1
|
Feldhof MI, Sperzel S, Bonda L, Boye S, Braunschweig AB, Gerling-Driessen UIM, Hartmann L. Thiol-selective native grafting from polymerization for the generation of protein-polymer conjugates. Chem Sci 2024; 15:d4sc04818k. [PMID: 39323521 PMCID: PMC11418805 DOI: 10.1039/d4sc04818k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Protein-polymer conjugates combine properties of biopolymers and synthetic polymers, such as specific bioactivity and increased stability, with great benefits for various applications from catalysis to biomedicine. Furthermore, polymer conjugation can mimic important posttranslational modifications of proteins such as glycosylation. There are typically two approaches to create protein-polymer conjugates: the protein is functionalized in advance with an initiator for a grafting-from method or a previously produced polymer is conjugated to the protein via a grafting-to method. In this study, we present a new approach that uses native proteins and allows for direct grafting-from using a thiol-induced, light-activated controlled radical polymerization (TIRP) that is initiated at thiols from specific cysteine residues of the protein. This straightforward method is employed to introduce polymers onto proteins and enzymes without any prior protein modifications, it works in aqueous buffer and maintains the protein's native structure and activity. The resulting protein-polymer conjugates exhibit high molar masses and low dispersities. We demonstrate the versatility of this approach by introducing different types of polymers such as hydrophilic poly(2-hydroxyethyl acrylate) (pHEAA), temperature-responsive poly(N-isopropylacrylamide) (pNIPAM) as well as glycopolymers mimicking the natural protein glycosylation and enabling selective interactions. We present successful combinations of the protein and polymer functions e.g., temperature-induced aggregation leading to an increase in enzyme activity and the introduction of artificial glycosylation inducing specific protein-protein cluster formation and giving straightforward access to glycosurfaces. Based on this straightforward, potentially scalable yet highly controlled synthesis of protein-polymer conjugates, various areas of applications are envisioned ranging from biomedicine to material sciences.
Collapse
Affiliation(s)
- Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sandro Sperzel
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Lorand Bonda
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Susanne Boye
- Center Macromolecular Structure Analysis, Leibniz-Institut für Polymerforschung Dresden Hohe Str. 6 01069 Dresden Germany
| | - Adam B Braunschweig
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- PhD Programs in Chemistry and Biochemistry, Graduate Center, City University of New York 65 5th Avenue New York NY 10016 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
| | - Ulla I M Gerling-Driessen
- Institute for Macromolecular Chemistry, University of Freiburg Stefan-Meier-Str. 31 D-79104 Freiburg i.Br. Germany
| | - Laura Hartmann
- Institute for Macromolecular Chemistry, University of Freiburg Stefan-Meier-Str. 31 D-79104 Freiburg i.Br. Germany
| |
Collapse
|
2
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
3
|
Tanaka T. Recent Advances in Polymers Bearing Activated Esters for the Synthesis of Glycopolymers by Postpolymerization Modification. Polymers (Basel) 2024; 16:1100. [PMID: 38675019 PMCID: PMC11053895 DOI: 10.3390/polym16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.
Collapse
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Zeng Z, Chen S, Chen Y. Zwitterionic Polymer: A New Paradigm for Protein Conjugation beyond PEG. ChemMedChem 2023; 18:e202300245. [PMID: 37675618 DOI: 10.1002/cmdc.202300245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
To render protein drugs more suitable for clinical treatment, PEGylation has been widely used to ameliorate their inherent deficiencies, such as poor stability, rapid elimination in the bloodstream, and high immunogenicity. While increasingly PEGylated protein drugs have been approved by the FDA, the non-degradability of PEG and the emergence of anti-PEG antibodies after injection raise concerns about their cumulative chronic toxicity and long-term therapeutic efficacy. Zwitterionic polymer, with a unique structure containing equal amounts of positively charged and negatively charged groups, shows a different hydration behavior to PEG, which may be a superior PEG alternative for protein conjugation. In this concept review, a series of features beyond that of PEGylated protein exhibited by protein-zwitterionic polymer conjugate are discussed and some suggestions are presented for their future direction.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shi Chen
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongming Chen
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
6
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
7
|
Mishra S, Streeter PR. Targeted delivery of harmine to xenografted human pancreatic islets promotes robust cell proliferation. Sci Rep 2022; 12:19127. [PMID: 36351917 PMCID: PMC9646720 DOI: 10.1038/s41598-022-19453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/29/2022] [Indexed: 11/11/2022] Open
Abstract
Type 1 diabetes (T1D) occurs as a consequence of the autoimmune destruction of insulin-producing pancreatic beta (β) cells and commonly presents with insulin deficiency and unregulated glycemic control. Despite improvements in the medical management of T1D, life-threatening complications are still common. Beta-cell replication to replace lost cells may be achieved by using small-molecule mitogenic drugs, like harmine. However, the safe and effective delivery of such drugs to beta cells remains a challenge. This work aims to deploy an antibody conjugated nanocarrier platform to achieve cell-specific delivery of candidate therapeutic and imaging agents to pancreatic endocrine cells. We approached this goal by generating core-shell type micellar nanocarriers composed of the tri-block copolymer, Pluronic®F127 (PEO100-PPO65-PEO100). We decorated these nanocarriers with a pancreatic endocrine cell-selective monoclonal antibody (HPi1), with preference for beta cells, to achieve active targeting. The PPO-based hydrophobic core allows encapsulation of various hydrophobic cargoes, whereas the PEO-based hydrophilic shell curbs the protein adhesion, hence prolonging the nanocarriers' systemic circulation time. The nancarriers were loaded with quantum dots (QDots) that allowed nanocarrier detection both in-vitro and in-vivo. In-vitro studies revealed that HPi1 conjugated nanocarriers could target endocrine cells in dispersed islet cell preparations with a high degree of specificity, with beta cells exhibiting a fluorescent quantum dot signal that was approximately five orders of magnitude greater than the signal associated with alpha cells. In vivo endocrine cell targeting studies demonstrated that the HPi1 conjugated nanocarriers could significantly accumulate at the islet xenograft site. For drug delivery studies, the nanocarriers were loaded with harmine. We demonstrated that HPi1 conjugated nanocarriers successfully targeted and delivered harmine to human endocrine cells in a human islet xenograft model. In this model, targeted harmine delivery yielded an ~ 41-fold increase in the number of BrdU positive cells in the human islet xenograft than that observed in untreated control mice. By contrast, non-targeted harmine yielded an ~ 9-fold increase in BrdU positive cells. We conclude that the nanocarrier platform enabled cell-selective targeting of xenografted human pancreatic endocrine cells and the selective delivery of the hydrophobic drug harmine to those cells. Further, the dramatic increase in proliferation with targeted harmine, a likely consequence of achieving higher local drug concentrations, supports the concept that targeted drug delivery may promote more potent biological responses when using harmine and/or other drugs than non-targeting approaches. These results suggest that this targeted drug delivery platform may apply in drug screening, beta cell regenerative therapies, and/or diagnostic imaging in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Swati Mishra
- grid.5288.70000 0000 9758 5690Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| | - Philip R. Streeter
- grid.5288.70000 0000 9758 5690Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR USA
| |
Collapse
|
8
|
Theodorou A, Gounaris D, Voutyritsa E, Andrikopoulos N, Baltzaki CIM, Anastasaki A, Velonia K. Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization. Biomacromolecules 2022; 23:4241-4253. [PMID: 36067415 DOI: 10.1021/acs.biomac.2c00726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of protein-polymer conjugates usually requires extensive and costly deoxygenation procedures, thus limiting their availability and potential applications. In this work, we report the ultrafast synthesis of polymer-protein bioconjugates in the absence of any external deoxygenation via an aqueous copper-mediated methodology. Within 10 min and in the absence of any external stimulus such as light (which may limit the monomer scope and/or disrupt the secondary structure of the protein), a range of hydrophobic and hydrophilic monomers could be successfully grafted from a BSA macroinitiator, yielding well-defined polymer-protein bioconjugates at quantitative yields. Our approach is compatible with a wide range of monomer classes such as (meth) acrylates, styrene, and acrylamides as well as multiple macroinitiators including BSA, BSA nanoparticles, and beta-galactosidase from Aspergillus oryzae. Notably, the synthesis of challenging protein-polymer-polymer triblock copolymers was also demonstrated, thus significantly expanding the scope of our strategy. Importantly, both lower and higher scale polymerizations (from 0.2 to 35 mL) were possible without compromising the overall efficiency and the final yields. This simple methodology paves the way for a plethora of applications in aqueous solutions without the need of external stimuli or tedious deoxygenation.
Collapse
Affiliation(s)
- Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Dimitris Gounaris
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Errika Voutyritsa
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nicholas Andrikopoulos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | | | | | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
9
|
Saxer S, Erdogan O, Paniagua C, Chavanieu A, Garric X, Darcos V. Protein‐Polymer Bioconjugates Prepared by Post‐Polymerization Modification of Alternating Copolymers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samantha Saxer
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| | - Omer Erdogan
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| | | | | | - Xavier Garric
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| | - Vincent Darcos
- IBMM, Univ Montpellier CNRS, ENSCM Montpellier 34293 France
| |
Collapse
|
10
|
Razzaghi M, Homaei A, Vianello F, Azad T, Sharma T, Nadda AK, Stevanato R, Bilal M, Iqbal HMN. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 2022; 45:237-256. [PMID: 34596787 DOI: 10.1007/s00449-021-02647-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes' improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal-organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.
Collapse
Affiliation(s)
- Mozhgan Razzaghi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Roberto Stevanato
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| |
Collapse
|
11
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
12
|
Malinowski J, Jacewicz D, Sikorski A, Urbaniak M, Rybiński P, Parnicka P, Zaleska-Medynska A, Gawdzik B, Drzeżdżon J. Cat-CrNP as new material with catalytic properties for 2-chloro-2-propen-1-ol and ethylene oligomerizations. Sci Rep 2021; 11:15212. [PMID: 34312412 PMCID: PMC8313536 DOI: 10.1038/s41598-021-94056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The contemporary search for new catalysts for olefin oligomerization and polymerization is based on the study of coordinating compounds and/or organometallic compounds as post-metallocene catalysts. However known catalysts are suffered by many flaws, among others unsatisfactory activity, requirement of high pressure or instability at high temperatures. In this paper, we present a new catalyst i.e. the crystalline complex compound possesing high catalytic activity in the oligomerization of olefins, such as 2-chloro-2-propen-1-ol and ethylene under very mild conditions (room temperature, 0.12 bar for ethylene oligomerization, atmospheric pressure for 2-chloro-2-propen-1-ol oligomerization). New material—Cat-CrNP ([nitrilotriacetato-1,10-phenanthroline]chromium(III) tetrahydrate) has been obtained as crystalline form of the nitrilotriacetate complex compound of chromium(III) with 1,10-phenanthroline and characterized in terms of its crystal structure by the XRD method and by multi-analytical investigations towards its physicochemical propeties The yield of catalytic oligomerization over Cat-CrNP reached to 213.92 g · mmol−1 · h−1· bar−1 and 3232 g · mmol−1 · h−1 · bar−1 for the 2-chloro-2-propen-1-ol and ethylene, respectively. Furthemore, the synthesis of Cat-CrNP is cheap, easy to perform and solvents used during preparation are environmentally friendly.
Collapse
Affiliation(s)
- Jacek Malinowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Mariusz Urbaniak
- Institute of Chemistry, Jan Kochanowski University, Swietokrzyska 15 G, 25-406, Kielce, Poland
| | - Przemysław Rybiński
- Institute of Chemistry, Jan Kochanowski University, Swietokrzyska 15 G, 25-406, Kielce, Poland
| | - Patrycja Parnicka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | | | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Swietokrzyska 15 G, 25-406, Kielce, Poland.
| | - Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| |
Collapse
|
13
|
Mao T, Zhu C, Tao L. Multifunctional Polymer–Protein Conjugates Generated by Multicomponent Reactions†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tengfei Mao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chongyu Zhu
- Department of Materials Science Fudan University Shanghai 200433 China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Brogan APS. Preparation and application of solvent-free liquid proteins with enhanced thermal and anhydrous stabilities. NEW J CHEM 2021. [DOI: 10.1039/d1nj00467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective details a robust chemical modification strategy to protect proteins from temperature, aggregation, and non-aqueous environments.
Collapse
|
15
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
16
|
Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021. [DOI: 10.1039/d1py01172c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization is a powerful tool for the precise formation of macromolecular building blocks that can be used for the construction of well-defined nanocomposites.
Collapse
Affiliation(s)
- Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Luise Fanslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Rucco DJ, Barnes BE, Garrison JB, Sumerlin BS, Savin DA. Modular Genetic Code Expansion Platform and PISA Yield Well-Defined Protein-Polymer Assemblies. Biomacromolecules 2020; 21:5077-5085. [DOI: 10.1021/acs.biomac.0c01225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dominic J. Rucco
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brooke E. Barnes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
19
|
Theodorou A, Liarou E, Haddleton DM, Stavrakaki IG, Skordalidis P, Whitfield R, Anastasaki A, Velonia K. Protein-polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nat Commun 2020; 11:1486. [PMID: 32198365 PMCID: PMC7083936 DOI: 10.1038/s41467-020-15259-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
The immense application potential of amphiphilic protein-polymer conjugates remains largely unexplored, as established "grafting from" synthetic protocols involve time-consuming, harsh and disruptive deoxygenation methods, while "grafting to" approaches result in low yields. Here we report an oxygen tolerant, photoinduced CRP approach which readily affords quantitative yields of protein-polymer conjugates within 2 h, avoiding damage to the secondary structure of the protein and providing easily accessible means to produce biomacromolecular assemblies. Importantly, our methodology is compatible with multiple proteins (e.g. BSA, HSA, GOx, beta-galactosidase) and monomer classes including acrylates, methacrylates, styrenics and acrylamides. The polymerizations are conveniently conducted in plastic syringes and in the absence of any additives or external deoxygenation procedures using low-organic content media and ppm levels of copper. The robustness of the protocol is further exemplified by its implementation under UV, blue light or even sunlight irradiation as well as in buffer, nanopure, tap or even sea water.
Collapse
Affiliation(s)
- Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion, 70013, Greece
| | - Evelina Liarou
- Chemistry Department, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Iren Georgia Stavrakaki
- Department of Materials Science and Technology, University of Crete, Heraklion, 70013, Greece
| | - Panagiotis Skordalidis
- Department of Materials Science and Technology, University of Crete, Heraklion, 70013, Greece
| | | | | | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion, 70013, Greece.
| |
Collapse
|
20
|
Xie SX, Song L, Yuca E, Boone K, Sarikaya R, VanOosten SK, Misra A, Ye Q, Spencer P, Tamerler C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS APPLIED POLYMER MATERIALS 2020; 2:1134-1144. [PMID: 33834166 PMCID: PMC8026165 DOI: 10.1021/acsapm.9b00921] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.
Collapse
Affiliation(s)
| | | | - Esra Yuca
- University of Kansas (KU), Lawrence, Kansas, and Yildiz Technical University, Istanbul, Turkey
| | - Kyle Boone
- University of Kansas (KU), Lawrence, Kansas
| | | | | | - Anil Misra
- University of Kansas (KU), Lawrence, Kansas
| | - Qiang Ye
- University of Kansas (KU), Lawrence, Kansas
| | | | | |
Collapse
|
21
|
Messina MS, Messina KMM, Bhattacharya A, Montgomery HR, Maynard HD. Preparation of Biomolecule-Polymer Conjugates by Grafting-From Using ATRP, RAFT, or ROMP. Prog Polym Sci 2020; 100:101186. [PMID: 32863465 PMCID: PMC7453843 DOI: 10.1016/j.progpolymsci.2019.101186] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomolecule-polymer conjugates are constructs that take advantage of the functional or otherwise beneficial traits inherent to biomolecules and combine them with synthetic polymers possessing specially tailored properties. The rapid development of novel biomolecule-polymer conjugates based on proteins, peptides, or nucleic acids has ushered in a variety of unique materials, which exhibit functional attributes including thermo-responsiveness, exceptional stability, and specialized specificity. Key to the synthesis of new biomolecule-polymer hybrids is the use of controlled polymerization techniques coupled with either grafting-from, grafting-to, or grafting-through methodology, each of which exhibit distinct advantages and/or disadvantages. In this review, we present recent progress in the development of biomolecule-polymer conjugates with a focus on works that have detailed the use of grafting-from methods employing ATRP, RAFT, or ROMP.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
22
|
Hoffman AS, Stayton PS. Applications of “Smart Polymers” as Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Shao Q. Effect of conjugated (EK)10 peptide on structural and dynamic properties of ubiquitin protein: a molecular dynamics simulation study. J Mater Chem B 2020; 8:6934-6943. [DOI: 10.1039/d0tb00664e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide conjugation modulates the stability and biological acitivty of proteins via the allosteric effect.
Collapse
Affiliation(s)
- Qing Shao
- Chemical and Materials Engineering Department
- University of Kentucky
- Lexington KY
- USA
| |
Collapse
|
24
|
Evgrafova Z, Rothemund S, Voigt B, Hause G, Balbach J, Binder WH. Synthesis and Aggregation of Polymer-Amyloid β Conjugates. Macromol Rapid Commun 2019; 41:e1900378. [PMID: 31631446 DOI: 10.1002/marc.201900378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Modulating the assembly of medically relevant peptides and proteins via macromolecular engineering is an important step in modifying their overall pathological effects. The synthesis of polymer-peptide conjugates composed of the amyloidogenic Alzheimer peptide, Aβ1-40 , and poly(oligo(ethylene glycol)m acrylates) (m = 2,3) with different molecular weights (Mn = 1400-6600 g mol-1 ) is presented here. The challenging conjugation of a synthetic polymer to an in situ aggregating protein is established via two different coupling strategies, only successful for polymers with molecular weights not exceeding 6600 g mol-1 , relying on resin-based synthesis or solution-based coupling chemistries. The conjugates are characterized by high-performance liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The aggregation of these polymer-Aβ1-40 conjugates, as monitored via thioflavine-T (ThT)-fluorescence spectroscopy, is accelerated mainly upon attaching the polymers. However, the appearance of the observed fibrils is different from those composed of native Aβ1-40, specifically with respect to length and morphology of the obtained aggregates. Instead of long, unbranched fibrils characteristic for Aβ1-40 , bundles of short aggregates are observed for the conjugates. Finally, the ThT kinetics and morphologies of Aβ1-40 fibrils formed in the presence of the conjugates give some mechanistic insights.
Collapse
Affiliation(s)
- Zhanna Evgrafova
- Faculty of Natural Science II, Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany
| | - Sven Rothemund
- Core Unit Peptide Technologies, Liebigstraße 21, D-04103, Leipzig, Germany
| | - Bruno Voigt
- Faculty of Natural Science II, Institute of Physics, Martin-Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120, Halle (Saale), Germany
| | - Gerd Hause
- Martin-Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, D-06120, Halle (Saale), Germany
| | - Jochen Balbach
- Faculty of Natural Science II, Institute of Physics, Martin-Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120, Halle (Saale), Germany
| | - Wolfgang H Binder
- Faculty of Natural Science II, Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
25
|
Pokorski JK, Hore MJ. Structural characterization of protein–polymer conjugates for biomedical applications with small-angle scattering. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Cox A, Vinciguerra D, Re F, Magro RD, Mura S, Masserini M, Couvreur P, Nicolas J. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur J Pharm Biopharm 2019; 142:70-82. [PMID: 31176723 DOI: 10.1016/j.ejpb.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Nanoparticles may provide a viable way for neuroprotective drugs to cross the blood-brain barrier (BBB), which limits the passage of most drugs from the peripheral circulation to the brain. Heterotelechelic polymer prodrugs comprising a neuroprotective model drug (adenosine) and a maleimide functionality were synthesized by the "drug-initiated" approach and subsequent nitroxide exchange reaction. Nanoparticles were obtained by nanoprecipitation and exhibited high colloidal stability with diameters in the 162-185 nm range and narrow size distributions. Nanoparticles were then covalently surface-conjugated to different proteins (albumin, α2-macroglobulin and fetuin A) to test their capability of enhancing BBB translocation. Their performances in terms of endothelial permeability and cellular uptake in an in vitro BBB model were compared to that of similar nanoparticles with surface-adsorbed proteins, functionalized or not with the drug. It was shown that bare NPs (i.e., NPs not surface-functionalized with proteins) without the drug exhibited significant permeability and cellular uptake, which were further enhanced by NP surface functionalization with α2-macroglobulin. However, the presence of the drug at the polymer chain-end prevented efficient passage of all types of NPs through the BBB model, likely due to adecrease in the hydrophobicity of the nanoparticle surface and alteration of the protein binding/coupling, respectively. These results established a new and facile synthetic approach for the surface-functionalization of polymer nanoparticles for brain delivery purposes.
Collapse
Affiliation(s)
- Alysia Cox
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Daniele Vinciguerra
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy.
| | - Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Simona Mura
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Massimo Masserini
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
27
|
Lorenz M, Paganini C, Storti G, Morbidelli M. Macroporous Polymer⁻Protein Hybrid Materials for Antibody Purification by Combination of Reactive Gelation and Click-Chemistry. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1580. [PMID: 31091797 PMCID: PMC6566266 DOI: 10.3390/ma12101580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/03/2022]
Abstract
Clickable core-shell nanoparticles based on poly(styrene-co-divinylbenzene-co-vinylbenzylazide) have been synthesized via emulsion polymerization. The 38 nm sized particles have been swollen by divinyl benzene (DVB) and 2,2'-azobis(2-methylpropionitrile) (AIBN) and subsequently processed under high shear rates in a Z-shaped microchannel giving macroporous microclusters (100 µm), through the reactive gelation process. The obtained clusters were post-functionalized by "click-chemistry" with propargyl-PEG-NHS-ester and propargylglicidyl ether, yielding epoxide or NHS-ester activated polymer supports for bioconjugation. Macroporous affinity materials for antibody capturing were produced by immobilizing recombinant Staphylococcus aureus protein A on the polymeric support. Coupling chemistry exploiting thiol-epoxide ring-opening reactions with cysteine-containing protein A revealed up to three times higher binding capacities compared to the protein without cysteine. Despite the lower binding capacities compared to commercial affinity phases, the produced polymer-protein hybrids can serve as stationary phases for immunoglobulin affinity chromatography as the materials revealed superior intra-particle mass transports.
Collapse
Affiliation(s)
- Marcel Lorenz
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Giuseppe Storti
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute of Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
28
|
Baker SL, Murata H, Kaupbayeva B, Tasbolat A, Matyjaszewski K, Russell AJ. Charge-Preserving Atom Transfer Radical Polymerization Initiator Rescues the Lost Function of Negatively Charged Protein–Polymer Conjugates. Biomacromolecules 2019; 20:2392-2405. [DOI: 10.1021/acs.biomac.9b00379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | - Adina Tasbolat
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Republic of Kazakhstan
| | | | | |
Collapse
|
29
|
Munasinghe A, Mathavan A, Mathavan A, Lin P, Colina CM. Molecular Insight into the Protein–Polymer Interactions in N-Terminal PEGylated Bovine Serum Albumin. J Phys Chem B 2019; 123:5196-5205. [DOI: 10.1021/acs.jpcb.8b12268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805473] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| |
Collapse
|
31
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019; 58:5170-5189. [PMID: 30066456 DOI: 10.1002/anie.201805473] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The application of photochemistry to polymer and material science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and advanced materials production. Using light to activate chemical reaction pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are advancing materials production through their exploitation of photochemistry.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| |
Collapse
|
32
|
Van Herck S, Hassannia B, Louage B, Pita Compostizo R, De Coen R, Vanden Berghe W, Vanden Berghe T, De Geest BG. Water-soluble withaferin A polymer prodrugs via a drug-functionalized RAFT CTA approach. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Evgrafova Z, Voigt B, Roos AH, Hause G, Hinderberger D, Balbach J, Binder WH. Modulation of amyloid β peptide aggregation by hydrophilic polymers. Phys Chem Chem Phys 2019; 21:20999-21006. [DOI: 10.1039/c9cp02683e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Careful balance of hydrophilicity of precisely engineered polymers alters aggregation of the amyloidogenic protein Aβ1–40.
Collapse
Affiliation(s)
- Zhanna Evgrafova
- Martin-Luther University Halle-Wittenberg
- Faculty of Natural Science II
- Institute of Chemistry
- D-06120 Halle (Saale)
- Germany
| | - Bruno Voigt
- Martin-Luther University Halle-Wittenberg
- Faculty of Natural Science II
- Institute of Physics
- D-06120 Halle (Saale)
- Germany
| | - Andreas H. Roos
- Martin-Luther University Halle-Wittenberg
- Faculty of Natural Science II
- Institute of Chemistry
- D-06120 Halle (Saale)
- Germany
| | - Gerd Hause
- Martin-Luther University Halle-Wittenberg
- Biocenter
- D-06120 Halle (Saale)
- Germany
| | - Dariush Hinderberger
- Martin-Luther University Halle-Wittenberg
- Faculty of Natural Science II
- Institute of Chemistry
- D-06120 Halle (Saale)
- Germany
| | - Jochen Balbach
- Martin-Luther University Halle-Wittenberg
- Faculty of Natural Science II
- Institute of Physics
- D-06120 Halle (Saale)
- Germany
| | - Wolfgang H. Binder
- Martin-Luther University Halle-Wittenberg
- Faculty of Natural Science II
- Institute of Chemistry
- D-06120 Halle (Saale)
- Germany
| |
Collapse
|
34
|
Crooke SN, Zheng J, Ganewatta MS, Guldberg SM, Reineke TM, Finn M. Immunological Properties of Protein–Polymer Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 2:93-103. [DOI: 10.1021/acsabm.8b00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jukuan Zheng
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Mitra S. Ganewatta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
35
|
Abdelaty MSA. Poly( N-isopropylacrylamide- co-2-((diethylamino)methyl)-4-formyl-6-methoxyphenyl acrylate) Environmental Functional Copolymers: Synthesis, Characterizations, and Grafting with Amino Acids. Biomolecules 2018; 8:E138. [PMID: 30404234 PMCID: PMC6316684 DOI: 10.3390/biom8040138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Vanillin was used to synthesize a new derivative with an active aldehyde group and response to pH. It is named 2-((diethylamino) methyl)-4-formyl-6-methoxyphenyl acrylate, abbreviated to DEAMVA. The chemical structures were evaluated by ¹H, 13C nuclear magnetic resonance (NMR), infrared (IR), and UV-Vis-spectroscopy, and all results demonstrated good statement. In order to achieve the dual responsive behavior thermo-pH with functionality, free radical polymerization of N-isopropylacrylamide with DEAMVA in different molar ratios (5, 10, 15 mol%) has been used, with azobisisobutyronitrile (AIBN) as the initiator. The chemical structure of the polymers was investigated by ¹H NMR and IR. The dual responsive functional copolymer was exposed to a grafted process with tryptophan and tyrosine, both of which were also evaluated by ¹HNMR and IR. Copolymers before and after grafting were physically investigated by size exclusion chromatography (SEC) for estimation of the molecular weight, the glass transition temperature by differential scanning calorimeter (DSC) and scanning electron microscope (SEM) for the surface morphology. The phase separation or lower critical solution temperature (LCST) (Tc) of the polymer solution was determined not only by a turbidity method using the change in the transmittance with temperature, but also by micro-DSC. The conversion to an amino acid-grafted polymer was detected through Beer's law for the absorption of the ⁻CH=N- imine group by UV-Vis-Spectroscopy.
Collapse
Affiliation(s)
- Momen S A Abdelaty
- Polymer and Biopolymer Lap, Department of Biology, Collage of Haql, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
36
|
Izadi Z, Hajizadeh-Saffar E, Hadjati J, Habibi-Anbouhi M, Ghanian MH, Sadeghi-Abandansari H, Ashtiani MK, Samsonchi Z, Raoufi M, Moazenchi M, Izadi M, Nejad ASSH, Namdari H, Tahamtani Y, Ostad SN, Akbari-Javar H, Baharvand H. Tolerance induction by surface immobilization of Jagged-1 for immunoprotection of pancreatic islets. Biomaterials 2018; 182:191-201. [DOI: 10.1016/j.biomaterials.2018.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
|
37
|
Wu X, Wang S, Zhang L, Wu L, Chen Y. Thermally controlled biotransformation of glycyrrhizic acid via an asymmetric temperature-responsive polyurethane membrane. RSC Adv 2018; 8:34823-34829. [PMID: 35547039 PMCID: PMC9087016 DOI: 10.1039/c8ra06202a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023] Open
Abstract
Separating a target product from a relatively complex bioreaction system is often difficult. In this work, a "smart" bioreaction system was developed by using the special characteristic of temperature-responsive polyurethane (TRPU). By combining solvent evaporation with a wet phase inversion technique, an asymmetric membrane consisting of an integral and dense skin layer supported by a porous sublayer was prepared from a thermally responsive polyurethane that experiences a sudden free volume increase upon heating through a phase transition temperature of 56 °C. Subsequently, the asymmetric TRPU membrane served as the carrier of an immobilized enzyme, wherein β-glucuronidase was multipoint-conjugated by using biotin and streptavidin on the porous sublayer. Then, the material-asymmetric TRPU membrane served jointly as the antennae as well as the actuator, which reversibly responds to temperature to switch (on-off) the access of the reactant glycyrrhizic acid (GL). Under the optimal temperature (40 °C) and pH (7.0) conditions, the immobilized β-glucuronidase contributed to almost 33% yield of glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) of the isolated counterpart for the same concentration of substrate (250 mg L-1) reaction for 24 h, while costing 1% of that of the isolated β-glucuronidase. Kinetic results showed that V max and K m values were 8.89 × 103 mg L-1 and 2.30 × 103 mg L-1 h-1, respectively. The specific functional polymer-immobilized β-glucuronidase design serves as a bioreactor of GL into GAMG, as well as a separator deliberately irritated and controlled by temperature. This "smart" support material presents a potential facilitator for the separation of complex biotransformation reactions.
Collapse
Affiliation(s)
- Xiuhong Wu
- School of Chemical and Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 PR China
- Department of Chemistry, Massachusetts of Institute of Technology Cambridge MA 02139 USA
| | - Shaoyan Wang
- School of Chemical and Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 PR China
| | - Lina Zhang
- School of Chemical and Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 PR China
| | - Lidong Wu
- The Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences Beijing 100141 PR China
- Department of Chemistry, Massachusetts of Institute of Technology Cambridge MA 02139 USA
| | - Yi Chen
- The Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education Chengdu 610065 PR China
- Department of Chemistry, Massachusetts of Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
38
|
Ferreira Soares DC, Oda CMR, Monteiro LOF, de Barros ALB, Tebaldi ML. Responsive polymer conjugates for drug delivery applications: recent advances in bioconjugation methodologies. J Drug Target 2018; 27:355-366. [PMID: 30010436 DOI: 10.1080/1061186x.2018.1499747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Caroline Mari Ramos Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Andre Luis Branco de Barros
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
39
|
|
40
|
Chou CH, Lin PC. Glycan-Directed Grafting-from Polymerization of Immunoglobulin G: Site-Selectively Modified IgG-Polymer Conjugates with Preserved Biological Activity. Biomacromolecules 2018; 19:3086-3095. [PMID: 29890078 DOI: 10.1021/acs.biomac.8b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antibody and related antibody drugs for the treatment of malignancies have led to progress in targeted cancer therapy. Preparation of diverse antibody conjugates is critical for preclinical and clinical applications. However, precise control in tagging molecules at specific locations on antibodies is essential to preserve their native function. In this study, a synthetic boronic acid (BA)-tosyl initiator was used to trigger a glycan-directed modification of IgGs, and the obtained IgG macroinitiators allowed a growth of the poly N-isopropylacrylamide (PNIPAAm) chains specifically at Fc-domains. Therefore, the PNIPAAm chains are located away from the critical antigen-binding domains (Fab), which could reasonably prevent the loss of biological activity after the attachment of polymer chains. According to the proposed strategy, a site-selectively modified anticoncanavalin A (Con A) antibody-PNIPAAm conjugate showed 6-times higher efficiency in the binding of targeted Con A antigen to a randomly conjugated anti-Con A antibody-PNIPAAm conjugate. In this study, we developed the first chemical strategy for the site-specific preparation of IgG-polymer conjugates with conserved biological activity as well as intact glycan structures.
Collapse
Affiliation(s)
- Chih-Hung Chou
- Department of Chemistry , National Sun Yat-sen University 70, Lienhai Road , Kaohsiung 80424 , Taiwan
| | - Po-Chiao Lin
- Department of Chemistry , National Sun Yat-sen University 70, Lienhai Road , Kaohsiung 80424 , Taiwan
| |
Collapse
|
41
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
Ju Y, Zhang Y, Zhao H. Fabrication of Polymer-Protein Hybrids. Macromol Rapid Commun 2018; 39:e1700737. [PMID: 29383794 DOI: 10.1002/marc.201700737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Rapid developments in organic chemistry and polymer chemistry promote the synthesis of polymer-protein hybrids with different structures and biofunctionalities. In this feature article, recent progress achieved in the synthesis of polymer-protein conjugates, protein-nanoparticle core-shell structures, and polymer-protein nanogels/hydrogels is briefly reviewed. The polymer-protein conjugates can be synthesized by the "grafting-to" or the "grafting-from" approach. In this article, different coupling reactions and polymerization methods used in the synthesis of bioconjugates are reviewed. Protein molecules can be immobilized on the surfaces of nanoparticles by covalent or noncovalent linkages. The specific interactions and chemical reactions employed in the synthesis of core-shell structures are discussed. Finally, a general introduction to the synthesis of environmentally responsive polymer-protein nanogels/hydrogels by chemical cross-linking reactions or molecular recognition is provided.
Collapse
Affiliation(s)
- Yuanyuan Ju
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
43
|
Vandewalle S, De Coen R, De Geest BG, Du Prez FE. Tyrosine-Triazolinedione Bioconjugation as Site-Selective Protein Modification Starting from RAFT-Derived Polymers. ACS Macro Lett 2017; 6:1368-1372. [PMID: 35650819 DOI: 10.1021/acsmacrolett.7b00795] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The electrophilic aromatic substitution (SEAr) reaction of triazolinediones (TADs) with the phenol moiety of tyrosine amino acid residues is a potent method for the site-selective formation of polymer-protein conjugates. Herein, using poly(N,N-dimethylacrylamide) (pDMA) and bovine serum albumin (BSA) as model reagents, the performance of this tyrosine-TAD bioconjugation in aqueous solutions is explored. At first, reversible addition-fragmentation chain transfer (RAFT) polymerization with a functional urazole, a precursor for TAD, chain transfer agent is used for the synthesis of a TAD end-functionalized pDMA. Eventually, the BSA ligation efficiency and selectivity of this polymer was evaluated in different aqueous solvent mixtures using SDS-PAGE and mass spectroscopy after trypsin digestion.
Collapse
Affiliation(s)
- Stef Vandewalle
- Polymer
Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC),
Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan
281 S4-bis, B-9000 Ghent, Belgium
| | - Ruben De Coen
- Department
of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bruno G. De Geest
- Department
of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Filip E. Du Prez
- Polymer
Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC),
Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan
281 S4-bis, B-9000 Ghent, Belgium
| |
Collapse
|
44
|
Edwards-Gayle CJC, Greco F, Hamley IW, Rambo RP, Reza M, Ruokolainen J, Skoulas D, Iatrou H. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution. Biomacromolecules 2017; 19:167-177. [DOI: 10.1021/acs.biomac.7b01420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Francesca Greco
- School of Chemistry, Food
Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Ian W. Hamley
- School of Chemistry, Food
Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Robert P. Rambo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Mehedi Reza
- Department of Applied Physics, Aalto School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Dimitrios Skoulas
- Department of Chemistry, University of Athens, Panepistimiopolis
Zografou, 157 71 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis
Zografou, 157 71 Athens, Greece
| |
Collapse
|
45
|
Wang Y, Wu C. Quantitative Study of the Oligomerization of Yeast Prion Sup35NM Proteins. Biochemistry 2017; 56:6575-6584. [DOI: 10.1021/acs.biochem.7b00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yanjing Wang
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chi Wu
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
46
|
Raghupathi K, Eron SJ, Anson F, Hardy JA, Thayumanavan S. Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery. Mol Pharm 2017; 14:4515-4524. [PMID: 29053277 PMCID: PMC5714657 DOI: 10.1021/acs.molpharmaceut.7b00643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Therapeutic biologics have various advantages over synthetic drugs in terms of selectivity, their catalytic nature, and, thus, therapeutic efficacy. These properties offer the potential for more effective treatments that may also overcome the undesirable side effects observed due to off-target toxicities of small molecule drugs. Unfortunately, systemic administration of biologics is challenging due to cellular penetration, renal clearance, and enzymatic degradation difficulties. A delivery vehicle that can overcome these challenges and deliver biologics to specific cellular populations has the potential for significant therapeutic impact. In this work, we describe a redox-responsive nanoparticle platform, which can encapsulate hydrophilic proteins and release them only in the presence of a reducing stimulus. We have formulated these nanoparticles using an inverse emulsion polymerization (IEP) methodology, yielding inverse nanoemulsions, or nanogels. We have demonstrated our ability to overcome the liabilities that contribute to activity loss by delivering a highly challenging cargo, functionally active caspase-3, a cysteine protease susceptible to oxidative and self-proteolytic insults, to the cytosol of HeLa cells by encapsulation inside a redox-responsive nanogel.
Collapse
Affiliation(s)
| | - Scott J. Eron
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Francesca Anson
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
47
|
Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:607-626. [DOI: 10.1016/j.msec.2017.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
|
48
|
Lu H, Noorani L, Jiang Y, Du AW, Stenzel MH. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. J Mater Chem B 2017; 5:9591-9599. [PMID: 32264572 DOI: 10.1039/c7tb02902k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Albumin-based nanoparticles have been exploited as a useful carrier for the efficient delivery of anti-cancer drugs. In this study, albendazole was encapsulated into bovine serum albumin (BSA)-polycaprolactone (PCL) conjugates and the formed nanoparticles with a size about 100 nm were used to treat pancreatic carcinoma cells. In addition, two more types of albendazole-loaded BSA nanoparticles, 10 nm and 200 nm ones, were prepared using a desolvation method. The albendazole-loaded BSA nanoparticles were evaluated with both 2D cultured AsPC-1 cells and 3D multicellular tumor spheroids (MCTS). Their anti-tumor effects were also compared. BSA-PCL nanoparticles and 200 nm BSA nanoparticles showed noticeable cytotoxicity to 2D cultured AsPC-1 cells when compared to the free drug. The penetration of BSA-PCL nanoparticles and 200 nm BSA nanoparticles, especially the BSA-PCL nanoparticles, enabled effective delivery of albendazole into pancreatic MCTS. BSA-PCL nanoparticles also showed a better inhibition effect on the growth of pancreatic MCTS than the 200 nm counterpart. Although 10 nm BSA nanoparticles inhibited the growth of MCTS, the inhibitory effect was even less than that of free albendazole. In addition, it is also found that SPARC protein facilitates the penetration and drug delivery of albumin nanoparticle since treatment using anti-SPARC antibody decreased the efficacy of drug loaded BSA nanoparticles.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
49
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
50
|
Zore OV, Pande P, Okifo O, Basu AK, Kasi RM, Kumar CV. Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis. RSC Adv 2017; 7:29563-29574. [PMID: 29403641 PMCID: PMC5796544 DOI: 10.1039/c7ra05666d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report a general and modular approach for the synthesis of multi enzyme-polymer conjugates (MECs) consisting of five different enzymes of diverse isoelectric points and distinct catalytic properties conjugated within a single universal polymer scaffold. The five model enzymes chosen include glucose oxidase (GOx), acid phosphatase (AP), lactate dehydrogenase (LDH), horseradish peroxidase (HRP) and lipase (Lip). Poly(acrylic acid) (PAA) is used as the model synthetic polymer scaffold that will covalently conjugate and stabilize multiple enzymes concurrently. Parallel and sequential synthetic protocols are used to synthesise MECs, 5-P and 5-S, respectively. Also, five different single enzyme-PAA conjugates (SECs) including GOx-PAA, AP-PAA, LDH-PAA, HRP-PAA and Lip-PAA are synthesized. The composition, structure and morphology of MECs and SECs are confirmed by agarose gel electrophoresis, dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The bioreactor comprising MEC functions as a single biocatalyst can carry out at least five different or orthogonal catalytic reactions by virtue of the five stabilized enzymes, which has never been achieved to-date. Using activity assays relevant for each of the enzymes, for example AP, the specific activity of AP at room temperature and 7.4 pH in PB is determined and set at 100%. Interestingly, MECs 5-P and 5-S show specific activities of 1800% and 600%, respectively, compared to 100% specific activity of AP at room temperature (RT). The catalytic efficiencies of 5-P and 5-S are 1.55 × 10-3 and 1.68 × 10-3, respectively, compared to 9.11 × 10-5 for AP under similar RT conditions. Similarly, AP relevant catalytic activities of 5-P and 5-S at 65 °C show 100 and 300%, respectively, relative to native AP activity at RT as the native AP is catalytically inactive at 65 °C The catalytic activity trends suggest: (1) MECs show enhanced catalytic activities compared to native enzymes under similar assay conditions and (2) 5-S is better suited for high temperature biocatalysis, while both 5-S and 5-P are suitable for room temperature biocatalysis. Initial cytotoxicity results show that these MECs are non-lethal to human cells including human embryonic kidney [HEK] cells when treated with doses of 0.01 mg mL-1 for 72 h. This cytotoxicity data is relevant for future biological applications.
Collapse
Affiliation(s)
- Omkar V. Zore
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
- Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
| | | | - Ashis K. Basu
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
| | - Rajeswari M. Kasi
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
- Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut Storrs, CT 06269-3060, USA
- Institute of Materials Science, U-3136, University of Connecticut Storrs, CT 06269-3069, USA
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT 06269-3125, USA
| |
Collapse
|