1
|
Yan X, Song Y, Wang D, Xia T, Tan X, Ba J, Tang T, Luo W, Sang G, Xiong R. Direct observation of highly effective hydrogen isotope separation at active metal sites by in situ DRIFT spectroscopy. Chem Commun (Camb) 2023; 59:3922-3925. [PMID: 36919773 DOI: 10.1039/d3cc00522d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
In situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was developed for the first time to observe the hydrogen isotope separation behavior at active CuI sites within CuI-MFU-4l, and clear evidence of the preferential adsorption of D2 over H2 was directly captured. More importantly, our results show direct spectral proof to clarify the chemical affinity quantum sieving mechanism of hydrogen isotope separation within porous adsorbents.
Collapse
Affiliation(s)
- Xiayan Yan
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Yaqi Song
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Degao Wang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Tifeng Xia
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Xinxin Tan
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Jingwen Ba
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Tao Tang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Wenhua Luo
- Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9072-35, Mianyang 621908, China
| | - Ge Sang
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| | - Renjin Xiong
- Institute of Materials, China Academy of Engineering Physics, P. O. Box 9071-12, Mianyang 621907, China.
| |
Collapse
|
2
|
Ozbek MO, Ipek B. A Theoretical Investigation of Cu+, Ni2+ and Co2+-exchanged Zeolites for Hydrogen Storage. Chemphyschem 2022; 23:e202200272. [PMID: 35785512 DOI: 10.1002/cphc.202200272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/03/2022] [Indexed: 11/06/2022]
Abstract
This study investigates the H 2 adsorption on Cu + , Ni 2+ and Co 2+ -exchanged SSZ-13 (CHA) and SSZ-39 (AEI) using periodic DFT computations. Most stable Cu + position was found to be the 6-membered-ring window for both zeolites. Similarly, for investigated Ni 2+ and Co 2+ loadings on 6-membered-ring windows, the third nearest neighbor Al positions, i.e., Al-O-Si-O-Si-O-Al coordination, was found to be the most stable position. H 2 adsorption was investigated for all the Cu + , Ni 2+ and Co 2+ centers. AEI and CHA resulted in similar H 2 -Cu interactions for the Al and B substituted structures. H 2 adsorption on Cu + located in the 8-membered-ring gave the highest adsorption energy for both frameworks. Replacing Al with B in the framework increased the electron back donation from Cu + (3d) orbitals to H 2 antibonding orbital (s H2 * ). The H 2 adsorption energies on the Ni 2+ and Co 2+ -exchanged zeolites were found to be between -15 and -44 kJ/mol. Higher energy values were observed on the AEI framework, especially when two Al atoms have the Al-O-Si-O-Al configuration. Lesser interaction of the d-orbitals in the case of the Co 2+ and Ni 2+ cations resulted in heat of H 2 adsorption close to optimum values required for H 2 storage on porous materials.
Collapse
Affiliation(s)
- M Olus Ozbek
- Gebze Technical University: Gebze Teknik Universitesi, Chemical Engineering Department, Cumhuriyet 2254 St. No.2, Gebze, 41400, Kocaeli, TURKEY
| | - Bahar Ipek
- Middle East Technical University: Orta Dogu Teknik Universitesi, Chemical and Biomolecular Engineering, Dumlupinar Bulv. No 1, Cankaya, 06800, Ankara, TURKEY
| |
Collapse
|
3
|
Yang Z, Yuan J, Wang S, Chen M. Global diabatic potential energy surfaces for the BeH 2 + system and dynamics studies on the Be +( 2P) + H 2(X 1Σ g +) → BeH +(X 1Σ +) + H( 2S) reaction. RSC Adv 2018; 8:22823-22834. [PMID: 35539737 PMCID: PMC9081383 DOI: 10.1039/c8ra04305a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/13/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
The Be+(2P) + H2(X1Σg +) → BeH+(X1Σ+) + H(2S) reaction has great significance for studying diabatic processes and ultracold chemistry. The first global diabatic potential energy surfaces (PESs) which are correlated with the lowest two adiabatic states 12A' and 22A' of the BeH2 + system are constructed by using the neural network method. Ab initio energy points are calculated using the multi-reference configuration interaction method with the Davidson correction and AVQZ basis set. The diabatic energies are obtained from the transformation of ab initio data based on the dipole moment operators. The topographical characteristics of the diabatic PESs are described in detail, and the positions of crossing between the V d 11 and V d 22 are pinpointed. On new diabatic PESs, the time-dependent quantum wave packet method is carried out to study the mechanism of the title reaction. The results of dynamics calculations indicate the reaction has no threshold and the product BeH+ is excited to high vibrational states easily. In addition, the product BeH+ tends to backward scattering at most collision energies.
Collapse
Affiliation(s)
- Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| | - Jiuchuang Yuan
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| | - Shufen Wang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
4
|
|
5
|
Kozyra P, Piskorz W. A comparative computational study on hydrogen adsorption on the Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cationic sites in zeolites. Phys Chem Chem Phys 2016; 18:12592-603. [PMID: 27092373 DOI: 10.1039/c5cp05493a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article the interaction between H2 and Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cations in cluster models of several sizes has been studied computationally. Depending on the changes imposed by the adsorption process on the H2 molecule the activation can vary in a wide range - from only slight weakening of the H-H bond to complete dissociation of the H2 molecule. The NOCV (Natural Orbitals for Chemical Valence) analysis allowed for decomposition of the electron density distortion into contributions easier for interpretation. Three essential factors have been identified (i-iii). In the case of bare cations the main contribution is a donation from σH2 to the cation (i). When a zeolite framework surrounding the cation is introduced, it hinders σ-donation and enhances π-backdonation from the cation to the antibonding orbital of the molecule (ii). For Cu(i) and Ag(i) sites π-backdonation becomes dominant, while for Mg(ii), Cd(ii), and Zn(ii) cations, the σ-donation, albeit diminished, still remains a dominant contribution. Calculations showed that the localization and coordination of Zn(ii) have crucial influence on its interaction with H2. We identified a Zn(2+) position at which the H2 molecule dissociates - here the interaction between H2 and oxygen framework (iii) plays a crucial role. Based on the calculations the mechanism of H2 transformation has been proposed. Upon heterolytic dissociation of H2 the Zn(0) moiety and two OH groups can be formed. Eventually, in two elementary steps, the H2 molecule can be restored. In this case, the ability of the site to activate/dissociate hydrogen is caused by the low coordination number of the zinc cation and the geometry of the site which allows positively charged H2 to interact with framework oxygen what enhances the formation of OH and Z-O-(ZnH)(+) groups.
Collapse
Affiliation(s)
- Paweł Kozyra
- Faculty of Chemistry, Jagiellonian University in Kraków, ul. Ingardena 3, 30-060 Kraków, Poland.
| | | |
Collapse
|
6
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
7
|
Kubo M, Kamimura Y, Itabashi K, Okubo T. Cryogenic Hydrogen Adsorption onto H-, Li-, Na-Exchanged Zeolites with Various Si/Al Ratios. ADSORPT SCI TECHNOL 2014. [DOI: 10.1260/0263-6174.32.5.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Masaru Kubo
- Department of Chemical Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan. ‡National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshihiro Kamimura
- Department of Chemical System Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
8
|
Chavan SM, Zavorotynska O, Lamberti C, Bordiga S. H2 interaction with divalent cations in isostructural MOFs: a key study for variable temperature infrared spectroscopy. Dalton Trans 2014; 42:12586-95. [PMID: 23861014 DOI: 10.1039/c3dt51312b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Systematic studies of H2 adsorption by variable temperature infrared (VTIR) spectroscopy have added value in the characterization of hydrogen storage materials. As a key study to describe the potential of the method, here we report VTIR spectroscopy results of H2 adsorption at isostructural MOFs CPO-27-M (M = Mg, Mn, Co, Ni, Zn). The strongest perturbation of H2 vibrational frequency is due to the interaction with an open metal site. Although ionic radius is an empirical value, the direct correlation between ionic radii of the metal cation and H2 interaction energy is found in MOFs of the same topology. The highest enthalpy of hydrogen adsorption 15 ± 1 kJ mol(-1) was found for Ni(2+). VTIR results of H2 adsorption at isostructural MOFs CPO-27-M (M = Mg, Mn, Co, Ni, Zn) were compared with data obtained from analogous studies performed on a large variety of microporous materials (MOFs and zeolites), underlining the relevance of the approach to get reliable energetic and entropic (ΔH(0) and ΔS(0)) values to be compared with computational data and isosteric heats.
Collapse
Affiliation(s)
- Sachin M Chavan
- Chemistry Department, NIS, Centre of Excellence and INSTM Università di Torino, via Pietro Giuria 7 and via Quarello 11, 10100, Torino, Italy.
| | | | | | | |
Collapse
|
9
|
Dryza V, Bieske E. Non-covalent interactions between metal cations and molecular hydrogen: spectroscopic studies of M+–H2complexes. INT REV PHYS CHEM 2013. [DOI: 10.1080/0144235x.2013.810489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Dryza V, Poad BLJ, Bieske EJ. Attaching molecular hydrogen to metal cations: perspectives from gas-phase infrared spectroscopy. Phys Chem Chem Phys 2012; 14:14954-65. [PMID: 23034736 DOI: 10.1039/c2cp41622k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this perspective article we describe recent infrared spectroscopic investigations of mass-selected M(+)-H(2) and M(+)-D(2) complexes in the gas-phase, with targets that include Li(+)-H(2), B(+)-H(2), Na(+)-H(2), Mg(+)-H(2), Al(+)-H(2), Cr(+)-D(2), Mn(+)-H(2), Zn(+)-D(2) and Ag(+)-H(2). Interactions between molecular hydrogen and metal cations play a key role in several contexts, including in the storage of molecular hydrogen in zeolites, metal-organic frameworks, and doped carbon nanostructures. Arguably, the clearest view of the interaction between dihydrogen and a metal cation can be obtained by probing M(+)-H(2) complexes in the gas phase, free from the complicating influences of solvents or substrates. Infrared spectra of the complexes in the H-H and D-D stretch regions are obtained by monitoring M(+) photofragments as the excitation wavelength is scanned. The spectra, which feature full rotational resolution, confirm that the M(+)-H(2) complexes share a common T-shaped equilibrium structure, consisting essentially of a perturbed H(2) molecule attached to the metal cation, but that the structural and vibrational parameters vary over a considerable range, depending on the size and electronic structure of the metal cation. Correlations are established between intermolecular bond lengths, dissociation energies, and frequency shifts of the H-H stretch vibrational mode. Ultimately, the M(+)-H(2) and M(+)-D(2) infrared spectra provide a comprehensive set of benchmarks for modelling and understanding the M(+)···H(2) interaction.
Collapse
Affiliation(s)
- Viktoras Dryza
- School of Chemistry, University of Melbourne, Melbourne, 3010, Australia
| | | | | |
Collapse
|
11
|
Nachtigall P, Delgado MR, Nachtigallova D, Arean CO. The nature of cationic adsorption sites in alkaline zeolites—single, dual and multiple cation sites. Phys Chem Chem Phys 2012; 14:1552-69. [DOI: 10.1039/c2cp23237e] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Areán CO, Cabello CP, Palomino GT. Infrared spectroscopic and thermodynamic study on hydrogen adsorption on the metal organic framework MIL-100(Sc). Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.11.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Palomino GT, Cabello CP, Areán CO. Enthalpy-Entropy Correlation for Hydrogen Adsorption on MOFs: Variable-Temperature FTIR Study of Hydrogen Adsorption on MIL-100(Cr) and MIL-101(Cr). Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Lamberti C, Zecchina A, Groppo E, Bordiga S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem Soc Rev 2010; 39:4951-5001. [PMID: 21038053 DOI: 10.1039/c0cs00117a] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This critical review describes the reactivity of heterogeneous catalysts from the point of view of four simple, but essential for Chemistry, molecules (namely dihydrogen, carbon monoxide, nitrogen monoxide and ethylene) that are considered as probes or as reactants in combination with "in situ" controlled temperature and pressure Infrared spectroscopy. The fundamental properties of H(2), CO, NO and C(2)H(4) are shortly described in order to justify their different behaviour in respect of isolated sites in different environments, extended surfaces, clusters, crystalline or amorphous materials. The description is given by considering some "key studies" and trying to evidence similarities and differences among surfaces and probes (572 references).
Collapse
Affiliation(s)
- Carlo Lamberti
- Department of Inorganic, Physical and Materials Chemistry, NIS Centre of Excellence, University of Turin. Via P. Giuria 7, 10125 Torino, Italy
| | | | | | | |
Collapse
|
15
|
Areán CO, Chavan S, Cabello CP, Garrone E, Palomino GT. Thermodynamics of Hydrogen Adsorption on Metal-Organic Frameworks. Chemphyschem 2010; 11:3237-42. [DOI: 10.1002/cphc.201000523] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Dangi GP, Pillai RS, Somani RS, Bajaj HC, Jasra RV. A density functional theory study on the interaction of hydrogen molecule with MOF-177. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927020903487404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Abstract
Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.
Collapse
|
18
|
Areán CO, Palomino GT, Carayol ML, Pulido A, Rubeš M, Bludský O, Nachtigall P. Hydrogen adsorption on the zeolite Ca-A: DFT and FT-IR investigation. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.06.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Tylianakis E, Klontzas E, Froudakis GE. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. NANOTECHNOLOGY 2009; 20:204030. [PMID: 19420678 DOI: 10.1088/0957-4484/20/20/204030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Open-framework materials have been proposed as potential materials for hydrogen storage. Metal-organic framework (MOF) and covalent-organic framework (COF) materials are under extensive study to discover their storage abilities. In particular the IRMOF family of materials have been considered as ideal to study the effect of different factors that affect the hydrogen storage capacity. In this paper, we analyse the effect of different factors such as surface area, pore volume and the interaction of hydrogen with the molecular framework on the hydrogen uptake of such materials. Through this analysis we propose guidelines to enhance hydrogen storage capacity of already synthesized materials and recommend advanced materials for this application.
Collapse
Affiliation(s)
- Emmanuel Tylianakis
- Materials Science and Technology Department, University of Crete, PO Box 2208,GR-71409 Heraklion, Crete, Greece
| | | | | |
Collapse
|
20
|
Ponzi A, Marinetti F, Gianturco FA. Structuring molecular hydrogen around ionic dopants: Li+ cations in small pH2 clusters. Phys Chem Chem Phys 2009; 11:3868-74. [DOI: 10.1039/b820190k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Turnes Palomino G, Llop Carayol M, Otero Areán C. Thermodynamics of hydrogen adsorption on the zeolite Ca-Y. Catal Today 2008. [DOI: 10.1016/j.cattod.2008.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Garrone E, Bonelli B, Otero Areán C. Enthalpy–entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.03.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
van den Berg AWC, Areán CO. Materials for hydrogenstorage: current research trends and perspectives. Chem Commun (Camb) 2008:668-81. [DOI: 10.1039/b712576n] [Citation(s) in RCA: 576] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Vibrational dynamics of small molecules adsorbed on cation sites in zeolite channel systems: IR and DFT investigation. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0167-2991(08)80026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Zicovich-Wilson CM, San-Román ML, Camblor MA, Pascale F, Durand-Niconoff JS. Structure, Vibrational Analysis, and Insights into Host−Guest Interactions in As-Synthesized Pure Silica ITQ-12 Zeolite by Periodic B3LYP Calculations. J Am Chem Soc 2007; 129:11512-23. [PMID: 17718565 DOI: 10.1021/ja0730361] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As-made and calcined ITQ-12 zeolites are structurally characterized by means of the analysis of their vibrational modes. The experimental IR spectra made on high crystalline samples are compared with accurate B3LYP periodic calculations performed with the CRYSTAL06 code. The fair agreement between both sets of data allows us to make a reliable assignment of the IR modes. Thanks to the detailed information provided by the theoretical calculations, the analysis of the IR intensities, the Born dynamic charges, and the whole set of vibrational frequencies at Gamma-point shed light on several aspects of the host-guest interaction, structure-direction issues, including the role of fluoride anions in allowing the crystallization of silica structures with strained double-four rings, and the role played by the framework flexibility.
Collapse
Affiliation(s)
- Claudio Marcelo Zicovich-Wilson
- Facultad de Ciencias, Universidad Autnóma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca (Morelos), Mexico.
| | | | | | | | | |
Collapse
|
26
|
Emmeluth C, Poad BLJ, Thompson CD, Weddle GH, Bieske EJ. Infrared spectra of the Li+–(H2)n (n=1–3) cation complexes. J Chem Phys 2007; 126:204309. [PMID: 17552764 DOI: 10.1063/1.2738464] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Li+-(H2)n n=1-3 complexes are investigated through infrared spectra recorded in the H-H stretch region (3980-4120 cm-1) and through ab initio calculations at the MP2/aug-cc-pVQZ level. The rotationally resolved H-H stretch band of Li+-H2 is centered at 4053.4 cm-1 [a -108 cm-1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka=0-0, 1-1, 2-2, and 3-3 subbands are observed. The Ka=0-0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 A increasing by 0.004 A when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+-H2 potential energy surfaces [Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Spirko, Chem. Phys. 330, 190 (2006)]. The H-H stretch band of Li+-(H2)2, which is centered at 4055.5 cm-1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2-Li+-H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+...H2 bonds have approximately the same length as the intermolecular bond in Li+-H2. The Li+-(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm-1.
Collapse
Affiliation(s)
- C Emmeluth
- School of Chemistry, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | |
Collapse
|
27
|
Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley PS, Morris RE, Zecchina A. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 2007; 9:2676-85. [PMID: 17627311 DOI: 10.1039/b703643d] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N2 and H2). From a temperature dependent IR study, it has been estimated that the H2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H2 species.
Collapse
Affiliation(s)
- S Bordiga
- Dipartimento di Chimica IFM and NIS Centre of Excellence, Università di Torino, INSTM UdR Torino, Via Pietro Giuria 7, 10125, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Otero Areán C, Nachtigallová D, Nachtigall P, Garrone E, Rodríguez Delgado M. Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites—the interplay of infrared spectroscopy and theoretical calculations. Phys Chem Chem Phys 2007; 9:1421-37. [PMID: 17356750 DOI: 10.1039/b615535a] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed understanding of weak solid-gas interactions giving rise to reversible gas adsorption on zeolites and related materials is relevant to both, fundamental studies on gas adsorption and potential improvement on a number of (adsorption based) technological processes. Combination of variable-temperature infrared spectroscopy with theoretical calculations constitutes a fruitful approach towards both of these aims. Such an approach is demonstrated here (mainly) by reviewing recent studies on hydrogen and carbon monoxide adsorption (at a low temperature) on alkali-metal exchanged ferrierite. However, the methodology discussed, which involves the interplay of experimental measurements and theoretical calculations at the periodic DFT level, should be equally valid for many other gas-solid systems. Specific aspects considered are the identification of gas adsorption complexes and thermodynamic studies related to standard adsorption enthalpy and entropy.
Collapse
Affiliation(s)
- C Otero Areán
- Departamento de Química, Universidad de las Islas Baleares, E-07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
30
|
Ricchiardi G, Vitillo JG, Cocina D, Gribov EN, Zecchina A. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho–para conversion on ETS-10 titanosilicate material. Phys Chem Chem Phys 2007; 9:2753-60. [PMID: 17627319 DOI: 10.1039/b703409a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.
Collapse
Affiliation(s)
- Gabriele Ricchiardi
- Dipartimento di Chimica IFM and NIS Centre of Excellence, Università di Torino, INSTM UdR Università, Via Pietro Giuria 7, 10125, Torino, Italy.
| | | | | | | | | |
Collapse
|
31
|
Turnes Palomino G, Llop Carayol MR, Otero Areán C. Hydrogen adsorption on magnesium-exchanged zeolites. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b607261e] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|