumen and the hollow part of the cell wall took up 80 percent of the whole cell wall. The average diameters of the fiber and cell lumen, and the cell wall thickness were 5.2, 4.2, and 0.5 µm, respectively. The crystallinity of fibers was 32%. The AFM images showed that the orientation of microfibrils in cell walls was irregular and their average diameters were almost between 20.6–20.8 nm after being treated with 2 and 5 wt.% potassium hydroxide (KOH), respectively. According to the test of nanoindentation, the average longitudinal-reduced elastic modulus of the PCF S2 layer was 5.28 GPa and the hardness was 0.25 GPa.
Collapse
|
29
|
Brandes R, de Souza L, Carminatti C, Recouvreux D. Production with a High Yield of Bacterial Cellulose Nanocrystals by Enzymatic Hydrolysis. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x19500157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial cellulose nanocrystals are highly crystalline structures with nanoscopic scale dimensions that have received increased attention in the nanocomposites area. Its properties, such as large surface area, low density, mechanical strength and ease of modification, are attractive to the preparation many kinds of nanomaterials applied multifunctional in various fields. Besides, the cellulose nanocrystals are from abundant and renewable sources that are biodegradable. An altemative method is to obtain bacterial cellulose nanocrystal by enzymatic hydrolysis because it is, less expensive, it does not use chemicals and it requires much less energy. In this sense, the primary objective of this study was to produce bacterial cellulose using glycerol as a carbon source and isolate nanocrystals from bacterial cellulose using the enzymatic hydrolysis. This study also investigated the yield of nanocrystals depending on the weight of the bacterial cellulose hydrogel, keeping constant some enzymes. The study shows us that the enzymatic method has the best performance when using cellulose hydrogel 2[Formula: see text]g to 40[Formula: see text][Formula: see text]L cellulase enzyme (endoglucanase) and 1[Formula: see text]mL of citrate buffer. Also, it was observed that the yield of nanocrystals decrease with increasing time required for the hydrolysis.
Collapse
Affiliation(s)
- Ricardo Brandes
- Polymer and Composite Materials Laboratory, Federal University of Santa Catarina, Joinville SC 89218080, Brazil
| | - Leticia de Souza
- Polymer and Composite Materials Laboratory, Federal University of Santa Catarina, Joinville SC 89218080, Brazil
| | - Claudimir Carminatti
- Polymer and Composite Materials Laboratory, Federal University of Santa Catarina, Joinville SC 89218080, Brazil
| | - Derce Recouvreux
- Polymer and Composite Materials Laboratory, Federal University of Santa Catarina, Joinville SC 89218080, Brazil
| |
Collapse
|
30
|
Raghuwanshi VS, Garnier G. Cellulose Nano-Films as Bio-Interfaces. Front Chem 2019; 7:535. [PMID: 31417896 PMCID: PMC6682661 DOI: 10.3389/fchem.2019.00535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Cellulose, the most abundant polymer on earth, has enormous potential in developing bio-friendly, and sustainable technological products. In particular, cellulose films of nanoscale thickness (1-100 nm) are transparent, smooth (roughness <1 nm), and provide a large surface area interface for biomolecules immobilization and interactions. These attractive film properties create many possibilities for both fundamental studies and applications, especially in the biomedical field. The three liable-OH groups on the monomeric unit of the cellulose chain provide schemes to chemically modify the cellulose interface and engineer its properties. Here, the cellulose thin film serves as a substrate for biomolecules interactions and acts as a support for bio-diagnostics. This review focuses on the challenges and opportunities provided by engineering cellulose thin films for controlling biomolecules interactions. The first part reviews the methods for preparing cellulose thin films. These are by dispersing or dissolving pure cellulose or cellulose derivatives in a solvent to coat a substrate using the spin coating, Langmuir-Blodgett, or Langmuir-Schaefer method. It is shown how different cellulose sources, preparation, and coating methods and substrate surface pre-treatment affect the film thickness, roughness, morphology, crystallinity, swelling in water, and homogeneity. The second part analyses the bio-macromolecules interactions with the cellulose thin film interfaces. Biomolecules, such as antibodies and enzymes, are adsorbed at the cellulose-liquid interface, and analyzed dry and wet. This highlights the effect of film surface morphology, thickness, crystallinity, water intake capacity, and surface pre-treatment on biomolecule adsorption, conformation, coverage, longevity, and activity. Advance characterization of cellulose thin film interface morphology and adsorbed biomolecules interactions are next reviewed. X-ray and neutron scattering/reflectivity combined with atomic force microscopy (AFM), quartz crystal microbalance (QCM), microscopy, and ellipsometer allow visualizing, and quantifying the structural morphology of cellulose-biomolecule interphase and the respective biomolecules conformations, kinetics, and sorption mechanisms. This review provides a novel insight on the advantages and challenges of engineering cellulose thin films for biomedical applications. This is to foster the exploration at the molecular level of the interaction mechanisms between a cellulose interface and adsorbed biomolecules with respect to adsorbed molecules morphology, surface coverage, and quantity. This knowledge is to engineer a novel generation of efficient and functional biomedical devices.
Collapse
Affiliation(s)
- Vikram Singh Raghuwanshi
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, VIC, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, VIC, Australia
| |
Collapse
|
31
|
Kontturi E, Spirk S. Ultrathin Films of Cellulose: A Materials Perspective. Front Chem 2019; 7:488. [PMID: 31380342 PMCID: PMC6652239 DOI: 10.3389/fchem.2019.00488] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/25/2019] [Indexed: 01/16/2023] Open
Abstract
A literature review on ultrathin films of cellulose is presented. The review focuses on different deposition methods of the films-all the way from simple monocomponent films to more elaborate multicomponent structures-and the use of the film structures in the vast realm of materials science. The common approach of utilizing cellulose thin films as experimental models is therefore omitted. The reader will find that modern usage of cellulose thin films constitutes an exciting emerging area within materials science and it goes far beyond the traditional usage of the films as model systems.
Collapse
Affiliation(s)
- Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Stefan Spirk
- Institute of Paper, Pulp and Fiber Technology, Graz University of Technology, Graz, Austria
| |
Collapse
|
32
|
Voronova M, Rubleva N, Kochkina N, Afineevskii A, Zakharov A, Surov O. Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites. NANOMATERIALS 2018; 8:nano8121011. [PMID: 30563129 PMCID: PMC6315985 DOI: 10.3390/nano8121011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
Composite films and aerogels of polyvinylpyrrolidone/cellulose nanocrystals (PVP/CNC) were prepared by solution casting and freeze-drying, respectively. Investigations into the PVP/CNC composite films and aerogels over a wide composition range were conducted. Thermal stability, morphology, and the resulting reinforcing effect on the PVP matrix were explored. FTIR, TGA, DSC, X-ray diffraction, SEM, and tensile testing were used to examine the properties of the composites. It was revealed PVP-assisted CNC self-assembly that produces uniform CNC aggregates with a high aspect ratio (length/width). A possible model of the PVP-assisted CNC self-assembly has been considered. Dispersibility of the composite aerogels in water and some organic solvents was studied. It was shown that dispersing the composite aerogels in water resulted in stable colloidal suspensions. CNC particles size in the redispersed aqueous suspensions was near similar to the CNC particles size in never-dried CNC aqueous suspensions.
Collapse
Affiliation(s)
- Marina Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Natalia Rubleva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Nataliya Kochkina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Andrei Afineevskii
- Department of Physical and Colloid Chemistry, Ivanovo State University of Chemistry and Technology, 7 Sheremetevsky Prospect, Ivanovo 153000, Russia.
| | - Anatoly Zakharov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Oleg Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| |
Collapse
|
33
|
Schlemmer W, Zankel A, Niegelhell K, Hobisch M, Süssenbacher M, Zajki-Zechmeister K, Weissl M, Reishofer D, Plank H, Spirk S. Deposition of Cellulose-Based Thin Films on Flexible Substrates. MATERIALS 2018; 11:ma11122433. [PMID: 30513642 PMCID: PMC6316936 DOI: 10.3390/ma11122433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
Abstract
This study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films. Trimethylsilyl cellulose (TMSC), a hydrophobic acid-labile cellulose derivative, was deposited on these substrates and subjected to spin coating. For all the synthetic polymer and metal substrates, rather homogenous films were obtained, where the thickness and the roughness of the films correlated with the substrate roughness and its surface free energy. A particular case was the TMSC layer on the copper foil, which exhibited superhydrophobicity caused by the microstructuring of the copper substrate. After the investigation of TMSC film formation, the conversion to cellulose using acidic vapors of HCl was attempted. While for the polymer foils, as well as for glass and silicon, rather homogenous and smooth cellulose films were obtained, for the metal foils, there is a competing reaction between the formation of metal chlorides and the generation of cellulose. We observed particles corresponding to the metal chlorides, while we could not detect any cellulose thin films after HCl treatment of the metal foils as proven by cross-section imaging using scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Werner Schlemmer
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Armin Zankel
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Steyrergasse 17, 8010 Graz, Austria.
| | - Katrin Niegelhell
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Mathias Hobisch
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Michael Süssenbacher
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | | | - Michael Weissl
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - David Reishofer
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| | - Harald Plank
- Institute of Electron Microscopy and Nanoanalysis (FELMI), Steyrergasse 17, 8010 Graz, Austria.
| | - Stefan Spirk
- Institute for Paper-, Pulp- and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria.
| |
Collapse
|
34
|
Multi-layered nanoscale cellulose/CuInS 2 sandwich type thin films. Carbohydr Polym 2018; 203:219-227. [PMID: 30318207 DOI: 10.1016/j.carbpol.2018.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/23/2022]
Abstract
A generic procedure for the manufacturing of cellulose-metal sulfide multilayered sandwich type thin films is demonstrated at the example of copper indium sulfide. These multilayers were created by alternate spin coating steps of precursors, followed by their conversion using either acidic vapors, or heat treatment. As precursors, cellulose xanthate, a widely available cellulose derivative employed in viscose fiber manufacturing and commercial copper and indium xanthates were used. After conversion of the single layers into cellulose and copper indium sulfide, the film properties (structure, thickness, photoelectric activity) of the single and multilayer systems consisting of alternate layers of cellulose and copper indium sulfide were studied. For the proof of concept, up to five layers were built up, showing a clear separation of the cellulose and the metal sulfide layers as demonstrated using cross sectional analysis using ion slope beam cutting and SEM imaging. Finally, the conversion of xanthates was performed using UV light and a mask, allowing for the creation of 2D patterns.
Collapse
|
35
|
Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J. Current characterization methods for cellulose nanomaterials. Chem Soc Rev 2018; 47:2609-2679. [PMID: 29658545 DOI: 10.1039/c6cs00895j] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.
Collapse
Affiliation(s)
- E Johan Foster
- Department of Materials Science and Engineering, Virginia Tech, 445 Old Turner St, 203 Holden Hall, Blacksburg, 24061, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dudefoi W, Villares A, Peyron S, Moreau C, Ropers MH, Gontard N, Cathala B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Kulkarni VV, Golder AK, Ghosh PK. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:207-217. [PMID: 28780435 DOI: 10.1016/j.jhazmat.2017.07.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×103L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co.
Collapse
Affiliation(s)
| | - Animes Kumar Golder
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India
| | - Pranab Kumar Ghosh
- Department of Civil Engineering, Indian Institute of Technology Guwahati, India.
| |
Collapse
|
38
|
Münch AS, Wölk M, Malanin M, Eichhorn KJ, Simon F, Uhlmann P. Smart functional polymer coatings for paper with anti-fouling properties. J Mater Chem B 2018; 6:830-843. [DOI: 10.1039/c7tb02886e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of functionalized cellulose films on SiO2 to introduce protein repellent properties evaluated by spectroscopic in situ ellipsometry.
Collapse
Affiliation(s)
| | - Michele Wölk
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Mikhail Malanin
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | | | - Frank Simon
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V
- D-01069 Dresden
- Germany
- Department of Chemistry
- Hamilton Hall
| |
Collapse
|
39
|
Hakalahti M, Faustini M, Boissière C, Kontturi E, Tammelin T. Interfacial Mechanisms of Water Vapor Sorption into Cellulose Nanofibril Films as Revealed by Quantitative Models. Biomacromolecules 2017; 18:2951-2958. [PMID: 28816438 DOI: 10.1021/acs.biomac.7b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Humidity is an efficient instrument for facilitating changes in local architectures of two-dimensional surfaces assembled from nanoscaled biomaterials. Here, complementary surface-sensitive methods are used to collect explicit and precise experimental evidence on the water vapor sorption into (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidized cellulose nanofibril (CNF) thin film over the relative humidity (RH) range from 0 to 97%. Changes in thickness and mass of the film due to water vapor uptake are tracked using spectroscopic ellipsometry and quartz crystal microbalance with dissipation monitoring, respectively. Experimental data is evaluated by the quantitative Langmuir/Flory-Huggins/clustering model and the Brunauer-Emmett-Teller model. The isotherms coupled with the quantitative models unveil distinct regions of predominant sorption modes: specific sorption of water molecules below 10% RH, multilayer build-up between 10 to 75% RH, and clustering of water molecules above 75% RH. The study reveals the sorption mechanisms underlying the well-known water uptake behavior of TEMPO oxidized CNF directly at the gas-solid interface.
Collapse
Affiliation(s)
- Minna Hakalahti
- High Performance Fibre Products, VTT Technical Research Center of Finland, Ltd , FI-02044, Espoo, Finland
| | - Marco Faustini
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005, Paris, France
| | - Cédric Boissière
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005, Paris, France
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University , 02150 Espoo, Finland
| | - Tekla Tammelin
- High Performance Fibre Products, VTT Technical Research Center of Finland, Ltd , FI-02044, Espoo, Finland
| |
Collapse
|
40
|
Reid MS, Kedzior SA, Villalobos M, Cranston ED. Effect of Ionic Strength and Surface Charge Density on the Kinetics of Cellulose Nanocrystal Thin Film Swelling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7403-7411. [PMID: 28695741 DOI: 10.1021/acs.langmuir.7b01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
Collapse
Affiliation(s)
- Michael S Reid
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario, Canada L8S 4L8
| | - Stephanie A Kedzior
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario, Canada L8S 4L8
| | - Marco Villalobos
- Cabot Corporation, Billerica, Massachusetts 01821, United States
| | - Emily D Cranston
- Department of Chemical Engineering, McMaster University , Hamilton, Ontario, Canada L8S 4L8
| |
Collapse
|
41
|
Azzam F, Chaunier L, Moreau C, Lourdin D, Bertoncini P, Cathala B. Relationship between Young's Modulus and Film Architecture in Cellulose Nanofibril-Based Multilayered Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4138-4145. [PMID: 28407712 DOI: 10.1021/acs.langmuir.7b00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Young's moduli of cellulose nanofibril (CNF)-poly(allylamine hydrochloride) (PAH) multilayered thin films were measured using strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) and the quantitative nanomechanical mapping technique (PF-QNM). To establish the relationship between structure and mechanical properties, three types of films with various architectures were built using the layer-by-layer method by changing the ionic strength of the dipping solution. Both methods demonstrate that the architecture of a film has a strong impact on its mechanical properties even though the film has similar cellulose content, emphasizing the role of the architecture. Films with lower porosity (Φair = 0.34) and a more intricate network display the highest Young's moduli (9.3 GPa), whereas others with higher and similar porosity (Φair = 0.46-0.48) present lower Young's moduli (4.0-5.0 GPa). PF-QNM measurements indicate a reverse ranking that is probably indicative of the surface composition of the films.
Collapse
Affiliation(s)
- Firas Azzam
- BIA, INRA, 44300 Nantes, France
- Institut des Matériaux Jean Rouxel (IMN), UMR 6502, CNRS-Université de Nantes , 44322 Nantes, France
| | | | | | | | - Patricia Bertoncini
- Institut des Matériaux Jean Rouxel (IMN), UMR 6502, CNRS-Université de Nantes , 44322 Nantes, France
| | | |
Collapse
|
42
|
Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ. Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
|
44
|
|
45
|
Chen YW, Tan TH, Lee HV, Abd Hamid SB. Easy Fabrication of Highly Thermal-Stable Cellulose Nanocrystals Using Cr(NO₃)₃ Catalytic Hydrolysis System: A Feasibility Study from Macro- to Nano-Dimensions. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E42. [PMID: 28772403 PMCID: PMC5344559 DOI: 10.3390/ma10010042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022]
Abstract
This study reported on the feasibility and practicability of Cr(NO₃)₃ hydrolysis to isolate cellulose nanocrystals (CNCCr(NO3)3) from native cellulosic feedstock. The physicochemical properties of CNCCr(NO3)3 were compared with nanocellulose isolated using sulfuric acid hydrolysis (CNCH2SO4). In optimum hydrolysis conditions, 80 °C, 1.5 h, 0.8 M Cr(NO₃)₃ metal salt and solid-liquid ratio of 1:30, the CNCCr(NO3)3 exhibited a network-like long fibrous structure with the aspect ratio of 15.7, while the CNCH2SO4 showed rice-shape structure with an aspect ratio of 3.5. Additionally, Cr(NO₃)₃-treated CNC rendered a higher crystallinity (86.5% ± 0.3%) with high yield (83.6% ± 0.6%) as compared to the H₂SO₄-treated CNC (81.4% ± 0.1% and 54.7% ± 0.3%, respectively). Furthermore, better thermal stability of CNCCr(NO3)3 (344 °C) compared to CNCH2SO4 (273 °C) rendered a high potential for nanocomposite application. This comparable effectiveness of Cr(NO₃)₃ metal salt provides milder hydrolysis conditions for highly selective depolymerization of cellulosic fiber into value-added cellulose nanomaterial, or useful chemicals and fuels in the future.
Collapse
Affiliation(s)
- You Wei Chen
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Thean Heng Tan
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sharifah Bee Abd Hamid
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
46
|
Mao J, Abushammala H, Brown N, Laborie MP. Comparative Assessment of Methods for Producing Cellulose I Nanocrystals from Cellulosic Sources. NANOCELLULOSES: THEIR PREPARATION, PROPERTIES, AND APPLICATIONS 2017. [DOI: 10.1021/bk-2017-1251.ch002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jia Mao
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, University of Freiburg, Werthmannstr. 6, 79085 Freiburg, Germany
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 202 Forest Resources Building, University Park, Pennsylvania 16802, United States
| | - Hatem Abushammala
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, University of Freiburg, Werthmannstr. 6, 79085 Freiburg, Germany
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 202 Forest Resources Building, University Park, Pennsylvania 16802, United States
| | - Nicole Brown
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, University of Freiburg, Werthmannstr. 6, 79085 Freiburg, Germany
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 202 Forest Resources Building, University Park, Pennsylvania 16802, United States
| | - Marie-Pierre Laborie
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources, University of Freiburg, Werthmannstr. 6, 79085 Freiburg, Germany
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 202 Forest Resources Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
47
|
McCann L, Benavidez TE, Holtsclaw S, Garcia CD. Addressing the distribution of proteins spotted on μPADs. Analyst 2017; 142:3899-3905. [DOI: 10.1039/c7an00849j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorption is the most common approach to immobilize biorecognition elements on the surface of paper-based devices.
Collapse
Affiliation(s)
- Laura McCann
- Department of Chemistry
- Clemson University
- Clemson
- USA
| | | | | | | |
Collapse
|
48
|
Lindman B, Medronho B, Alves L, Costa C, Edlund H, Norgren M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02409f] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The interactions and structural properties of cellulose influence different phenomena.
Collapse
Affiliation(s)
- Björn Lindman
- FSCN
- Mid Sweden University
- SE-851 70 Sundsvall
- Sweden
- Physical Chemistry
| | - Bruno Medronho
- Faculty of Sciences and Technology (MeditBio)
- Ed. 8
- University of Algarve
- 8005-139 Faro
- Portugal
| | - Luis Alves
- CQC
- University of Coimbra
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | | - Håkan Edlund
- FSCN
- Mid Sweden University
- SE-851 70 Sundsvall
- Sweden
| | | |
Collapse
|
49
|
Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int J Biol Macromol 2016; 92:11-19. [DOI: 10.1016/j.ijbiomac.2016.06.094] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
|
50
|
Su J, Raghuwanshi VS, Raverty W, Garvey CJ, Holden PJ, Gillon M, Holt SA, Tabor R, Batchelor W, Garnier G. Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules. Sci Rep 2016; 6:36119. [PMID: 27796332 PMCID: PMC5086855 DOI: 10.1038/srep36119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/11/2016] [Indexed: 02/03/2023] Open
Abstract
Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR.
Collapse
Affiliation(s)
- Jielong Su
- BioPRIA- Bioresource Processing Research Institute of Australia, Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Vikram S. Raghuwanshi
- BioPRIA- Bioresource Processing Research Institute of Australia, Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Warwick Raverty
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher J. Garvey
- Australian Nuclear Science and Technology Organisation (ANSTO) Locked Bag 2001, Kirrawee DC NSW 2232, Australia
| | - Peter J. Holden
- Australian Nuclear Science and Technology Organisation (ANSTO) Locked Bag 2001, Kirrawee DC NSW 2232, Australia
| | - Marie Gillon
- Australian Nuclear Science and Technology Organisation (ANSTO) Locked Bag 2001, Kirrawee DC NSW 2232, Australia
| | - Stephen A. Holt
- Australian Nuclear Science and Technology Organisation (ANSTO) Locked Bag 2001, Kirrawee DC NSW 2232, Australia
| | - Rico Tabor
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Warren Batchelor
- BioPRIA- Bioresource Processing Research Institute of Australia, Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Gil Garnier
- BioPRIA- Bioresource Processing Research Institute of Australia, Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|