1
|
Karthikeyan M, Rathinasabapathi P. A Label-Free Colorimetric AuNP-Aptasensor for the Rapid Detection of Vibrio cholerae O139. Cell Mol Bioeng 2024; 17:229-241. [PMID: 39050512 PMCID: PMC11263534 DOI: 10.1007/s12195-024-00804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Waterborne pathogens pose a significant threat to public health, emphasizing the continuous necessity for advancing robust detection techniques, particularly in preventing outbreaks associated with these pathogens. This study focuses on cholera, an infectious disease caused by Vibrio cholerae, serogroups O1 and O139, often transmitted through contaminated water and food, raising significant public health concerns in areas with poor sanitation and limited access to clean water. Methods We developed a colorimetric biosensor using aptamer-functionalized gold nanoparticles to identify Vibrio cholerae O139 and address this issue. The detection mechanism relies on the color change of gold nanoparticles (AuNPs) from red to blue-purple induced by NaCl after the pathogen incubation and aptamer-target binding. Initial steps involved synthesizing and characterizing AuNPs, then exploring the impact of aptamer and NaCl concentrations on AuNP agglomeration. Optimization procedures for aptamer concentration and salt addition identified the optimal conditions for detection as 120 pM aptamers and 1 M NaCl. Results The aptasensor demonstrated a robust linear relationship, detecting V. cholerae concentrations from 103 to 108 CFU/mL, with a limit of detection (LOD) of 587 CFU/mL. Specificity tests and accurate sample analyses confirmed the efficiency of the AuNPs aptasensor, showcasing its reliability and speed compared to traditional culture examination methods. Moreover, we extended the aptasensor to a paper-based sensing platform with similar detection principles. Conclusion The change in color upon target binding was captured with a smartphone and analyzed using image processing software. The paper-based device detected the target in less than 2 min, demonstrating its convenience for on-field applications.
Collapse
Affiliation(s)
- Masilamani Karthikeyan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203 India
| | - Pasupathi Rathinasabapathi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203 India
| |
Collapse
|
2
|
Weng RC, Tsou MC, Lee JL, Tseng CM, Huang YF, Xiao YL, Lu YP, Chou WC, Chang RF, Chuang CY. Development of a rapid aptamer-chemiluminescence sensor for detecting glyphosate pesticide residue in soybeans. Talanta 2024; 272:125741. [PMID: 38359718 DOI: 10.1016/j.talanta.2024.125741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide worldwide, particularly in cultivating genetically modified soybeans resistant to GLY. However, routine multi-residue analysis does not include GLY due to the complexity of soybean matrix components that can interfere with the analysis. This study presented the development of an aptamer-based chemiluminescence (Apt-CL) sensor for rapidly screening GLY pesticide residue in soybeans. The GLY-binding aptamer (GBA) was developed to bind to GLY specifically, and the remaining unbound aptamers were adsorbed onto gold nanoparticles (AuNPs). The signal was in the form of luminol-H2O2 emission, catalyzed by the aggregation of AuNPs in a chemiluminescent reaction arising from the GLY-GBA complex. The outcomes demonstrated a robust linear relationship between the CL intensity of GLY-GBA and the GLY concentration. In the specificity test of the GBA, only GLY and Profenofos were distinguished among the fifteen tested pesticides. Furthermore, the Apt-CL sensor was conducted to determine GLY residue in organic soybeans immersed in GLY as a real sample, and an optimal linear concentration range for detection after extraction was found to be between 0.001 and 10 mg/L. The Apt-CL sensor exploits the feasibility of real-time pesticide screening in food safety.
Collapse
Affiliation(s)
- Rui-Cian Weng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Min-Cheng Tsou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jyun-Lin Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Ming Tseng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Residue Control Division, Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Lin Xiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yen-Pei Lu
- Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Wei-Chun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Ruey-Feng Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Wan F, Chen ZW, Xu TT, Guan JJ, Cui XM, Kang CZ, Zhou T, Wang CX, Guo LP, Yang Y. Selection and application of aptamers for p-hydroxybenzyl hydrogen sulfite after Gastrodia elata Bl. fumigated with sulfur. Talanta 2024; 269:125461. [PMID: 38056416 DOI: 10.1016/j.talanta.2023.125461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/01/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Gastrodia elata Bl. is a widely used traditional Chinese medicine known for its medicinal properties. However, during the drying process, G. elata is often fumigated with sulfur to prevent corrosion and improve its appearance. Sulfur-fumigation can result in a reduction in the effective components of the herb and can also be hazardous to human health due to the remaining sulfur dioxide. Sulfur-fumigation of G. elata poses a significant challenge to both end-users and researchers. The detection of p-hydroxybenzyl hydrogen sulfite (p-HS) is a useful tool in determining whether G. elata has been fumigated with sulfur. Unfortunately, the current method for detecting p-HS is costly and requires sophisticated instruments. Therefore, there is a need to develop a more cost-effective and user-friendly method for the detection of p-HS. This study utilized the Capture-SELEX technique to screen high-affinity aptamers for p-HS, which were subsequently characterized by isothermal titration calorimetry (ITC). An aptamer sequence (seq 6) with a high affinity of Kd = 26.5 μM was obtained following 8 rounds of selection against p-HS. With the aptamer serving as the recognition element and gold nanoparticles as the colorimetric indicator, a simple and efficient colorimetric sensor was developed for the specific detection of p-HS. This detection method exhibited a limit of detection of 1 μg/ml, while the p-HS recoveries demonstrated a range of between 88.5 % and 105 % for samples of G. elata obtained in the market. In summary, the aptamer exhibited a high affinity for p-HS, and the sensor developed through the use of a colloidal gold detector based on nucleic acid aptamer can be utilized for rapid detection of sulfur-fumigated G. elata. With these findings, this research paper provides valuable scientific insights and highlights significant potential for future studies in this area.
Collapse
Affiliation(s)
- Fen Wan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Zhuo-Wen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ting-Ting Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jin-Jie Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Chuan-Zhi Kang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Cheng-Xiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Lan-Ping Guo
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Panax Notoginseng, Kunming, 650500, China.
| |
Collapse
|
4
|
Jarczewska M, Sokal M, Olszewski M, Malinowska E. Studies on the Aptasensor Miniaturization for Electrochemical Detection of Lead Ions. BIOSENSORS 2024; 14:110. [PMID: 38392029 PMCID: PMC10886534 DOI: 10.3390/bios14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Lead poses severe effects on living organisms, and since Pb2+ ions tend to accumulate in different organs, it is crucial to monitor Pb2+ concentration in samples such as water and soil. One of the approaches is the utilization of biosensors combined with aptamer-based layers for the electrochemical detection of lead ions. Herein, we present the studies of applying miniaturized screen-printed transducers as solid surfaces to fabricate aptamer layers. As the research is the direct continuation of our previous studies regarding the use of gold disk electrodes, the working parameters of elaborated aptasensors were defined, including the range of linear response (10-100 nM), selectivity as well as stability, regeneration, and feasibility of application for the analysis of real samples. This was achieved using voltammetric techniques including cyclic and square-wave voltammetry in the presence of methylene blue redox indicator.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marta Sokal
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-664 Warsaw, Poland;
| | - Elzbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| |
Collapse
|
5
|
Koriem KMM, Abdeen AMA. Shikimic acid recovers diarrhea and its complications in SD rats fed lactose diet to induce diarrhea. Lab Anim Res 2023; 39:28. [PMID: 37950334 PMCID: PMC10636980 DOI: 10.1186/s42826-023-00179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diarrhea is the increase of excretion of human water content and an imbalance in the physiologic processes of the small and large intestine while shikimic acid is an important biochemical metabolite in plants. This study aims to study the anti-diarrheal activity of shikimic acid through restoring kidney function, antioxidant activity, inflammatory markers, sodium/potassium-ATPase activity, apoptosis genes, and histology of the kidney in SD rats fed lactose diet to induce diarrhea. RESULTS Thirty-six male SD rats (150 ± 10 g, 12 weeks old) were divided into 2 equal groups (18 rats/group) as follows: normal and diarrheal rats. Normal rats were divided into 3 equal groups of 6 rats each: the control, shikimic acid, and desmopressin drug groups. Diarrheal rats were also divided into 3 equal groups of 6 rats each: diarrheal, diarrheal rats + shikimic acid, and diarrheal rats + desmopressin drug groups. Shikimic acid restored serum urea and creatinine, urinary volume, kidney weight, sodium, potassium, and chloride balance in serum and urine. The acid returned the antioxidant (superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, NADPH oxidase activity, conjugated dienes, and oxidative index) activity and the inflammatory markers (tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-10) to values approaching the control values. Shikimic acid also restored the sodium/potassium-ATPase activity, the apoptosis genes p53 and bcl-2, and the histology of kidney tissue in diarrheal rats to be near the control group. CONCLUSIONS Shikimic acid rescues diarrhea and its complications through restoring kidney function, serum and urinary electrolytes, antioxidant activity, inflammatory markers, sodium/potassium-ATPase activity, the apoptosis genes, and the histology of the kidney in diarrheal rats to approach the control one.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Department of Medical Physiology, Medical Research and Clinical Institute, National Research Centre, 33 El-Buhouth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Alaa M A Abdeen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
| |
Collapse
|
6
|
Sangwan S, Seth R. Synthesis and stability analysis of papain‐functionalized gold nanoparticles (P‐AuNPs) for the colorimetric detection of mercury in milk. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sonia Sangwan
- Dairy Chemistry Division ICAR‐National Dairy Research Institute Karnal 132001 Haryana India
| | - Raman Seth
- Principal Scientist & HOD, Dairy Chemistry Division ICAR‐ National Dairy Research Institute Karnal 132001 Haryana India
| |
Collapse
|
7
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
8
|
Methamphetamine detection using nanoparticle-based biosensors: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Schmitz FRW, Cesca K, Valério A, de Oliveira D, Hotza D. Colorimetric detection of Pseudomonas aeruginosa by aptamer-functionalized gold nanoparticles. Appl Microbiol Biotechnol 2022; 107:71-80. [DOI: 10.1007/s00253-022-12283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
|
10
|
Babadi AA, Rahmati S, Fakhlaei R, Heidari R, Baradaran S, Akbariqomi M, Wang S, Tavoosidana G, Doherty W, Ostrikov K. SARS-CoV-2 detection by targeting four loci of viral genome using graphene oxide and gold nanoparticle DNA biosensor. Sci Rep 2022; 12:19416. [PMID: 36371566 PMCID: PMC9653406 DOI: 10.1038/s41598-022-23996-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic outbreak poses a serious threat to public health, demonstrating the critical need for the development of effective and reproducible detection tests. Since the RT-qPCR primers are highly specific and can only be designed based on the known sequence, mutation sensitivity is its limitation. Moreover, the mutations in the severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) genome led to new highly transmissible variants such as Delta and Omicron variants. In the case of mutation, RT-qPCR primers cannot recognize and attach to the target sequence. This research presents an accurate dual-platform DNA biosensor based on the colorimetric assay of gold nanoparticles and the surface-enhanced Raman scattering (SERS) technique. It simultaneously targets four different regions of the viral genome for detection of SARS-CoV-2 and its new variants prior to any sequencing. Hence, in the case of mutation in one of the target sequences, the other three probes could detect the SARS-CoV-2 genome. The method is based on visible biosensor color shift and a locally enhanced electromagnetic field and significantly amplified SERS signal due to the proximity of Sulfo-Cyanine 3 (Cy3) and AuNPs intensity peak at 1468 cm-1. The dual-platform DNA/GO/AuNP biosensor exhibits high sensitivity toward the viral genome with a LOD of 0.16 ng/µL. This is a safe point-of-care, naked-eye, equipment-free, and rapid (10 min) detection biosensor for diagnosing COVID-19 cases at home using a nasopharyngeal sample.
Collapse
Affiliation(s)
- Arman Amani Babadi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 55469-14177, Iran
| | - Shahrooz Rahmati
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, 4000, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia.
| | - Rafieh Fakhlaei
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, 14117-18541, Iran
| | - Saeid Baradaran
- New Technologies Research Center, Amirkabir University of Technology, Tehran, 15916-34311, Iran
| | - Mostafa Akbariqomi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 14359-16471, Iran
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 55469-14177, Iran.
| | - William Doherty
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, 4000, Australia
| | - Kostya Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, 4000, Australia
| |
Collapse
|
11
|
Jarczewska M, Szymczyk A, Zajda J, Olszewski M, Ziółkowski R, Malinowska E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022; 27:7481. [PMID: 36364308 PMCID: PMC9657803 DOI: 10.3390/molecules27217481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2024] Open
Abstract
Recently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices. This, in turn, can significantly increase, e.g., analytical signal intensity, both optical and electrochemical, and the same can allow for obtaining exceptionally low detection limits and fast biosensor responses. All these properties, together with low power consumption, make nucleic acids biosensors perfect candidates as detection elements of fully automatic portable microfluidic devices. This review provides current progress in nucleic acids application in monitoring environmentally and clinically important metal ions in the electrochemical or optical manner. In addition, several examples of such biosensor applications in portable microfluidic devices are shown.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University ofTechnology, Koszykowa 75, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
12
|
α-Cyclodextrin functionalized silver nanoparticles as colorimetric sensor for micro extraction and trace level detection of chlorpyrifos pesticide in fruits and vegetables. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022; 63:9098-9110. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibiotic contamination is becoming a prominent global issue. Therefore, sensitive, specific and simple technology is desirable the demand for antibiotics detection. Biosensors based on split aptamer has gradually attracted extensive attention for antibiotic detection due to its higher sensitivity, lower cost, false positive/negative avoidance and flexibility in sensor design. Although many of the reported split aptamers are antibiotics aptamers, the acquisition and mechanism of splitting is still unknow. In this review, six reported split aptamers in antibiotics are outlined, including Enrofloxacin, Kanamycin, Tetracycline, Tobramycin, Neomycin, Streptomycin, which have contributed to promote interest, awareness and thoughts into this emerging research field. The study introduced the pros and cons of split aptamers, summarized the assembly principle of split aptamer and discussed the intermolecular binding of antibiotic-aptamer complexes. In addition, the recent application of split aptamers in antibiotic detection are introduced. Split aptamers have a promising future in the design and development of biosensors for antibiotic detection in food and other field. The development of the antibiotic split aptamer meets many challenges including mechanism discovery, stability improvement and new biosensor development. It is believed that split aptamer could be a powerful molecular probe and plays an important role in aptamer biosensor.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhixin Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | | | - Sobia Niazi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Xu R, Abune L, Davis B, Ouyang L, Zhang G, Wang Y, Zhe J. Ultrasensitive detection of small biomolecules using aptamer-based molecular recognition and nanoparticle counting. Biosens Bioelectron 2022; 203:114023. [DOI: 10.1016/j.bios.2022.114023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023]
|
15
|
Koriem KMM. Fertaric acid amends bisphenol A-induced toxicity, DNA breakdown, and histopathological changes in the liver, kidney, and testis. World J Hepatol 2022; 14:535-550. [PMID: 35582291 PMCID: PMC9055189 DOI: 10.4254/wjh.v14.i3.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is present in many plastic products and food packaging. On the other hand, fertaric acid (FA) is a hydroxycinnamic acid. AIM To investigate the effect of FA on BPA-related liver, kidney, and testis toxicity, DNA breakdown, and histopathology in male rats. METHODS Thirty male albino rats were divided into five equal groups (6 rats/group): Control, paraffin oil, FA-, BPA-, and FA + BPA-treated groups. The control and paraffin oil groups were administered orally with 1 mL distilled water and 1 mL paraffin oil, respectively. The FA-, BPA-, and FA+ BPA-treated groups were administered orally with FA (45 mg/kg, bw) dissolved in 1 mL distilled water, BPA (4 mg/kg, bw) dissolved in 1 mL paraffin oil, and FA (45 mg/kg, bw) followed by BPA (4 mg/kg, bw), respectively. All these treatments were given once a day for 6 wk. RESULTS BPA induced a significant decrease in serum alkaline phosphatase, acid phosphatase, sodium, potassium and chloride, testosterone, dehydroepiandrosterone sulfate, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, and testis protein levels but a highly significant increase in serum aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transpeptidase, lactate dehydrogenase, bilirubin, urea, creatinine, uric acid, luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin, blood urea nitrogen, and testis cholesterol levels. Also, FA inhibited the degradation of liver, kidney, and testis DNA content. Oral administration of FA to BPA-treated rats restored all the above parameters to normal levels. CONCLUSION FA ameliorates BPA-induced liver, kidney, and testis toxicity, DNA breakdown, and histopathological changes.
Collapse
|
16
|
Toppo AL, Jujjavarapu SE. New insights for integration of nano particle with microfluidic systems for sensor applications. Biomed Microdevices 2022; 24:13. [PMID: 35171352 DOI: 10.1007/s10544-021-00598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 11/29/2022]
Abstract
A biosensor is a compact device, which utilizes biological derived recognition component, immobilized on a transducer to analyze an analyte. Nanoparticles with their unique chemical and physical properties are versatile in their applications to develop as sensors. Different nanoparticles play different roles in the sensing systems like metal and metal oxide nanoparticles. The application of Gold, Silver and Copper nanoparticles will be discussed in brief. The nanoparticles typically function as substrates for immobilization of biomolecules, as catalytic agent, electron transfer agent between electrode surface and the biomolecules, and as reactants. Microfluidic deals with manipulating very small volumes of fluids (micro and nanoliters). This miniaturized platform enhances control of flow conditions and mixing rate of fluids. The microfluidics improves the sensitivity of the analysis, and reduces the volumes of sample and reagent in the analysis. The review specifically aims at representing microfluidics-based sensors and nanoparticle based sensors. This review will also focus on probable merger of these two fields to take advantage of both the fields and this will help in pushing the boundaries of these fields further more.
Collapse
Affiliation(s)
- A L Toppo
- Deparment of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - S E Jujjavarapu
- Deparment of Biotechnology, National Institute of Technology Raipur, Raipur, India.
| |
Collapse
|
17
|
Dong Y, Wan L, Lv S, Zhu D, Su S, Chao J, Wang L. Construction of a Molybdenum Disulfide-Based Colorimetric Sensor for Label-Free Infectious Disease Analysis Coupled with a Catalyzed Hairpin Assembly Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1791-1796. [PMID: 35084864 DOI: 10.1021/acs.langmuir.1c02891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The simple and accurate determination of pathogenic infectious diseases is very beneficial to public health prevention and control. For this purpose, we designed a colorimetric sensor for label-free avian influenza A (H7N9) virus gene sequence detection based on gold@platinum core-shell bimetallic-nanoparticle-decorated molybdenum disulfide (MoS2-Au@Pt) nanocomposites. MoS2-Au@Pt nanocomposites were used as nanoenzymes to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) because of their intrinsic peroxidase-mimicking activity. Coupled with different affinities of MoS2-Au@Pt nanocomposites toward single-stranded (ss) and double-stranded (ds) DNA and the target-triggered catalyzed hairpin assembly (CHA) reaction, the proposed sensor can qualitatively and quantitatively determine H7N9 by the naked eye. Experimental results showed that this sensor can detect H7N9 in buffer and real samples because of its high sensitivity, selectivity, and repeatability.
Collapse
Affiliation(s)
- Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ling Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Suo Lv
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
18
|
Žuržul N, Stokke BT. DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions. BIOSENSORS 2021; 11:266. [PMID: 34436068 PMCID: PMC8392310 DOI: 10.3390/bios11080266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
In the present paper, we describe a potassium sensor based on DNA-aptamer functionalized hydrogel, that is capable of continuous label-free potassium ion (K+) monitoring with potential for in situ application. A hydrogel attached to the end of an optical fiber is designed with di-oligonucleotides grafted to the polymer network that may serve as network junctions in addition to the covalent crosslinks. Specific affinity toward K+ is based on exploiting a particular aptamer that exhibits conformational transition from single-stranded DNA to G-quadruplex formed by the di-oligonucleotide in the presence of K+. Integration of this aptamer into the hydrogel transforms the K+ specific conformational transition to a K+ concentration dependent deswelling of the hydrogel. High-resolution interferometry monitors changes in extent of swelling at 1 Hz and 2 nm resolution for the hydrogel matrix of 50 µm. The developed hydrogel-based biosensor displayed high selectivity for K+ ions in the concentration range up to 10 mM, in the presence of physiological concentrations of Na+. Additionally, the concentration dependent and selective K+ detection demonstrated in the artificial blood buffer environment, both at room and physiological temperatures, suggests substantial potential for practical applications such as monitoring of potassium ion concentration in blood levels in intensive care medicine.
Collapse
Affiliation(s)
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
| |
Collapse
|
19
|
Pavase TR, Lin H, Soomro MA, Zheng H, Li X, Wang K, Li Z. Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:382-394. [PMID: 37073291 PMCID: PMC10077205 DOI: 10.1007/s42995-020-00085-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
A gold nanoparticle-based label-free colorimetric assay was developed to detect the shrimp allergenic protein tropomyosin (TM), an important biomarker responsible for severe clinical reactivity to shellfish. In a gold nanoparticles (AuNPs)-tropomyosin-binding aptamer (TMBA) complex, the aptamer adsorbs onto the surface of AuNPs and dissociates in the presence of TM. In addition, AuNPs tend to aggregate in the presence of ionic salt, revealing a color change (i.e., wine-red to purple/blue) with a shift in the maximum absorption peak from 520 nm. In the presence of specific binding TM, the aptamer folds into a tertiary structure where it more efficiently stabilizes AuNPs toward the salt-induced aggregation with a hypsochromic shift in the absorption spectra compared to the stabilized AuNPs by aptamer alone. Based on the aggregation and sensitive spectral transformation principle, the AuNPs-based colorimetric aptasensor was successfully applied to detect TM with a range of 10-200 nmol/L and a low detection limit of 40 nmol/L in water samples. The reliability, selectivity, and sensitivity of the aptasensor was then tested with food samples spiked with TM. The observed detection limit was as low as 70 nmol/L in shrimp, 90 nmol/L in tofu, and 80 nmol/L in eggs, respectively. We anticipate the proposed AuNPs-based colorimetric aptasensor assay possesses a high potential for the easy and efficient visual colorimetric detection of TM. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00085-5.
Collapse
Affiliation(s)
- Tushar Ramesh Pavase
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Hong Lin
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Maqsood Ahmed Soomro
- Fish Molecular Immunology Laboratory, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Hongwei Zheng
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaxia Li
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Kexin Wang
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Zhenxing Li
- Food Safety Laboratory, Department of Food Science and Engineering, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
20
|
Cheng Y, Cheng M, Hao J, Miao W, Zhou W, Jia G, Li C. Highly Selective Detection of K + Based on a Dimerized G-Quadruplex DNAzyme. Anal Chem 2021; 93:6907-6912. [PMID: 33929188 DOI: 10.1021/acs.analchem.1c00872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potassium ion (K+) plays a crucial role in biological systems, such as maintaining cellular processes and causing diseases. However, specifically, the detection of K+ is extremely challenging because of the coexistence of the chemically similar ion of Na+ under physiological conditions. In this work, a K+ specific biosensor is constructed on the basis of a dimerized G-quadruplex (GQ) DNA, which is promoted by K+, and the enzymatic activity of the resulting DNAzyme depends on the concentration of the K+. The K+ in a 1-200 mM concentration range can be selectively detected by visual color, UV-Vis absorbance or fluorescence even if the concentration of the accompanying Na+ is up to 140 mM at an ambient condition up to 45 °C. In addition, this system can also be used to selectively detect NH4+ in a 5-200 mM concentration range. This dimerized DNAzyme offers a new type of biosensor with a potential application in the biological system.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wenqin Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| |
Collapse
|
21
|
Weaver SD, Whelan RJ. Characterization of DNA aptamer-protein binding using fluorescence anisotropy assays in low-volume, high-efficiency plates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1302-1307. [PMID: 33533761 DOI: 10.1039/d0ay02256j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aptamers have many useful attributes including specific binding to molecular targets. After aptamers are identified, their target binding must be characterized. Fluorescence anisotropy (FA) is one technique that can be used to characterize affinity and to optimize aptamer-target interactions. Efforts to make FA assays more efficient by reducing assay volume and time from mixing to measurement may save time and resources by minimizing consumption of costly reagents. Here, we use thrombin and two thrombin-binding aptamers as a model system to show that plate-based FA experiments can be performed in volumes as low as 2 μL per well with 20 minute incubations with minimal loss in assay precision. We demonstrate that the aptamer-thrombin interaction is best modelled with the Hill equation, indicating cooperative binding. The miniaturization of this assay has implications in drug development, as well as in the efficiency of aptamer selection workflows by allowing for higher throughput aptamer analysis.
Collapse
Affiliation(s)
- Simon D Weaver
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca J Whelan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
22
|
Thuy Nguyen TT, Han OA, Lim EB, Haam S, Park JS, Lee SW. The effect of pH and transition metal ions on cysteine-assisted gold aggregation for a distinct colorimetric response. RSC Adv 2021; 11:9664-9674. [PMID: 35423462 PMCID: PMC8695409 DOI: 10.1039/d1ra00013f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 02/10/2021] [Indexed: 01/13/2023] Open
Abstract
Colorimetric detection is a promising sensing strategy that is applicable to qualitative and quantitative determination of an analyte by monitoring visually detectable color changes with the naked eye. This study explored the cysteine (Cys)-induced aggregation of gold nanoparticles (AuNPs) in order to develop a sensitive colorimetric detection method for Cys. For this purpose, we systematically investigated the colorimetric response of AuNPs to Cys with varying particle sizes and concentrations. The AuNPs with various diameters ranging from 26.5 nm to 58.2 nm were synthesized by the citrate reduction method. When dispersed in water to have the same surface area per unit volume, the smaller AuNPs (26.5 nm) exhibited a more sensitive response to Cys compared to a larger counterpart (46.3 nm). We also examined the effect of divalent first-row transition metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) on the Cys-induced aggregation of AuNPs. Among the tested metal ions, the addition of Cu2+ provided the highest enhancement in sensitivity to Cys regardless of pH between 3.5 and 7. The significant increase in the sensitivity caused by Cu2+ could be attributed to the capability of Cu2+ to form a highly stable chelate complex with surface-immobilized Cys, facilitating the aggregation of AuNPs. For the AuNPs–Cu2+ system at pH 7, the detection limit for Cys was determined to be 5 nM using UV-vis spectroscopy. The reported strategy showed the potential to be used for a rapid and sensitive detection of Cys and also metal ions that can facilitate Cys-mediated aggregation of AuNPs. Divalent transition metal ions facilitated the aggregation of gold nanoparticles: Fe2+ < Ni2+ < Zn2+ < Co2+ ≪ Mn2+ < Cu2+ at pH 7. The optimized AuNPs-Cu2+ system produced the progressive color change upon the addition of cysteine (0.2–2.0 μM).![]()
Collapse
Affiliation(s)
- Trang Thi Thuy Nguyen
- Department of Chemical and Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Olivia A. Han
- Department of Chemistry
- Eastern University
- St. Davids
- USA
| | - Eun Bi Lim
- Department of Chemical and Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Joon-Seo Park
- Department of Chemistry
- Eastern University
- St. Davids
- USA
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| |
Collapse
|
23
|
Zhang F, Liu J. Label‐Free Colorimetric Biosensors Based on Aptamers and Gold Nanoparticles: A Critical Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/anse.202000023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fang Zhang
- College of Biological Science and Engineering Fuzhou University Fuzhou 350108 People's Republic of China
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo N2 L 3G1 Ontario Canada
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo N2 L 3G1 Ontario Canada
| |
Collapse
|
24
|
Detection of chloramphenicol with an aptamer-based colorimetric assay: critical evaluation of specific and unspecific binding of analyte molecules. Mikrochim Acta 2020; 187:668. [PMID: 33215333 DOI: 10.1007/s00604-020-04644-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
A chloramphenicol (CAP)-binding aptamer of 80 nucleotides (nt) was reported in 2011. In 2014, it was truncated to 40 nt and has since been used by most researchers, although a careful binding study is still lacking. In this work, binding assays using isothermal titration calorimetry and various DNA-staining dyes were performed. By comparing the truncated aptamer with three control sequences, no specific binding of CAP was observed in each case. The secondary structures of the original and truncated aptamers were analyzed, and it was shown that the likelihood of the truncated aptamer to retain the same binding mechanism as the original sequence is low. We further examined gold nanoparticle (AuNP)-based label-free colorimetric assays. By quantifying the extinction ratio at 620 nm over that at 520 nm, a similar color response was observed regardless of the sequence of DNA, suggesting the color change mainly reflected other events such as the adsorption of CAP by the AuNPs, instead of aptamer binding to CAP. Salt-induced aggregation experiments suggested direct adsorption of CAP on AuNPs. CAP only weakly inhibited DNA adsorption by AuNPs but did not displace pre-adsorbed DNA. Therefore, CAP adsorption by AuNPs needs to be considered when designing related sensors, for example, by using non-aptamer sequences as controls. This work calls for careful confirmation of aptamer binding and control experiments for designing aptamer and AuNP-based biosensors.
Collapse
|
25
|
Zhou J, Li Y, Wang W, Lu Z, Han H, Liu J. Kanamycin Adsorption on Gold Nanoparticles Dominates Its Label-Free Colorimetric Sensing with Its Aptamer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11490-11498. [PMID: 32907335 DOI: 10.1021/acs.langmuir.0c01786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A short kanamycin-binding aptamer has been widely used for detecting kanamycin. One of the popular signaling methods is based on the color change of gold nanoparticles (AuNPs) to develop label-free colorimetric biosensors. The general perception was that aptamer binding to its target would inhibit aptamer adsorption by the AuNPs. This inhibited adsorption results in the aggregation of the AuNPs and a color change upon addition of salt. However, the potential adsorption of kanamycin was ignored. Herein, we carefully studied the adsorption of kanamycin on AuNPs and performed a comprehensive analysis using two mutated aptamers and a randomly sequenced DNA which were not supposed to bind kanamycin. In addition, a total of six antibiotics were studied over a wide concentration range. As low as 90 nM kanamycin can induce the aggregation of 3 nM citrate-capped AuNPs, indicating very strong adsorption of kanamycin. The color change was independent of DNA sequence, and all the tested sequences showed a similar color response, regardless of aptamer. Among the different antibiotics, kanamycin and streptomycin induced a color change but not the other four. Our results support an alternative mechanism that kanamycin and streptomycin adsorption by the AuNPs was the main reason for the color change instead of aptamer binding.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Hu S, Huang PJJ, Wang J, Liu J. Dissecting the Effect of Salt for More Sensitive Label-Free Colorimetric Detection of DNA Using Gold Nanoparticles. Anal Chem 2020; 92:13354-13360. [PMID: 32856891 DOI: 10.1021/acs.analchem.0c02688] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Taking advantage of the protection effect of single-stranded DNA oligonucleotides, gold nanoparticles (AuNPs) remain dispersed and retain a red color with the addition of a low concentration of salt, while AuNPs would aggregate in the presence of double-stranded DNA. This difference has been used to design label-free colorimetric sensors for DNA detection. NaCl is the most commonly used salt to induce the aggregation of AuNPs. In this work, we aimed to test if other salts can provide even better sensor performance and to understand the effects of the cations and anions in salts. We first studied the effect of anions, including halides (NaF, NaCl, NaBr, and NaI), and other common salts (NaNO3, NaClO4, Na2SO4, Na2S2O3, sodium phosphate, and sodium citrate). Among them, weakly adsorbing ones such as F-, citrate, and phosphate appeared to yield better sensitivity than Cl-. Anions can directly adsorb on the AuNPs and affect DNA adsorption. We then tested cations, and only group 1A metals (LiCl, NaCl, KCl, RbCl, and CsCl) can signal DNA adsorption, while divalent metals (MgCl2, CaCl2, MnCl2, and NiCl2) barely showed the effect of DNA. CsCl only works for strongly adsorbing DNA, such as A15, but not weakly adsorbing T15. Overall, NaF is a better salt than NaCl by having a 2.3-fold higher sensitivity, which was confirmed in a DNA sensing assay. This work has identified a better salt yielding higher sensitivity, and sensing work relying on the change of the aggregation state of AuNPs can benefit from this study.
Collapse
Affiliation(s)
- Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
27
|
|
28
|
Cary R, Unser S, Monroe I, Holbrook J, Sagle L. Utilizing molecular resonance-localized surface plasmon resonance coupling for copper ion detection in plasma. Analyst 2020; 145:4950-4956. [PMID: 32500885 DOI: 10.1039/d0an00563k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapid, point-of-care detection of copper in plasma can greatly aid in a large number of diseases where copper has been implicated to be an important factor, such as cancer, Alzheimer's and Diabetes mellitus. Localized surface plasmon resonance (LSPR) technologies show promise in the inexpensive detection of copper, whereas previous platforms are plagued with selectivity and sensitivity issues. Herein, we have created a sensitive and selective on-chip copper sensor which can produce a colorimetric reading in 60 minutes. The selectivity of the assay is based on 'Click' chemistry and is shown to have little interference with other metal ions present in plasma. The sensitivity of the assay is generated from the coupling of the molecular resonance of a dye and the LSPR of the gold nanoparticles. The assay is capable of measuring copper concentrations in human plasma as low as 4 μM and the linear range of sensitivity, 4 to 20 μM, is in the physiologically relevant range. This robust, colorimetric assay should prove useful in a point-of-care setting.
Collapse
Affiliation(s)
- ReJeana Cary
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati, 301 West Clifton Court, Cincinnati, OH 45221-0172, USA.
| | | | | | | | | |
Collapse
|
29
|
Liu X, He F, Zhang F, Zhang Z, Huang Z, Liu J. Dopamine and Melamine Binding to Gold Nanoparticles Dominates Their Aptamer-Based Label-Free Colorimetric Sensing. Anal Chem 2020; 92:9370-9378. [PMID: 32515584 DOI: 10.1021/acs.analchem.0c01773] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Target-directed aptamer adsorption by gold nanoparticles (AuNPs) has been widely used to develop label-free colorimetric biosensors. However, the potential interactions between target molecules and AuNPs have not been considered, which may lead to misinterpretation of analytical results. In this work, the detection of dopamine, melamine, and K+ was studied as model systems to address this problem. First, dopamine and two control molecules all induced the aggregation of citrate-capped AuNPs with apparent Kd's of 5.8 μM dopamine, 51.6 μM norepinephrine, and 142 μM tyramine. Isothermal titration calorimetry measured the aptamer Kd to be 1.9 μM dopamine and 16.8 μM norepinephrine, whereas tyramine cannot bind. Surface enhanced Raman spectroscopy confirmed direct adsorption of dopamine, and the adsorbed dopamine inhibited the adsorption of DNA. Using a typical salt-induced colorimetric detection protocol, a similar color response was observed regardless of the sequence of DNA, indicating the observed color change reflected the adsorption of dopamine by the AuNPs instead of the binding of dopamine by the aptamer. For this label-free sensor to work, the interaction between the target molecule and AuNPs should be very weak, while dopamine represents an example of strong interactions. For the other two systems, the melamine detection did not reflect aptamer binding either but the K+ detection did, suggesting melamine also strongly interacted with AuNPs, whereas K+ had very weak interactions with AuNPs. Since each target molecule is different, such target/AuNP interactions need to be studied case-by-case to ensure the sensing mechanism.
Collapse
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei 425002, China.,Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Fan He
- Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, Guangdong P. R. China
| | - Fang Zhang
- Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zijie Zhang
- Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
30
|
Cao Z, Wang S, Liu Z, Xue C, Mao X. A rapid, easy, and sensitive method for detecting His-tag-containing chitinase based on ssDNA aptamers and gold nanoparticles. Food Chem 2020; 330:127230. [PMID: 32526651 DOI: 10.1016/j.foodchem.2020.127230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 01/30/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023]
Abstract
Chitooligosaccharides are oligosaccharides with many biological activities that can be used in food production for sweeteners, preservatives and humectants, among other products. Chitin, a long-chain polymer of N-acetylglucosamine and a derivative of glucose, can be hydrolyzed by applying chitinase to break down glycosidic bonds to form chitooligosaccharides. Chitinases arising from heterologous gene expression are usually linked to a 6 × His-tag to facilitate easy purification. Heterologously expressed chitinase linked to a 6 × His-tag is a transgenic element, but enzyme activity tests cannot be used to distinguish transgenic elements from natural elements. In this study, we established a rapid and easy method to detect His-tag-containing chitinase using gold nanoparticles (AuNPs) and ssDNA aptamers. Using this method, His-tag-containing chitinase could be detected at concentrations as low as 0.136 nM within 5 min. Color changes of AuNPs showed a positive correlation with His-tag-containing chitinase concentrations.
Collapse
Affiliation(s)
- Zhuoning Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
31
|
Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci Rep 2020; 10:4198. [PMID: 32144298 PMCID: PMC7060252 DOI: 10.1038/s41598-020-61130-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, the preparation of gold nanoparticles-silk fibroin (SF-AuNPs) dispersion and its label-free colorimetric detection of the organophosphate pesticide, namely chlorpyrifos, at ppb level are reported. The silk fibroin solution was extracted from B. mori silk after performing degumming, dissolving and dialysis steps. This fibroin solution was used for synthesis of gold nanoparticles in-situ without using any external reducing and capping agent. X-ray Diffractometry (XRD), Field Emission Transmission Electron Microscopy (FETEM) along with Surface Plasmon Resonance based optical evaluation confirmed generation of gold nanoparticles within SF matrix. The resultant SF-AuNPs dispersion exhibited rapid and excellent colorimetric pesticide sensing response even at 10 ppb concentration. Effect of additional parameters viz. pH, ionic concentration and interference from other pesticide samples was also studied. Notably, SF-AuNPs dispersion exhibited selective colorimetric pesticide sensing response which can be calibrated. Furthermore, this method was extended to various simulated real life samples such as tap water, soil and agricultural products including plant residues to successfully detect the presence of chlorpyrifos pesticide. The proposed colorimetric sensor system is facile yet effective and can be employed by novice rural population and expert researchers alike. It can be exploited as preliminary tool for label-free colorimetric chlorpyrifos pesticide sensing in water and agricultural products.
Collapse
|
32
|
Zhang X, Fan X, Wang Y, Lei F, Li L, Liu J, Wu P. Highly Stable Colorimetric Sensing by Assembly of Gold Nanoparticles with SYBR Green I: From Charge Screening to Charge Neutralization. Anal Chem 2019; 92:1455-1462. [DOI: 10.1021/acs.analchem.9b04660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Xiaoya Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yanying Wang
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Fengjie Lei
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada
| | - Peng Wu
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
33
|
Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040053] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nobel metal can be used to form a category of nanoparticles, termed noble metal nanoparticles (NMNPs), which are inert (resistant to oxidation/corrosion) and have unique physical and optical properties. NMNPs, particularly gold and silver nanoparticles (AuNPs and AgNPs), are highly accurate and sensitive visual biosensors for the analytical detection of a wide range of inorganic and organic compounds. The interaction between noble metal nanoparticles (NMNPs) and inorganic/organic molecules produces colorimetric shifts that enable the accurate and sensitive detection of toxins, heavy metal ions, nucleic acids, lipids, proteins, antibodies, and other molecules. Hydrogen bonding, electrostatic interactions, and steric effects of inorganic/organic molecules with NMNPs surface can react or displacing capping agents, inducing crosslinking and non-crosslinking, broadening, or shifting local surface plasmon resonance absorption. NMNPs-based biosensors have been widely applied to a series of simple, rapid, and low-cost diagnostic products using colorimetric readout or simple visual assessment. In this mini review, we introduce the concepts and properties of NMNPs with chemical reduction synthesis, tunable optical property, and surface modification technique that benefit the development of NMNPs-based colorimetric biosensors, especially for the visual quantification. The “aggregation strategy” based detection principle of NMNPs colorimetric biosensors with the mechanism of crosslinking and non-crosslinking have been discussed, particularly, the critical coagulation concentration-based salt titration methodology have been exhibited by derived equations to explain non-crosslinking strategy be applied to NMNPs based visual quantification. Among the broad categories of NMNPs based biosensor detection analyses, we typically focused on four types of molecules (melamine, single/double strand DNA, mercury ions, and proteins) with discussion from the standpoint of the interaction between NMNPs surface with molecules, and DNA engineered NMNPs-based biosensor applications. Taken together, NMNPs-based colorimetric biosensors have the potential to serve as a simple yet reliable technique to enable visual quantification.
Collapse
|
34
|
Wei Y, Wang L, Zhang Y, Dong Y. An Enzyme- and Label-Free Fluorescence Aptasensor for Detection of Thrombin Based on Graphene Oxide and G-Quadruplex. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4424. [PMID: 31614837 PMCID: PMC6832557 DOI: 10.3390/s19204424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
Abstract
An enzyme- and label-free aptamer-based assay is described for the determination of thrombin. A DNA strand (S) consisting of two parts was designed, where the first (Sa) is the thrombin-binding aptamer and the second (Se) is a G-quadruplex. In the absence of thrombin, Sa is readily adsorbed by graphene oxide (GO), which has a preference for ss-DNA rather than for ds-DNA. Upon the addition of the N-methyl-mesoporphyrin IX (NMM), its fluorescence (with excitation/emission at 399/610 nm) is quenched by GO. In contrast, in the presence of thrombin, the aptamer will bind thrombin, and thus, be separated from GO. As a result, fluorescence will be enhanced. The increase is linear in the 0.37 µM to 50 µM thrombin concentration range, and the detection limit is 0.37 nM. The method is highly selective over other proteins, cost-effective, and simple. In our perception, it represents a universal detection scheme that may be applied to other targets according to the proper choice of the aptamer sequence and formation of a suitable aptamer-target pair.
Collapse
Affiliation(s)
- Yani Wei
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
| | - Luhui Wang
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
| | - Yingying Zhang
- School of Computer Science, Shaanxi Normal University, Xi´an 710119, China.
| | - Yafei Dong
- College of Life Sciences, Shaanxi Normal University, Xi´an 710119, China.
- School of Computer Science, Shaanxi Normal University, Xi´an 710119, China.
| |
Collapse
|
35
|
Tian Y, Zhang L, Wang L. DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing. Biotechnol J 2019; 15:e1800741. [PMID: 31464360 DOI: 10.1002/biot.201800741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Plasmonic nanomaterials, especially Au and Ag nanomaterials, have shown attractive physicochemical properties, such as easy functionalization and tunable optical bands. The development of this active subfield paves the way to the fascinating biosensing platforms. In recent years, plasmonic nanomaterials-based sensors have been extensively investigated because they are useful for genetic diseases, biological processes, devices, and cell imaging. In this account, a brief introduction of the development of optical biosensors based on DNA-functionalized plasmonic nanomaterials is presented. Then the common strategies for the application of the optical sensors are summarized, including colorimetry, fluorescence, localized surface plasmon resonance, and surface-enhanced resonance scattering detection. The focus is on the fundamental aspect of detection methods, and then a few examples of each method are highlighted. Finally, the opportunities and challenges for the plasmonic nanomaterials-based biosensing are discussed with the development of modern technologies.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
36
|
Ye T, Gao H, Zhang Q, Yan C, Yu Y, Fei Y, Gao L, Zhou X, Shao Y. Polarity inversion sensitized G-quadruplex metal sensors with K + tolerance. Biosens Bioelectron 2019; 145:111703. [PMID: 31546203 DOI: 10.1016/j.bios.2019.111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
Due to the high abundance of K+ in environments and K+-induced high stability of G-quadruplex (G4), developing a selective G4-based fluorescent sensor for other metal ions with K+ tolerance is a great challenge. Herein, we found that even in the presence of 15000-fold excess of K+, Ba2+ exhibits a highly specific binding with a human telomeric G4 (htG4) in comparison with other G4-binding metal ions such as Pb2+ and Sr2+. This specific binding event can be recognized by a natural fluorophore of hypericin with a lighting-up fluorescence response. Interestingly, inverting the polarity of the most 3' G in htG4 can sensitize the Ba2+ response with the retaining Ba2+ specificity and K+ tolerance. This polarity inversion of htG4 causes a G4 conformation change in K+ and the polarity-inverted htG4 tends to favorably dimerize in response to the Ba2+ specific binding. To our knowledge, this is the first report that polarity inversion of G4 can be applied to construct a selective metal sensor with K+ tolerance. Our findings will open a new way to conveniently regulate the G4 conformation and stability by polarity inversion towards developing high-performance sensors.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
37
|
Abstract
Antibodies are large proteins generated in vivo to bind specifically to a wide spectrum of targets ranging from biological to environmental molecules. They play a vital role in research, diagnostics, sensing, and therapeutic applications. Over the past few decades, advancements have been made to improve the performance of antibodies, specifically in the area of immunosensors. However, there has been an urgent need for alternative high-quality recognition probes that can be produced synthetically in bulk quantity to ensure better reproducibility and lower cost, as well as avoiding the need of using animals in the production process. Aptamers are synthetic nucleic acid single-stranded (ss) DNAs or RNAs that can bind with high affinity and specificity to their targets. They can be generated via in vitro section protocol, known as systematic evolution of ligands by exponential enrichment (SELEX). The advantages of aptamers promoted their successful incorporation in several signal transduction schemes, some of which reached the commercial market for point-of-care and in-field applications. This chapter describes the two types of affinity reagents: antibodies and aptamers, and their methods of production, advantages, and limitations. The focus will be directed at their incorporation in analytical transduction methods and how aptamer molecular size as well as unique conformational change upon target binding has triggered the evolution of new sensing methods.
Collapse
Affiliation(s)
- Omar A. Alsager
- National Center for Irradiation Technology, Nuclear Science Research Institute, King Abdulaziz City for Science and Technology P.O. Box 6086 Riyadh 11442 Saudi Arabia
| | - Shimaa Eissa
- Department of Chemistry, Alfaisal University Al Zahrawi Street, Al Maather, Al Takhassusi Rd Riyadh 11533 Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University Al Zahrawi Street, Al Maather, Al Takhassusi Rd Riyadh 11533 Saudi Arabia
| |
Collapse
|
38
|
Gan Y, Liang T, Hu Q, Zhong L, Wang X, Wan H, Wang P. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta 2019; 208:120231. [PMID: 31816705 DOI: 10.1016/j.talanta.2019.120231] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/01/2022]
Abstract
Cadmium is a heavy metal pollutant in environment with high toxicity that severely threats human health. A simple and sensitive method for rapid detection of cadmium ions in water sample is of significant importance. In this paper, a colorimetric method based on aptamer-functionalized gold nanoparticles (AuNPs) for specific recognition were proposed to realize Cd2+ detection. AuNPs aggregate in high-salt solutions because of the shielding of salt to electrostatic repulsion among AuNPs, while aptamers can strengthen the stability of AuNPs and avoid the aggregation. After adding Cd2+ ions, the specific interaction between aptamers and Cd2+ leads to a decrease of free aptamers, which weakens the stability of the AuNPs and results in the color change of the solution. The colorimetric change can be rapidly captured and analyzed by a self-developed smartphone-based colorimetric system (SBCS) within 10 min, which implements the quantitative detection of Cd2+. The results show that Cd2+ ions can be detected with high selectivity and sensitivity with a linear range of 2-20 μg/L and a detection limit of 1.12 μg/L. Compared with other methods, the proposed approach features high sensitivity, high simplicity, easy implementation and high throughout, which provides a promising means for in-situ determination of Cd2+ in practical applications.
Collapse
Affiliation(s)
- Ying Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiongwen Hu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Longjie Zhong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
39
|
Kim H, Park M, Hwang J, Kim JH, Chung DR, Lee KS, Kang M. Development of Label-Free Colorimetric Assay for MERS-CoV Using Gold Nanoparticles. ACS Sens 2019; 4:1306-1312. [PMID: 31062580 PMCID: PMC7119221 DOI: 10.1021/acssensors.9b00175] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/27/2022]
Abstract
Worldwide outbreaks of infectious diseases necessitate the development of rapid and accurate diagnostic methods. Colorimetric assays are a representative tool to simply identify the target molecules in specimens through color changes of an indicator (e.g., nanosized metallic particle, and dye molecules). The detection method is used to confirm the presence of biomarkers visually and measure absorbance of the colored compounds at a specific wavelength. In this study, we propose a colorimetric assay based on an extended form of double-stranded DNA (dsDNA) self-assembly shielded gold nanoparticles (AuNPs) under positive electrolyte (e.g., 0.1 M MgCl2) for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). This platform is able to verify the existence of viral molecules through a localized surface plasmon resonance (LSPR) shift and color changes of AuNPs in the UV-vis wavelength range. We designed a pair of thiol-modified probes at either the 5' end or 3' end to organize complementary base pairs with upstream of the E protein gene (upE) and open reading frames (ORF) 1a on MERS-CoV. The dsDNA of the target and probes forms a disulfide-induced long self-assembled complex, which protects AuNPs from salt-induced aggregation and transition of optical properties. This colorimetric assay could discriminate down to 1 pmol/μL of 30 bp MERS-CoV and further be adapted for convenient on-site detection of other infectious diseases, especially in resource-limited settings.
Collapse
Affiliation(s)
- Hanbi Kim
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
| | - Minseon Park
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
- Department
of Medical Device Management and Research, SAIHST (Samsung Advanced
Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Korea
| | - Joonki Hwang
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
| | - Jin Hwa Kim
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
| | - Doo-Ryeon Chung
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
- Asia
Pacific Foundation for Infectious Diseases (APFID), Seoul, Korea
- Division
of Infectious Diseases, Department of Internal Medicine and Department of Urology, Samsung Medical Center, Sungkyunkwan University School
of Medicine, Seoul, Korea
| | - Kyu-sung Lee
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
- Department
of Medical Device Management and Research, SAIHST (Samsung Advanced
Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Korea
- Division
of Infectious Diseases, Department of Internal Medicine and Department of Urology, Samsung Medical Center, Sungkyunkwan University School
of Medicine, Seoul, Korea
| | - Minhee Kang
- Smart Healthcare & Device Research Center and Center for Infection Prevention and
Control, Samsung Medical Center, Seoul, Korea
- Department
of Medical Device Management and Research, SAIHST (Samsung Advanced
Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
40
|
Antidiarrheal and protein conservative activities of Psidium guajava in diarrheal rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 17:57-65. [PMID: 30555015 DOI: 10.1016/j.joim.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Psidium guajava occurs worldwide in tropical and subtropical areas. It has been used to treat inflammation, diabetes, fever, hypertension and ulcers. However, its antidiarrheal and protein conservative activities still need to be investigated. METHODS Fifty-four male rats were divided into normal and diarrheal rats. The normal rats were divided into 4 groups: control, low-dose P. guajava leaf extract (50 mg/kg), high-dose P. guajava leaf extract (100 mg/kg) and gallic acid. Treatments were administrated orally in 1 mL saline for a 1-month period. The diarrheal rats were divided into 5 groups: desmopressin (0.2 mg/kg) drug, low-dose P. guajava leaf extract (50 mg/kg), high-dose P. guajava leaf extract (100 mg/kg), gallic acid and an untreated control. Doses were given daily for a 1-month period while the untreated control received no treatment. RESULTS Diarrhea was responsible for an observed decline in kidney weight and serum sodium, potassium and chloride. Further, diarrhea was positively correlated with a significant increase in urine volume, and excretion of electrolytes, serum urea, creatinine and uric acid in the urine. In contrast, there was a proportional increase in the lipid peroxidation value in diarrhea and a significant decline was observed in serum superoxide dismutase, glutathione peroxidase and glutathione levels in diarrhea. Also, diarrhea inhibited blood proteins. The oral intake of P. guajava leaf extract by diarrheal rats restored all of these parameters to near normal levels. High-dose P. guajava leaf extract was more effective than the same compound at a low dose. CONCLUSION P. guajava leaf extract elicited antidiarrheal and protein conservative effects.
Collapse
|
41
|
Liu G, Lu M, Huang X, Li T, Xu D. Application of Gold-Nanoparticle Colorimetric Sensing to Rapid Food Safety Screening. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4166. [PMID: 30486466 PMCID: PMC6308472 DOI: 10.3390/s18124166] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Due to their unique optical properties, narrow size distributions, and good biological affinity, gold nanoparticles have been widely applied in sensing analysis, catalytic, environmental monitoring, and disease therapy. The color of a gold nanoparticle solution and its maximum characteristic absorption wavelength will change with the particle size and inter-particle spacing. These properties are often used in the detection of hazardous chemicals, such as pesticide residues, heavy metals, banned additives, and biotoxins, in food. Because the gold nanoparticles-colorimetric sensing strategy is simple, quick, and sensitive, this method has extensive applications in real-time on-site monitoring and rapid testing of food quality and safety. Herein, we review the preparation methods, functional modification, photochemical properties, and applications of gold nanoparticle sensors in rapid testing. In addition, we elaborate on the colorimetric sensing mechanisms. Finally, we discuss the advantages and disadvantages of colorimetric sensors based on gold nanoparticles, and directions for future development.
Collapse
Affiliation(s)
- Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Meng Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Tengfei Li
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
42
|
Wang FA, Lakshmipriya T, Gopinath SCB. Red Spectral Shift in Sensitive Colorimetric Detection of Tuberculosis by ESAT-6 Antigen-Antibody Complex: a New Strategy with Gold Nanoparticle. NANOSCALE RESEARCH LETTERS 2018; 13:331. [PMID: 30353254 PMCID: PMC6199200 DOI: 10.1186/s11671-018-2753-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/12/2018] [Indexed: 06/01/2023]
Abstract
Tuberculosis (TB) is a highly contagious life-threatening disease caused by the bacterial pathogen Mycobacterium tuberculosis. ESAT-6, an abundant early secretory antigenic target protein by M. tuberculosis, found to play a vital role in virulence. Developing a friendly method for the detection of ESAT-6 at the lower concentration facilitates to treat TB at an earlier stage and helps to control the spreading of disease. Herein, a new single-step approach was designed and was done by pre-mixing ESAT-6 and antibody before being added to the gold nanoparticle (GNP) followed by the salt-induced aggregation. We could attain the detection limit of 1.25 pM, showing the aggregation of GNP and the red spectral shift. Further, a higher specificity was demonstrated with the lack of electrostatic biofouling by ESAT-6 on GNP and retained the dispersed GNP in the presence of 10-kDa culture filtrate protein from M. tuberculosis. The required precise antibody concentration for this assay was found to be 60 nM. The increment in the antibody concentration from 75 nM drastically diminishes the sensitivity to ~ 680-fold, due to the crowding effect. With this assay, we attested the suitability of colorimetric assay for efficiently detecting the smaller-sized protein.
Collapse
Affiliation(s)
- Fu-an Wang
- Pingdingshan University Medical School, Pingdingshan City, 467000 Henan China
| | - Thangavel Lakshmipriya
- Centre of Innovative Nanostructure & Nanodevices, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
| | - Subash C. B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| |
Collapse
|
43
|
Akki SU, Werth CJ. Critical Review: DNA Aptasensors, Are They Ready for Monitoring Organic Pollutants in Natural and Treated Water Sources? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8989-9007. [PMID: 30016080 DOI: 10.1021/acs.est.8b00558] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There is a growing need to monitor anthropogenic organic contaminants detected in water sources. DNA aptamers are synthetic single-stranded oligonucleotides, selected to bind to target contaminants with favorable selectivity and sensitivity. These aptamers can be functionalized and are used with a variety of sensing platforms to develop sensors, or aptasensors. In this critical review, we (1) identify the state-of-the-art in DNA aptamer selection, (2) evaluate target and aptamer properties that make for sensitive and selective binding and sensing, (3) determine strengths and weaknesses of alternative sensing platforms, and (4) assess the potential for aptasensors to quantify environmentally relevant concentrations of organic contaminants in water. Among a suite of target and aptamer properties, binding affinity is either directly (e.g., organic carbon partition coefficient) or inversely (e.g., polar surface area) correlated to properties that indicate greater target hydrophobicity results in the strongest binding aptamers, and binding affinity is correlated to aptasensor limits of detection. Electrochemical-based aptasensors show the greatest sensitivity, which is similar to ELISA-based methods. Only a handful of aptasensors can detect organic pollutants at environmentally relevant concentrations, and interference from structurally similar analogs commonly present in natural waters is a yet-to-be overcome challenge. These findings lead to recommendations to improve aptasensor performance.
Collapse
Affiliation(s)
- Spurti U Akki
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Charles J Werth
- Department of Civil, Architecture, and Environmental Engineering , University of Texas at Austin , 301 East Dean Keeton Street , Austin , Texas 78712 , United States
| |
Collapse
|
44
|
Javidi M, Housaindokht MR, Verdian A, Razavizadeh BM. Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples. Anal Chim Acta 2018; 1039:116-123. [PMID: 30322542 DOI: 10.1016/j.aca.2018.07.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
In this paper, a novel apta-sensing colorimetric platform for rapid detection of chloramphenicol (CAP) in raw milk was developed. The AuNPs are stabilized by short-sequences aptamers against salt induced aggregation and this is the base of most colorimetric aptasensors development. However, the statute shows low sensitivity for the long-sequence aptamers. Herein, we propose an alternative strategy that use intact long-sequence aptamers for develop a highly sensitive AuNP-based colorimetric aptasensor. Determination of CAP in animal derived foods is an urgent demanded in the effort to minimize food safety risk. Therefore, we chose it as the representative model to construct the colorimetric sensing platform based on aptamer terminal-lock (ATL). In the ATL, intact aptamer was used as a molecular recognition element and a short-sequence oligonucleotide serving as a locker probe (LP) which is complementary of aptamer terminal fragments. By formation of aptamer/target complex, the LP leaves the ATL and adsorbs on the surface of AuNPs, leading to the AuNPs stabilization against salt-induced aggregation. This aptasensor shows a low limit of detection (0.03 nM) with high selectivity toward CAP. Moreover, the designed sensing platform was successfully applied to detect CAP in the milk samples. These results demonstrate our introduced label-free method for CAP detection is simple, sensitive, and highly selective.
Collapse
Affiliation(s)
- Mahbobeh Javidi
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bibi Marzieh Razavizadeh
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
45
|
Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Mikrochim Acta 2018; 185:355. [DOI: 10.1007/s00604-018-2895-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
|
46
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
47
|
Qu F, Chen Z, You J, Song C. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:148-154. [PMID: 29444496 DOI: 10.1016/j.saa.2018.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zeqiu Chen
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Cuihua Song
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
48
|
Liu X, Ye C, Li X, Cui N, Wu T, Du S, Wei Q, Fu L, Yin J, Lin CT. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors. MATERIALS 2018. [PMID: 29518950 PMCID: PMC5872978 DOI: 10.3390/ma11030399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Potassium (K+) ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM) with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.
Collapse
Affiliation(s)
- Xiangqi Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| | - Xiaoqing Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| | - Naiyuan Cui
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology, Chinece Acedemy of Science, Shenzhen 518055, China.
| | - Shiyu Du
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiancheng Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China.
| |
Collapse
|
49
|
Zainudin AA, Fen YW, Yusof NA, Al-Rekabi SH, Mahdi MA, Omar NAS. Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:111-115. [PMID: 29024848 DOI: 10.1016/j.saa.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K+) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K+ in solution with and without C-GO-V thin film. The K+ can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K+ in solution. The sensor produces a linear response for K+ ion up to 100ppm with sensitivity and detection limit of 0.00948°ppm-1 and 0.001ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K+ that has been proved by the SPR measurement.
Collapse
Affiliation(s)
- Afiq Azri Zainudin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nor Azah Yusof
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sura Hmoud Al-Rekabi
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Adzir Mahdi
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
50
|
Mirau PA, Smith JE, Chávez JL, Hagen JA, Kelley-Loughnane N, Naik R. Structured DNA Aptamer Interactions with Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2139-2146. [PMID: 29283584 DOI: 10.1021/acs.langmuir.7b02449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA aptamers that bind biomolecular targets are of interest as the recognition element in colorimetric sensors based on gold nanoparticles (AuNP), where sensor functionality is related to changes in AuNP colloidal stability upon target binding. In order to understand the role of target binding on DNA-AuNP colloidal stability, we have used high-resolution NMR to characterize the interactions of the 36 nucleotide cocaine-binding aptamer (MN4) and related aptamers with AuNPs, cocaine, and cocaine metabolites. Changes in the aptamer imino proton NMR spectra with low (20 nM) concentrations of AuNP show that the aptamers undergo fast-exchange adsorption on the nanoparticle surface. An analysis of the spectral changes and the comparison with modified MN4 aptamers shows that the AuNP binding domain is localized on stem two of the three-stemmed aptamer. The identification of an AuNP recognition domain allows for the incorporation of AuNP binding functionality into a wide variety of aptamers. AuNP-induced spectral changes are not observed for the aptamer-AuNP mixtures in the presence of cocaine, demonstrating that aptamer absorption on the AuNP surface is modulated by aptamer-target interactions. The data also show that the DNA-AuNP interactions and sensor functionality are critically dependent on aptamer folding.
Collapse
Affiliation(s)
| | - Joshua E Smith
- Department of Chemistry, Alverina University , Reading, Pennsylvania 19607, United States
| | | | | | | | | |
Collapse
|