1
|
Nguyen A, Bhandari C, Keown M, Malkoochi A, Quaye M, Mahmoud D, Shah N, Alzhanova D, Cameron CG, Ferruzzi J, McFarland SA, Shafirstein G, Brekken R, Obaid G. Increasing the Dye Payload of Cetuximab-IRDye800CW Enables Photodynamic Therapy. Mol Pharm 2024; 21:3296-3309. [PMID: 38861020 PMCID: PMC11216862 DOI: 10.1021/acs.molpharmaceut.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cetuximab (Cet)-IRDye800CW, among other antibody-IRDye800CW conjugates, is a potentially effective tool for delineating tumor margins during fluorescence image-guided surgery (IGS). However, residual disease often leads to recurrence. Photodynamic therapy (PDT) following IGS is proposed as an approach to eliminate residual disease but suffers from a lack of molecular specificity for cancer cells. Antibody-targeted PDT offers a potential solution for this specificity problem. In this study, we show, for the first time, that Cet-IRDye800CW is capable of antibody-targeted PDT in vitro when the payload of dye molecules is increased from 2 (clinical version) to 11 per antibody. Cet-IRDye800CW (1:11) produces singlet oxygen, hydroxyl radicals, and peroxynitrite upon activation with 810 nm light. In vitro assays on FaDu head and neck cancer cells confirm that Cet-IRDye800CW (1:11) maintains cancer cell binding specificity and is capable of inducing up to ∼90% phototoxicity in FaDu cancer cells. The phototoxicity of Cet-IRDye800CW conjugates using 810 nm light follows a dye payload-dependent trend. Cet-IRDye800CW (1:11) is also found to be more phototoxic to FaDu cancer cells and less toxic in the dark than the approved chromophore indocyanine green, which can also act as a PDT agent. We propose that antibody-targeted PDT using high-payload Cet-IRDye800CW (1:11) could hold potential for eliminating residual disease postoperatively when using sustained illumination devices, such as fiber optic patches and implantable surgical bed balloon applicators. This approach could also potentially be applicable to a wide variety of resectable cancers that are amenable to IGS-PDT, using their respective approved full-length antibodies as a template for high-payload IRDye800CW conjugation.
Collapse
Affiliation(s)
- Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Micah Keown
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Maxwell Quaye
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Doha Mahmoud
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Nimit Shah
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Dina Alzhanova
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Jacopo Ferruzzi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Gal Shafirstein
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rolf Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Surgery, Department of Pharmacology, Cancer Biology Graduate Program; University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
2
|
Khan S, Shakeri A, Monteiro JK, Tariq S, Prasad A, Gu J, Filipe CDM, Li Y, Didar TF. Comprehensive fluorescence profiles of contamination-prone foods applied to the design of microcontact-printed in situ functional oligonucleotide sensors. Sci Rep 2024; 14:8277. [PMID: 38594334 PMCID: PMC11004136 DOI: 10.1038/s41598-024-58698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
With both foodborne illness and food spoilage detrimentally impacting human health and the economy, there is growing interest in the development of in situ sensors that offer real-time monitoring of food quality within enclosed food packages. While oligonucleotide-based fluorescent sensors have illustrated significant promise, the development of such on-food sensors requires consideration towards sensing-relevant fluorescence properties of target food products-information that has not yet been reported. To address this need, comprehensive fluorescence profiles for various contamination-prone food products are established in this study across several wavelengths and timepoints. The intensity of these food backgrounds is further contextualized to biomolecule-mediated sensing using overlaid fluorescent oligonucleotide arrays, which offer perspective towards the viability of distinct wavelengths and fluorophores for in situ food monitoring. Results show that biosensing in the Cyanine3 range is optimal for all tested foods, with the Cyanine5 range offering comparable performance with meat products specifically. Moreover, recognizing that mass fabrication of on-food sensors requires rapid and simple deposition of sensing agents onto packaging substrates, RNA-cleaving fluorescent nucleic acid probes are successfully deposited via microcontact printing for the first time. Direct incorporation onto food packaging yields cost-effective sensors with performance comparable to ones produced using conventional deposition strategies.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Simrun Tariq
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|
3
|
Litvinov IK, Belyaeva TN, Salova AV, Aksenov ND, Chelushkin PS, Solomatina AI, Tunik SP, Kornilova ES. The Dual Luminescence Lifetime pH/Oxygen Sensor: Evaluation of Applicability for Intravital Analysis of 2D- and 3D-Cultivated Human Endometrial Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15606. [PMID: 37958592 PMCID: PMC10650141 DOI: 10.3390/ijms242115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The oxygenation of cells and tissues and acidification of the cellular endolysosomal system are among the major factors that ensure normal functioning of an organism and are violated in various pathologies. Recording of these parameters and their changes under various conditions is an important task for both basic research and clinical applications. In the present work, we utilized internalizable dual pH/O2 lifetime sensor (Ir-HSA-FITC) based on the covalent conjugation of human serum albumin (HSA) with fluorescein isothiocyanate (FITC) as pH sensor and an orthometalated iridium complex as O2 sensor. The probe was tested for simultaneous detection of acidification level and oxygen concentration in endolysosomes of endometrial mesenchymal stem/stromal cells (enMSCs) cultivated as 2D monolayers and 3D spheroids. Using a combined FLIM/PLIM approach, we found that due to high autofluorescence of enMSCs FITC lifetime signal in control cells was insufficient to estimate pH changes. However, using flow cytometry and confocal microscopy, we managed to detect the FITC signal response to inhibition of endolysosomal acidification by Bafilomycin A1. The iridium chromophore phosphorescence was detected reliably by all methods used. It was demonstrated that the sensor, accumulated in endolysosomes for 24 h, disappeared from proliferating 2D enMSCs by 72 h, but can still be recorded in non-proliferating spheroids. PLIM showed high sensitivity and responsiveness of iridium chromophore phosphorescence to experimental hypoxia both in 2D and 3D cultures. In spheroids, the phosphorescence signal was detected at a depth of up to 60 μm using PLIM and showed a gradient in the intracellular O2 level towards their center.
Collapse
Affiliation(s)
- Ilia K. Litvinov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Tatiana N. Belyaeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Anna V. Salova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Nikolay D. Aksenov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Anastasia I. Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Elena S. Kornilova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
- Higher School of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University, Khlopina Str. 11, 195251 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Kellermann L, Gupta R. Photoactive hydrogels for pre-concentration, labelling, and controlled release of proteins. Analyst 2023; 148:4127-4137. [PMID: 37493470 PMCID: PMC10440800 DOI: 10.1039/d3an00811h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
We report a novel hydrogel for pre-concentration, fluorescent labelling, and light-triggered release of proteins for detection of low abundance biomarkers. The hydrogel was a co-polymer of acrylamide/bisacrylamide and methacrylamide attached to fluorescein isothiocyanate via a light cleavable bond and a poly(ethylene glycol) spacer arm of molecular weight of 3400 g mol-1. Unlike previous work, proteins were captured by an irreversible chemical reaction rather than by non-covalent affinity binding or physical entrapment. Because the protein-reactive group was attached to fluorescein, which in turn was coupled to the hydrogel by a photocleavable bond, on release the protein was labelled with fluorescein. Our hydrogel offered a pre-concentration factor of up to 236 for a model protein, streptavidin. Each protein molecule was labelled with 85 fluorescein molecules, and 50% of the proteins in the hydrogel were released after UV exposure for ∼100 s. The proteins released from the hydrogel were captured in biotinylated microtitre plates and detected by fluorescence, allowing measurement of at least 0.01 ppm (or ∼166 pM) of protein in sample solutions. The reported hydrogel is promising for detection of low abundance proteins while being less laborious than enzyme-linked immunosorbent assay and less affected by changes in environmental conditions than label-free biosensors.
Collapse
Affiliation(s)
- Leanne Kellermann
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Ruchi Gupta
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
5
|
Barik S, Mahapatra A, Preeyanka N, Sarkar M. Assessing the impact of choline chloride and benzyltrimethylammonium chloride-based deep eutectic solvents on the structure and conformational dynamics of bovine serum albumin: a combined steady-state, time-resolved fluorescence and fluorescence correlation spectroscopic study. Phys Chem Chem Phys 2023; 25:20093-20108. [PMID: 37462948 DOI: 10.1039/d3cp01380d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Although deep eutectic solvents (DESs) are regarded as useful substitutes for both ionic liquids and common organic solvents for storage and applications of biomolecules, it is still unclear whether all DESs or only specific types of DESs will be suitable for the said purpose. In view of this, the current study aims to report on the structure and conformational dynamics of BSA in the presence of two DESs, namely ethaline (choline chloride:ethylene glycol) and BMEG (benzyltrimethyl ammonium chloride:ethylene glycol), having the same hydrogen bond donor but with a distinct hydrogen bond acceptor, so that how small changes in one constituent of a DES alter the protein-DES interaction at the molecular level can be understood. The protein-DES interaction is investigated by exploiting both ensemble-averaged measurements like steady-state and time-resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and single-molecule sensitive techniques based on fluorescence correlation spectroscopy (FCS). Interestingly, the results obtained from these studies have demonstrated that while a very small quantity of BMEG completely unfolds the native structure of the protein, it remains in a partially unfolded state even at very high ethaline content. More interestingly, it has been found that at very high concentrations of BMEG, the unfolded protein undergoes enhanced protein-protein interaction resulting in the aggregation of BSA. All of the results obtained from these investigations have essentially suggested that both protein-DES interaction and interspecies interaction among the constituent of DESs play a crucial role in governing the overall stability and conformational dynamics of the protein in DESs.
Collapse
Affiliation(s)
- Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Naupada Preeyanka
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| |
Collapse
|
6
|
Surzhikova DP, Sukovatyi LA, Nemtseva EV, Esimbekova EN, Slyusareva EA. Functioning of a Fluorescein pH-Probe in Aqueous Media: Impact of Temperature and Viscosity. MICROMACHINES 2023; 14:1442. [PMID: 37512752 PMCID: PMC10383544 DOI: 10.3390/mi14071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this work, we considered the influence of viscogenic agents (glycerol, sucrose) as well as the temperature on the fluorescent characteristics of fluorescein at pH 6.5 in order to describe the acid-base status of local environment in terms of a spectrally detectable dianion-anion equilibrium. The protolytic equilibrium of fluorescein was found to depend on the solvent viscosity in a complex way. Whereas in the presence of sucrose the ratiometric signal of fluorescein (I488/I435) remains rather unchanged, the addition of glycerol (up to 40% w/w) results in the increase of the signal (up to 19%), that can be attributed to the different mechanisms of cosolvents effects on dye molecules in the ground state. Molecular dynamics of the dye in the presence of glycerol and sucrose revealed that the cosolvents preferentially interact with fluorescein monoanion and dianion, displacing water molecules from the local environment which in turn reduces the average number of the hydrogen bonds between xanthene ring of the dye and water molecules. The ratiometric signal demonstrates linear growth with the temperature in the range of 10-80 °C regardless of the presence of viscogenic agents. A linear correlation between the temperature sensitivity of the ratiometric signal and the change in the molar enthalpy of the proton dissociation reaction in buffer and viscous media was determined.
Collapse
Affiliation(s)
- Darya P Surzhikova
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Lev A Sukovatyi
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Elena N Esimbekova
- Biophysics Department, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Evgenia A Slyusareva
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
7
|
Rekowska N, Wulf K, Koper D, Senz V, Seitz H, Grabow N, Teske M. Influence of PEGDA Molecular Weight and Concentration on the In Vitro Release of the Model Protein BSA-FITC from Photo Crosslinked Systems. Pharmaceutics 2023; 15:pharmaceutics15041039. [PMID: 37111525 PMCID: PMC10145661 DOI: 10.3390/pharmaceutics15041039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Novel 3D printing techniques enable the development of medical devices with drug delivery systems that are tailored to the patient in terms of scaffold shape and the desired pharmaceutically active substance release. Gentle curing methods such as photopolymerization are also relevant for the incorporation of potent and sensitive drugs including proteins. However, retaining the pharmaceutical functions of proteins remains challenging due to the possible crosslinking between the functional groups of proteins, and the used photopolymers such as acrylates. In this work, the in vitro release of the model protein drug, albumin-fluorescein isothiocyanate conjugate (BSA-FITC) from differently composed, photopolymerized poly(ethylene) glycol diacrylate (PEGDA), an often employed, nontoxic, easily curable resin, was investigated. Different PEGDA concentrations in water (20, 30, and 40 wt %) and their different molecular masses (4000, 10,000, and 20,000 g/mol) were used to prepare a protein carrier with photopolymerization and molding. The viscosity measurements of photomonomer solutions revealed exponentially increasing values with increasing PEGDA concentration and molecular mass. Polymerized samples showed increasing medium uptake with an increasing molecular mass and decreasing uptake with increasing PEGDA content. Therefore, the modification of the inner network resulted in the most swollen samples (20 wt %) also releasing the highest amount of incorporated BSA-FITC for all PEGDA molecular masses.
Collapse
Affiliation(s)
- Natalia Rekowska
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Katharina Wulf
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Chair of Piston Machines and Internal Combustion Engines, University of Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany
| | - Daniela Koper
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Institute for Implant Technology and Biomaterials E.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Michael Teske
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| |
Collapse
|
8
|
Jang W, Mun SJ, Kim SY, Bong KW. Controlled growth factor delivery via a degradable poly(lactic acid) hydrogel microcarrier synthesized using degassed micromolding lithography. Colloids Surf B Biointerfaces 2023; 222:113088. [PMID: 36577342 DOI: 10.1016/j.colsurfb.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Controlled and targeted delivery of growth factors to biological environments is important for tissue regeneration. Polylactic acid (PLA) hydrogel microparticles are attractive carriers for the delivery of therapeutic cargoes based on their superior biocompatibility and biodegradability, uniform encapsulation of cargoes, and non-requirement of organic solvents during particle synthesis. In this study, we newly present controlled growth factor delivery utilizing PLA-based hydrogel microcarriers synthesized via degassed micromolding lithography (DML). Based on the direct gelation procedure from the single-phase aqueous precursor in DML, bovine serum albumin, a model protein of growth factor, and fibroblast growth factor were encapsulated into microparticles with uniform distribution. In addition, by tuning the monomer concentration and adding a hydrolytically stable crosslinker, the release of encapsulated cargoes was efficiently controlled and extended to 2 weeks. Finally, we demonstrated the biological activity of encapsulated FGF-2 in PLA-based microparticles using a fibroblast proliferation assay.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon-si, Gangwon-do 24289, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Zalieckas J, Mondragon IR, Pobedinskas P, Kristoffersen AS, Mohamed-Ahmed S, Gjerde C, Høl PJ, Hallan G, Furnes ON, Cimpan MR, Haenen K, Holst B, Greve MM. Polycrystalline Diamond Coating on Orthopedic Implants: Realization and Role of Surface Topology and Chemistry in Adsorption of Proteins and Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44933-44946. [PMID: 36135965 PMCID: PMC9542704 DOI: 10.1021/acsami.2c10121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Polycrystalline diamond has the potential to improve the osseointegration of orthopedic implants compared to conventional materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants, such as those used for hip arthroplasty, is the limitation of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time, we demonstrate diamond growth on titanium acetabular shells using the surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (∼400 °C) on three types of acetabular shells with different surface structures and porosities. We achieved the growth of diamond on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in the attachment and proliferation of mammalian cells, we investigated the adsorption of extracellular matrix proteins and monitored the metabolic activity of fibroblasts, osteoblasts, and bone-marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin and type I collagen with the diamond surfaces was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that the proliferation of osteogenic cells was better on hydrogen-terminated UNCD than on the oxygen-terminated counterpart. These findings correlated with the behavior of collagen on diamond substrates observed by FLIM. Hydrogen-terminated UNCD provided better adhesion and proliferation of osteogenic cells, compared to titanium, while the growth of fibroblasts was poorest on hydrogen-terminated NCD and MSCs behaved similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopedic implants to further improve bone fixation and osseointegration.
Collapse
Affiliation(s)
- Justas Zalieckas
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Ivan R. Mondragon
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC,
Interuniversity MicroElectronics Center (IMEC) vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Arne S. Kristoffersen
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Cecilie Gjerde
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Paul J. Høl
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Geir Hallan
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Ove N. Furnes
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Mihaela Roxana Cimpan
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC,
Interuniversity MicroElectronics Center (IMEC) vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Bodil Holst
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Martin M. Greve
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| |
Collapse
|
10
|
Lee R, Erstling JA, Hinckley JA, Chapman DV, Wiesner UB. Addressing Particle Compositional Heterogeneities in Super-Resolution-Enhanced Live-Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core-Shell Aluminosilicate Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2106144. [PMID: 34899116 PMCID: PMC8659865 DOI: 10.1002/adfm.202106144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The interrogation of metabolic parameters like pH in live-cell experiments using optical super-resolution microscopy (SRM) remains challenging. This is due to a paucity of appropriate metabolic probes enabling live-cell SRM-based sensing. Here we introduce ultrasmall fluorescent core-shell aluminosilicate nanoparticle sensors (FAM-ATTO647N aC' dots) that covalently encapsulate a reference dye (ATTO647N) in the core and a pH-sensing moiety (FAM) in the shell. Only the reference dye exhibits optical blinking enabling live-cell stochastic optical reconstruction microscopy (STORM). Using data from cells incubated for 60 minutes with FAM-ATTO647N aC' dots, pixelated information from total internal reflection fluorescence (TIRF) microscopy-based ratiometric sensing can be combined with that from STORM-based localizations via the blinking reference dye in order to enhance the resolution of ratiometric pH sensor maps beyond the optical diffraction limit. A nearest-neighbor interpolation methodology is developed to quantitatively address particle compositional heterogeneity as determined by separate single-particle fluorescence imaging methods. When combined with STORM-based estimates of the number of particles per vesicle, vesicle size, and vesicular motion as a whole, this analysis provides detailed live-cell spatial and functional information, paving the way to a comprehensive mapping and understanding of the spatiotemporal evolution of nanoparticle processing by cells important, e.g. for applications in nanomedicine.
Collapse
Affiliation(s)
- Rachel Lee
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jacob A Erstling
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Joshua A Hinckley
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Dana V Chapman
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Gausterer JC, Schüßler C, Gabor F. The impact of calcium phosphate on FITC-BSA loading of sonochemically prepared PLGA nanoparticles for inner ear drug delivery elucidated by two different fluorimetric quantification methods. ULTRASONICS SONOCHEMISTRY 2021; 79:105783. [PMID: 34653915 PMCID: PMC8527049 DOI: 10.1016/j.ultsonch.2021.105783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Although therapeutically active proteins are highly efficacious, their content in protective nanoparticles is often too low to elicit adequate plasma levels. A strategy to increase protein loading is the in-situ generation of calcium phosphate as a protein adsorbent. To verify this approach, a highly sensitive and reliable fluorimetric method for quantification of incorporated fluorescein-labelled bovine serum albumin (FITC-BSA) as a model protein drug was developed. Dequenching the fluorescein label by pronase E, which digests the protein backbone, and dissolving the nanoparticle matrix in acetonitrile enabled FITC-BSA quantification in the nanogram per milliliter range. This test was confirmed by a second assay involving alkaline hydrolysis of FITC-BSA and the matrix. Nanoparticles prepared with calcium phosphate contained 40 µg FITC-BSA/mg and nanoparticles without calcium phosphate only 15 µg FITC-BSA/mg, representing a 2.7-fold increase in model protein loading. In this work the nanoparticle preparation procedure was optimized in terms of size for administration in the inner ear, but the range of applications is not limited.
Collapse
Affiliation(s)
- Julia Clara Gausterer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| | - Clara Schüßler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Dings RPM, Kumar N, Mikkelson S, Gabius HJ, Mayo KH. Simulating cellular galectin networks by mixing galectins in vitro reveals synergistic activity. Biochem Biophys Rep 2021; 28:101116. [PMID: 34485713 PMCID: PMC8408429 DOI: 10.1016/j.bbrep.2021.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Even though members of the family of adhesion/growth-regulatory galectins are increasingly detected to be co-expressed, they are still being routinely tested separately. The recent discovery of heterodimer formation among galectins-1, -3, and -7 in mixtures prompts further study of their functional activities in mixtures. Methods Cell agglutination, galectin binding to cells, as well as effects on cell proliferation, onset of apoptosis and migration were determined in assays using various cell types and mixtures of galectins-1, -3, and -7. Results Evidence for a more than additive increases of experimental parameters was consistently obtained. Conclusion Testing galectins in mixtures simulates the situation of co-expression in situ and reveals unsuspected over-additive activities. This new insight is relevant for analyzing galectin functionality in (patho)physiological conditions. Galectins-1, -3, and -7 form heterodimers in solution. Mixtures of galectins simulates galectin co-expression in situ. Mixtures display synergistic activities in vitro. Cell agglutination, apoptosis, proliferation, migration affected. Findings are relevant for galectin functionality in vivo.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nigam Kumar
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sterling Mikkelson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinarstr. 13, Munich, 80539, Germany
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
Oggianu M, Figus C, Ashoka-Sahadevan S, Monni N, Marongiu D, Saba M, Mura A, Bongiovanni G, Caltagirone C, Lippolis V, Cannas C, Cadoni E, Mercuri ML, Quochi F. Silicon-based fluorescent platforms for copper(ii) detection in water. RSC Adv 2021; 11:15557-15564. [PMID: 35481193 PMCID: PMC9029085 DOI: 10.1039/d1ra02695j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The potential of silicon-based fluorescent platforms for the detection of trace toxic metal ions was investigated in an aqueous environment. To this aim, silicon chips were first functionalized with amino groups, and fluorescein organic dyes, used as sensing molecules, were then covalently linked to the surface via formation of thiourea groups. The obtained hybrid heterostructures exhibited high sensitivity and selectivity towards copper(ii), a limit of detection compatible with the recommended upper limits for copper in drinking water, and good reversibility using a standard metal-chelating agent. The fluorophore-analyte interaction mechanism at the basis of the reported fluorescence quenching, as well as the potential of performance improvement, were also studied. The herein presented sensing architecture allows, in principle, tailoring of the selectivity towards other metal ions by proper fluorophore selection, and provides a favorable outlook for integration of fluorescent chemosensors with silicon photonics technology.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Cristiana Figus
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Suchithra Ashoka-Sahadevan
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Noemi Monni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Carla Cannas
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| |
Collapse
|
14
|
Feng Y, Liu W, Mercadé-Prieto R, Chen XD. Dye-protein interactions between Rhodamine B and whey proteins that affect the photoproperties of the dye. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Möslein AF, Gutiérrez M, Cohen B, Tan JC. Near-Field Infrared Nanospectroscopy Reveals Guest Confinement in Metal-Organic Framework Single Crystals. NANO LETTERS 2020; 20:7446-7454. [PMID: 32870694 DOI: 10.1021/acs.nanolett.0c02839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) can provide exceptional porosity for molecular guest encapsulation useful for emergent applications in sensing, gas storage, drug delivery, and optoelectronics. Central to the realization of such applications, however, is the successful incorporation of a functional guest confined within the host framework. Here, we demonstrate, for the first time, the feasibility of scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (nanoFTIR) spectroscopy, in concert with density functional theory (DFT) calculations to reveal the vibrational characteristics of the Guest@MOF systems. Probing individual MOF crystals, we pinpoint the local molecular vibrations and, thus, shed new light on the host-guest interactions at the nanoscale. Our strategy not only confirms the successful encapsulation of luminescent guest molecules in the porous host framework in single crystals but also further provides a new methodology for nanoscale-resolved physical and chemical identification of wide-ranging framework materials and designer porous systems for advanced applications.
Collapse
Affiliation(s)
- Annika F Möslein
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Mario Gutiérrez
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Boiko Cohen
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Ambientales y Bioquı́mica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
16
|
Domagalski JT, Xifre-Perez E, Tabrizi MA, Ferre-Borrull J, Marsal LF. Magnetic nanoparticle decorated anodic alumina nanotubes for fluorescent detection of cathepsin B. J Colloid Interface Sci 2020; 584:236-245. [PMID: 33069022 DOI: 10.1016/j.jcis.2020.09.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
In this work, we present the process to provide anodic alumina nanotubes with magnetic responsivity based on magnetic nanoparticles. We demonstrate the possibility to cause the motion of these composite nanotubes under magnetic field, providing them with guided mobility. The obtained magnetic anodic alumina nanotubes are completely characterized and their potential to undergo selective and effective functionalization, and stimuli-responsive load release is demonstrated. For this purpose, protease-triggered release of fluorescent molecules loaded inside the magnetic anodic alumina nanotubes (MAANTs) by selective functionalization is performed. The inner walls of the MAANTs were selectively covered with protein padding of albumin-fluorescein isothiocyanate conjugate (FITC-BSA) through means of silanization. Protein functionalization was designed to undergo proteolytic hydrolysis in presence of cathepsin B- protease highly expressed during growth and initial stages of tumor metastasis - in order to cleave peptide bond of albumin and release fluorescent fragments of the protein. Proteolytic reaction with the enzyme is performed under acidic conditions. Presented arrangement is an exemplary combination of functionalities - which are vast - and of value for applications like drug delivery and biosensing applications.
Collapse
Affiliation(s)
- J T Domagalski
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain.
| | - E Xifre-Perez
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain.
| | - M A Tabrizi
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain.
| | - J Ferre-Borrull
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain.
| | - L F Marsal
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain.
| |
Collapse
|
17
|
Baus RA, Leichner C, Steinbring C, Bernkop-Schnürch A. Strategies for improved hair binding: Keratin fractions and the impact of cationic substructures. Int J Biol Macromol 2020; 160:201-211. [PMID: 32445814 DOI: 10.1016/j.ijbiomac.2020.05.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Keratin extracts and hydrolysates from varying sources, their chemical modifications and compositions thereof have shown potential in the restoration of hair properties. Within this study on reactivity of thiol groups and the shielding effect of anionic charges the binding of keratin-associated proteins (KAP) and α-keratins (Ker) extracted from human hair to natural and permed hair fibers was evaluated. Selectively extracted KAP and Ker were preactivated with 6-mercaptonicotinamide in a quantity of 194 ± 21 μmol/g for KAP and 169 ± 27 μmol/g for Ker resulting in 1.9- and 1.4-fold enhanced binding to natural hair, respectively. The amount of accumulated Ker on hair fibers was furthermore increased by 1.7-fold in presence of 25 mM L-arginine. Perming of hair impaired binding characteristics of Ker with negligible effects for preactivation, whereas unmodified and preactivated KAP showed results comparable to natural hair. Strongly enhanced penetrability after perming was reflected by the mean penetration depth for fluorescein of 25 μm compared to 5 μm for natural fibers.
Collapse
Affiliation(s)
- Randi Angela Baus
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
18
|
Xu J, Liu F, Goff HD, Zhong F. Effect of pre-treatment temperatures on the film-forming properties of collagen fiber dispersions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Das A, Basak P, Pramanik A, Majumder R, Ghosh A, Hazra S, Guria M, Bhattacharyya M, Banik SP. Ribosylation induced structural changes in Bovine Serum Albumin: understanding high dietary sugar induced protein aggregation and amyloid formation. Heliyon 2020; 6:e05053. [PMID: 33015393 PMCID: PMC7522498 DOI: 10.1016/j.heliyon.2020.e05053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 10/31/2022] Open
Abstract
Non-enzymatic glycation of proteins is believed to be the root cause of high dietary sugar associated pathophysiological maladies. We investigated the structural changes in protein during progression of glycation using ribosylated Bovine Serum Albumin (BSA). Non enzymatic attachment of about 45 ribose molecules to BSA resulted in gradual reduction of hydrophobicity and aggregation as indicated by red-shifted tryptophan fluorescence, reduced ANS binding and lower anisotropy of FITC-conjugated protein. Parallely, there was a significant decrease of alpha helicity as revealed by Circular Dichroism (CD) and Fourier transformed-Infra Red (FT-IR) spectra. The glycated proteins assumed compact globular structures with enhanced Thioflavin-T binding resembling amyloids. The gross structural transition affected by ribosylation led to enhanced thermostability as indicated by melting temperature and Transmission Electron Microscopy. At a later stage of glycation, the glycated proteins developed non-specific aggregates with increase in size and loss of amyloidogenic behaviour. A parallel non-glycated control incubated under similar conditions indicated that amyloid formation and associated changes were specific for ribosylation and not driven by thermal denaturation due to incubation at 37 °C. Functionality of the glycated protein was significantly altered as probed by Isothermal Titration Calorimetry using polyphenols as substrates. The studies demonstrated that glycation driven globular amyloids form and persist as transient intermediates during formation of misfolded glycated adducts. To the best of our knowledge, the present study is the first systematic attempt to understand glycation associated changes in a protein and provides important insights towards designing therapeutics for arresting dietary sugar induced amyloid formation.
Collapse
Affiliation(s)
- Ahana Das
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Arnab Pramanik
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Rajib Majumder
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Avishek Ghosh
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Saugata Hazra
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Manas Guria
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Maitree Bhattacharyya
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Samudra Prosad Banik
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| |
Collapse
|
20
|
Krawczyk P, Bratkowska M, Wybranowski T, Hołyńska-Iwan I, Cysewski P, Jędrzejewska B. Experimental and theoretical insight into spectroscopic properties and bioactivity of 4-(4-formylbenzylidene)-2-phenyloxazol-5(4H)-one dye for future applications in biochemistry. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Schleyer KA, Datko BD, Burnside B, Cui C, Ma X, Grey JK, Cui L. Responsive Fluorophore Aggregation Provides Spectral Contrast for Fluorescence Lifetime Imaging. Chembiochem 2020; 21:2196-2204. [PMID: 32180309 PMCID: PMC8247454 DOI: 10.1002/cbic.202000056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Indexed: 11/06/2022]
Abstract
Fluorophores experience altered emission lifetimes when incorporated into and liberated from macromolecules or molecular aggregates; this trend suggests the potential for a fluorescent, responsive probe capable of undergoing self-assembly and aggregation and consequently altering the lifetime of its fluorescent moiety to provide contrast between the active and inactive probes. We developed a cyanobenzothioazole-fluorescein conjugate (1), and spectroscopically examined the lifetime changes caused by its reduction-induced aggregation in vitro. A decrease in lifetime was observed for compound 1 in a buffered system activated by the biological reducing agent glutathione, thus suggesting a possible approach for designing responsive self-aggregating lifetime imaging probes.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| | - Benjamin D Datko
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Center for High Technology Materials, University of New Mexico, MSC04 2710, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
| | - Brandon Burnside
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Center for High Technology Materials, University of New Mexico, MSC04 2710, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
| | - Chao Cui
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| | - Xiaowei Ma
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| | - John K Grey
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Center for High Technology Materials, University of New Mexico, MSC04 2710, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
| | - Lina Cui
- Department of Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, 300 Terrace St. NE, Albuquerque, NM 87131, USA
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center University of Florida, 1345 Center Dr., Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Yao C, Rudnitzki F, He Y, Zhang Z, Hüttmann G, Rahmanzadeh R. Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods. JOURNAL OF BIOPHOTONICS 2020; 13:e202000017. [PMID: 32306554 DOI: 10.1002/jbio.202000017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The delivery of macromolecules into living cells is challenging since in most cases molecules are endocytosed and remain in the endo-lysosomal pathway where they are degraded before reaching their target. Here, a method is presented to selectively improve cell membrane permeability by nanosecond laser irradiation of gold nanorods (GNRs) with visible or near-infrared irradiation in order to deliver proteins across the plasma membrane, avoiding the endo lysosomal pathway. GNRs were labeled with the anti-EGFR (epidermal growth factor receptor) antibody Erbitux to target human ovarian carcinoma cells OVCAR-3. Irradiation with nanosecond laser pulses at wavelengths of 532 nm or 730 nm is used for transient permeabilization of the cell membranes. As a result of the irradiation, the uptake of an anti-Ki-67 antibody was observed in about 50 % of the cells. The results of fluorescence lifetime imaging show that the GNR detached from the membrane after irradiation.
Collapse
Affiliation(s)
- Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
| | - Florian Rudnitzki
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
| | - Yida He
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for lung Research (dZl), Kiel, Germany
| | | |
Collapse
|
23
|
Krawczyk P, Wybranowski T, Kaźmierski Ł, Hołyńska-Iwan I, Bratkowska M, Cysewski P, Jędrzejewska B. 2'-(1H-phenanthro[9,10-d]imidazol-2-yl)-phenyl-4-carboxylic acid N-hydroxysuccinimide ester: A new phenanthroimidazole derivative as a fluorescent probe for medical imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117757. [PMID: 31718978 DOI: 10.1016/j.saa.2019.117757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
In this study a new probe (2'-(1H-phenanthro[9,10-d]imidazol-2-yl)-phenyl-4-carboxylic acid N-hydroxysuccinimide ester, PB1-1) was synthesized and presented, containing the ester group as reactive group for medical imaging applications. The tests included a comparison to the PB1 probe with the aldehyde group described earlier. Also, the photophysics of PB1 and PB1-1 when conjugated to albumin (HSA) and concanavalin A (Con A) was studied. The fluorescence anisotropy measurements and the method of fluorescence quenching of protein were used to examine these interactions. The results showed that both dyes are highly bound to the studied proteins, especially PB1-1. In the present study we also compared the stability of prepared conjugates. The in vitro study have shown that all tested compounds presented to be usable in the case of fixated cell staining. PB1-1-ConA and PB1-1-HSA were characterized with the lowest cytotoxicity during the MTT assay, and thus should be more suitable for live imaging applications than PB1-ConA and PB1-HSA. The results obtained in this work confirmed the theses presented in in silico studies as to the correctness of the choice of ester group as actively binding to the protein. At the same time, we have experimentally demonstrated the significant influence of a probe-protein linker on the spectral properties of conjugates used in medical imaging. We have clearly indicated that a detailed analysis of derivatives with different reactive group allows for proper probe selection. We also pointed out that based on the geometric skeleton of one dye, a whole range of fluorescent probes with different absorption and fluorescence spectra can be obtained for in vitro tests in medical imaging.
Collapse
Affiliation(s)
- Przemysław Krawczyk
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Physical Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland.
| | - Tomasz Wybranowski
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Medical Physics Division, Biophysics Department, Jagiellońska 13, 85-067 Bydgoszcz, Poland
| | - Łukasz Kaźmierski
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Medicine, Department of Tissue Engineering, Karłowicza 24, 85-092 Bydgoszcz, Poland; Nicolaus Copernicus University, Collegium Medicum, Faculty of Medicine, Department of Oncology, Radiotherapy and Oncological, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Iga Hołyńska-Iwan
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Magdalena Bratkowska
- UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Piotr Cysewski
- Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Physical Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| | - Beata Jędrzejewska
- UTP University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
24
|
Brito CCB, da Silva HVC, Brondani DJ, de Faria AR, Ximenes RM, da Silva IM, de Albuquerque JFC, Castilho MS. Synthesis and biological evaluation of thiazole derivatives as LbSOD inhibitors. J Enzyme Inhib Med Chem 2019; 34:333-342. [PMID: 30734600 PMCID: PMC6327998 DOI: 10.1080/14756366.2018.1550752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/09/2018] [Accepted: 11/18/2018] [Indexed: 11/08/2022] Open
Abstract
Leishmaniasis is considered as one of the major neglected tropical diseases due to its magnitude and wide geographic distribution. Leishmania braziliensis, responsible for cutaneous leishmaniasis, is the most prevalent species in Brazil. Superoxide dismutase (SOD) belongs to the antioxidant pathway of the parasites and human host. Despite the differences between SOD of Leishmania braziliensis and human make this enzyme a promising target for drug development efforts. No medicinal chemistry effort has been made to identify LbSOD inhibitors. Herein, we show that thermal shift assays (TSA) and fluorescent protein-labeled assays (FPLA) can be employed as primary and secondary screens to achieve this goal. Moreover, we show that thiazole derivatives bind to LbSOD with micromolar affinity.
Collapse
Affiliation(s)
- Camila C. Bitencourt Brito
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | | | | | | | - Rafael Matos Ximenes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Marcelo Santos Castilho
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
25
|
Jiang LQ, Wang TY, Wang Y, Wang ZY, Bai YT. Co-disposition of chitosan nanoparticles by multi types of hepatic cells and their subsequent biological elimination: the mechanism and kinetic studies at the cellular and animal levels. Int J Nanomedicine 2019; 14:6035-6060. [PMID: 31534335 PMCID: PMC6681437 DOI: 10.2147/ijn.s208496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The clearance of nanomaterials (NMs) from the liver is essential for clinical safety, and their hepatic clearance is primarily determined by the co-disposition process of various types of hepatic cells. Studies of this process and the subsequent clearance routes are urgently needed for organic NMs, which are used as drug carriers more commonly than the inorganic ones. Materials and methods: In this study, the co-disposition of chitosan-based nanoparticles (CsNps) by macrophages and hepatocytes at both the cellular and animal levels as well as their subsequent biological elimination were investigated. RAW264.7 and Hepa1-6 cells were used as models of Kupffer cells and hepatocytes, respectively. Results: The cellular studies showed that CsNps released from RAW264.7 cells could enter Hepa1-6 cells through both clathrin- and caveolin-mediated endocytosis. The transport from Kupffer cells to hepatocytes was also studied in mice, and it was observed that most CsNps localized to the hepatocytes after intravenous injection. Following the distribution in hepatocytes, the hepatobiliary-fecal excretion route was shown to be the primary elimination route for CsNps, besides the kidney-urinary excretion route. The elimination of CsNps in mice was a lengthy process, with a half time of about 2 months. Conclusion: The demonstration in this study of the transport of CsNps from macrophages to hepatocytes and the subsequent hepatobiliary-fecal excretion provides basic information for the future development and clinical application of NMs.
Collapse
Affiliation(s)
- Li-Qun Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ting-Yu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Khlusov IA, Kibler EV, Kudryavtseva VL, Tverdokhlebov SI, Bolbasov EN, Botvin VV, Latypov AD, Gazatova ND, Litvinova LS, Buznik VM, Choynzonov EL. Electrospray Preparation of Biocompatible Lactide–Glycolide Copolymer Capsules with Incorporation of Interferon. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819020095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Poursoleiman A, Karimi-Jafari MH, Zolmajd-Haghighi Z, Bagheri M, Haertlé T, Behbehani GR, Ghasemi A, Stroylova YY, Muronetz VI, Saboury AA. Polymyxins interaction to the human serum albumin: A thermodynamic and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:155-163. [PMID: 30933779 DOI: 10.1016/j.saa.2019.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Polymyxin B and E (colistin), are a group of cationic charged cyclic antibiotic lipopeptides that are frequently used in the clinics to treat infections caused by the multidrug-resistant gram-negative bacteria. Since the interactions with the blood plasma drug-transport proteins may play a critical role in determining their pharmacological and pharmacokinetic profiles, we studied the binding properties of polymyxins to the human serum albumin (HSA) under simulated physiological conditions by the combination of biophysical approaches, such as isothermal titration calorimetry (ITC), fluorescence anisotropy, circular dichroism (CD) buttressed by computational studies. The HSA binding to the polymyxins was relatively strong (Ka ≈ 1.0 × 107 M-1). Molecular docking indicated that polymyxins bind to the cleft of HSA between domains I and III via the electrostatic interactions. This evidence was further confirmed by the entropy-driven interaction for the polymyxins bound HSA. Far UV-CD experiments showed that the secondary structure of HSA doesn't alter and its stable structure is preserved. Collectively, these investigations revealed that the polymyxins bind preferentially to the partially unfolded intermediate forms of the protein structure; however, HSA molecule does not undergo any significant conformational changes upon binding. This is promising as it may limit the unfavorable side effects of the medicine. On the whole, the results provide quantitative and qualitative insight of the binding interaction between HSA and polymyxins, which is important in understanding their effect as therapeutic agents.
Collapse
Affiliation(s)
- A Poursoleiman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - M H Karimi-Jafari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Z Zolmajd-Haghighi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - M Bagheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - T Haertlé
- Poznan University of Life Sciences, Department of Animal Nutrition, Poznan, Poland; Biopolymers, Interactions, Assemblies, UR 1268, Institute National de la Recherche Agronomique, Nantes, France
| | - G Rezaei Behbehani
- Chemistry Department, Imam Khomeini International University, Qazvin, Iran
| | - A Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Y Y Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
28
|
Arrabito G, Cavaleri F, Porchetta A, Ricci F, Vetri V, Leone M, Pignataro B. Printing Life-Inspired Subcellular Scale Compartments with Autonomous Molecularly Crowded Confinement. ACTA ACUST UNITED AC 2019; 3:e1900023. [PMID: 32648672 DOI: 10.1002/adbi.201900023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Indexed: 12/16/2022]
Abstract
A simple, rapid, and highly controlled platform to prepare life-inspired subcellular scale compartments by inkjet printing has been developed. These compartments consist of fL-scale aqueous droplets (few µm in diameter) incorporating biologically relevant molecular entities with programmed composition and concentration. These droplets are ink-jetted in nL mineral oil drop arrays allowing for lab-on-chip studies by fluorescence microscopy and fluorescence life time imaging. Once formed, fL-droplets are stable for several hours, thus giving the possibility of readily analyze molecular reactions and their kinetics and to verify molecular behavior and intermolecular interactions. Here, this platform is exploited to unravel the behavior of different molecular probes and biomolecular systems (DNA hairpins, enzymatic cascades, protein-ligand couples) within the compartments. The fL-scale size induces the formation of molecularly crowded confined shell structures (hundreds of nanometers in thickness) at the droplet surface, allowing discovery of specific features (e.g., heterogeneity, responsivity to molecular triggers) that are mediated by the intermolecular interactions in these peculiar environments. The presented results indicate the possibility of using this platform for designing nature-inspired confined reactors allowing for a deepened understanding of molecular confinement effects in living subcellular compartments.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Felicia Cavaleri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Alessandro Porchetta
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Valeria Vetri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Leone
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| |
Collapse
|
29
|
Use of carbon quantum dots and fluorescein isothiocyanate in developing an improved competitive fluoroimmunoassay for detecting polybrominated diphenyl ether. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01639-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Click-based thiol-ene photografting of COOH groups to SiO2 nanoparticles: Strategies comparison. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Das A, Basak P, Pramanick A, Majumder R, Pal D, Ghosh A, Guria M, Bhattacharyya M, Banik SP. Trehalose mediated stabilisation of cellobiase aggregates from the filamentous fungus Penicillium chrysogenum. Int J Biol Macromol 2019; 127:365-375. [PMID: 30658143 DOI: 10.1016/j.ijbiomac.2019.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Extracellular fungal cellobiases develop large stable aggregates by reversible concentration driven interaction. In-vitro addition of trehalose resulted in bigger cellobiase assemblies with increased stability against heat and dilution induced dissociation. In presence of 0.1 M trehalose, the size of aggregates increased from 344 nm to 494 nm. The increase in size was also observed in zymography of cellobiase. Activation energy of the trehalose stabilised enzyme (Ea = 220.9 kJ/mol) as compared to control (Ea = 257.734 kJ/mol), suggested enhanced thermostability and also showed increased resistance to chaotropes. Purified cellobiase was found to contain 196.27 μg of sugar/μg of protein. It was proposed that presence of glycan on protein's surface impedes and delays trehalose docking. Consequently, self-association of cellobiase preceded coating by trehalose leading to stabilisation of bigger cellobiase aggregates. In unison with the hypothesis, ribosylated BSA failed to get compacted by trehalose and developed into bigger aggregates with average size increasing from 210 nm to 328 nm. Wheat Germ Lectin, in presence of trehalose, showed higher molecular weight assemblies in DLS, native-PAGE and fluorescence anisotropy. This is the first report of cross-linking independent stabilisation of purified fungal glycosidases providing important insights towards understanding the aggregation and stability of glycated proteins.
Collapse
Affiliation(s)
- Ahana Das
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Arnab Pramanick
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India
| | - Rajib Majumder
- School of Life Science and Biotechnology, Department of Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Debadrita Pal
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, United States of America
| | - Avishek Ghosh
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India
| | - Manas Guria
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Maitree Bhattacharyya
- Jagadis Bose National Science Talent Search, 1300, Rajdanga Main Road, Sector C, East Kolkata Township, Kolkata 700107, West Bengal, India.
| | - Samudra Prosad Banik
- Department of Microbiology, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013, West Bengal, India.
| |
Collapse
|
32
|
Li S, Li W, Prausnitz M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv Transl Res 2018; 8:1043-1052. [PMID: 29948917 DOI: 10.1007/s13346-018-0549-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microneedle (MN) patches provide a simple method for delivery of drugs that might otherwise require hypodermic injection. Conventional MN patch fabrication methods typically can load only one or possibly multiple miscible agents with the same formulation on all MNs, which limits the combination and spatial distribution of drugs and formulations having different properties (such as solubility) in a single patch. In this study, we coated MNs individually instead of coating all MNs from the same formulation, making possible a patch where each individual MN is coated with different formulations and drugs. In this way, individually coated MN patches co-delivered multiple agents with different physicochemical characteristics (immiscible molecules, proteins, and nanoparticles) and in different spatial patterns in the skin. MN loading was adjusted by modifying the number of coating layers, and co-delivery of multiple agents was demonstrated in the porcine skin. We conclude that individually coating MNs enables co-delivery of multiple different compounds and formulations with needle-by-needle spatial control in the skin.
Collapse
Affiliation(s)
- Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Wei Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mark Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
33
|
Lang Y, Shi L, Lan L, Zhao Z, Yang Q, Chen L, Sun X, Tang Y, Zhang X. A Spectroscopic Study of the Interaction between Cyanine Dyes with Different Skeleton Structures and Transferrin. ChemistrySelect 2018. [DOI: 10.1002/slct.201802649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunhe Lang
- College of Chemical EngineeringNorth China University of Science and Technology Tangshan 063210 P. R. China
| | - Lei Shi
- College of Chemical EngineeringNorth China University of Science and Technology Tangshan 063210 P. R. China
| | - Ling Lan
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Zheng Zhao
- College of Chemical EngineeringNorth China University of Science and Technology Tangshan 063210 P. R. China
| | - Qianfan Yang
- College of ChemistrySichuan University Chengdu 610065 P. R. China
| | - Lei Chen
- College of Chemical EngineeringNorth China University of Science and Technology Tangshan 063210 P. R. China
| | - Xiaoran Sun
- College of Chemical EngineeringNorth China University of Science and Technology Tangshan 063210 P. R. China
| | - Yalin Tang
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Xiufeng Zhang
- College of Chemical EngineeringNorth China University of Science and Technology Tangshan 063210 P. R. China
| |
Collapse
|
34
|
Zarski P, Ryder AG. Super Stable Fluorescein Isothiocyanate Isomer I Monolayer for Total Internal Reflection Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10913-10923. [PMID: 30145901 DOI: 10.1021/acs.langmuir.8b02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Total internal reflection fluorescence microscopy (TIRFM) is an important method in surface science and for the analysis of surface-bound macromolecules. Here, we developed and explored the use of a novel fluorescein isothiocyanate isomer I (FITC)-adsorbed monolayer for alignment and validation of TIRFM measurements and configurations. Aqueous solutions of FITC exist as several different protolytic forms (dianionic, anionic, neutral, and cationic) with each form having different emission characteristics. However, the emission behavior of FITC adsorbed on hydrophilic, hydrophobic, and unmodified glass surfaces at different pH was unknown. TIRFM imaging and spectroscopy were used to study FITC and FITC-labeled bovine serum albumin (BSA-FITC) monolayers generated on three different glass surfaces. Monolayer emission intensity, spectra, and the photobleaching profiles were all dependent on pH and the surface properties of the glass. Very strangely, however, at pH 5.0 on hydrophobic surfaces, the FITC monolayers produced were both bright and apparently unbleachable over ∼20 min of imaging (60 s total exposure). During monolayer formation at pH 5.0, we saw clear evidence for concentration-based quenching, indicating high surface coverage. When the monolayer had been rinsed with buffer to remove unbound FITC, we observed an increase in emission intensity during illumination indicative of some form of photoactivated species being present. Eventually, the fluorescence emission stabilized and remained constant for extended periods of time with no evidence of photobleaching. We hypothesize that during the adsorption process (a hydrophobic-hydrophobic interaction) there was conversion to the fluorescent quinoid form of FITC. In contrast, at pH 7.4 and 9.6 on hydrophobic surfaces, FITC monolayers had well-defined, fast photobleaching kinetics (decay to ∼50% intensity in 5-10 s). The equivalent BSA-FITC monolayers were slightly brighter, with similar photobleaching kinetics. While the precise mechanism for this unusual behavior is still unknown, all these low-cost monolayers were easily prepared, were reproducible, and can serve as convenient test samples for TIRFM alignment, calibration, and validation prior to undertaking measurements with more sensitive biogenic or biological specimens.
Collapse
Affiliation(s)
- Przemyslaw Zarski
- Nanoscale Biophotonics Laboratory, School of Chemistry , National University of Ireland , University Road , Galway H91 CF50 , Ireland
| | - Alan G Ryder
- Nanoscale Biophotonics Laboratory, School of Chemistry , National University of Ireland , University Road , Galway H91 CF50 , Ireland
| |
Collapse
|
35
|
Donaphon B, Bloom LB, Levitus M. Photophysical characterization of interchromophoric interactions between rhodamine dyes conjugated to proteins. Methods Appl Fluoresc 2018; 6:045004. [PMID: 29985159 DOI: 10.1088/2050-6120/aad20f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rhodamine dyes in aqueous solution form non-fluorescent dimers with a plane-to-plane stacking geometry (H-dimers). The self-quenching properties of these dimers have been exploited to probe the conformation and dynamics of proteins using a variety of fluorescence approaches that require the interpretation of fluorescence intensities, lifetimes and fluctuations. Here, we report on a systematic study of the photophysical properties of three rhodamine dyes (tetramethylrhodamine, Alexa 488 and Alexa 546) covalently bound to the E. coli sliding clamp (β clamp) with emphasis on the properties of the H-dimers that form when the dimeric protein is labeled with one dye at each side of the dimer interface. Overall, results are consistent with an equilibrium between non-emissive dimers and unstacked monomers that experience efficient dynamic quenching Protein constructs labeled with tetramethylrhodamine show the characteristic features of H-dimers in their absorption spectra and a c.a. 40-fold quenching of fluorescence intensity. The degree of quenching decreases when samples are labeled with a tetramethylrhodamine derivative bearing a six-carbon linker. H-dimers do not form in samples labeled with Alexa 488 and A546, but fluorescence is still quenched in these samples through a dynamic mechanism. These results should help researchers design and interpret fluorescence experiments that take advantage of the properties of rhodamine dimers in protein research.
Collapse
Affiliation(s)
- Bryan Donaphon
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States of America
| | | | | |
Collapse
|
36
|
Delcanale P, Galstyan A, Daniliuc CG, Grecco HE, Abbruzzetti S, Faust A, Viappiani C, Strassert CA. Oxygen-Insensitive Aggregates of Pt(II) Complexes as Phosphorescent Labels of Proteins with Luminescence Lifetime-Based Readouts. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24361-24369. [PMID: 29989787 DOI: 10.1021/acsami.8b02709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The synthesis and photophysical properties of a tailored Pt(II) complex are presented. The phosphorescence of its monomeric species in homogeneous solutions is quenched by interaction with the solvent and therefore absent even upon deoxygenation. However, aggregation-induced shielding from the environment and suppression of rotovibrational degrees of freedom trigger a phosphorescence turn-on that is not suppressed by molecular oxygen, despite possessing an excited-state lifetime ranging in the microsecond scale. Thus, the photoinduced production of reactive oxygen species is avoided by the suppression of diffusion-controlled Dexter-type energy transfer to triplet molecular oxygen. These aggregates emit with the characteristic green luminescence profile of monomeric complexes, indicating that Pt-Pt or excimeric interactions are negligible. Herein, we show that these aggregates can be used to label a model biomolecule (bovine serum albumin) with a microsecond-range luminescence. The protein stabilizes the aggregates, acting as a carrier in aqueous environments. Despite spectral overlaps, the green phosphorescence can be separated by time-gated detection from the dominant autofluorescence of the protein arising from a covalently bound green fluorophore that emits in the nanosecond range. Interestingly, the aggregates also acted as energy donors able to sensitize the emission of a fraction of the fluorophores bound to the protein. This resulted in a microsecond-range luminescence of the fluorescent acceptors and a shortening of the excited-state lifetime of the phosphorescent aggregates. The process that can be traced by a 1000-fold increase in the acceptor's lifetime mirrors the donor's triplet character. The implications for phosphorescence lifetime imaging are discussed.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche , Fisiche e Informatiche , Parco Area delle Scienze 7A , 43124 Parma , Italy
| | - Anzhela Galstyan
- Physikalisches Institut and Center for Nanotechnology , Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11 , D-48149 Münster , Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , D-48149 Münster , Germany
| | - Hernan E Grecco
- Departamento de Física , FCEyN, UBA and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria , 1428 Buenos Aires , Argentina
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche , Fisiche e Informatiche , Parco Area delle Scienze 7A , 43124 Parma , Italy
| | - Andreas Faust
- University Hospital Münster and European Institute for Molecular Imaging , Westfälische Wilhelms-Universität Münster , Waldeyerstraße 15 , D-48149 Münster , Germany
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche , Fisiche e Informatiche , Parco Area delle Scienze 7A , 43124 Parma , Italy
| | - Cristian A Strassert
- Physikalisches Institut and Center for Nanotechnology , Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11 , D-48149 Münster , Germany
| |
Collapse
|
37
|
A novel 76-mer peptide mimic with the synergism of superoxide dismutase and glutathione peroxidase. In Vitro Cell Dev Biol Anim 2018; 54:335-345. [DOI: 10.1007/s11626-018-0240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/24/2018] [Indexed: 01/02/2023]
|
38
|
Mashima T, Oohora K, Hayashi T. Successive energy transfer within multiple photosensitizers assembled in a hexameric hemoprotein scaffold. Phys Chem Chem Phys 2018; 20:3200-3209. [PMID: 29067390 DOI: 10.1039/c7cp05257j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An assembly of multiple photosensitizers is demonstrated by development of a hexameric hemoprotein (HTHP) scaffold as a light harvesting model to replicate the successive energy transfer occuring within photosensitizer assemblies of natural systems. In our model, six zinc protoporphyrin IX (ZnPP) molecules are arrayed at the heme binding site of HTHP by supramolecular interactions and five fluorescein (Flu) molecules and one Texas Red (Tex) molecule as donor and acceptor photosensitizers, respectively, are attached to the HTHP protein surface with covalent linkages. The flow of excited energy from photoexcited Flu to Tex occurs via two pathways: direct energy transfer from Flu to Tex (path 1) and energy transfer via ZnPP (path 2). Steady state and time-resolved fluorescence measurements reveal that the energy transfer ratio of these pathways (path 1 : path 2) is 39 : 61. These findings indicate that the excited energy originating at five Flu and six ZnPP molecules is collected at one Tex molecule as a funnel-like bottom for light harvesting. The present system using the hexameric hemoprotein scaffold is a promising candidate for construction of an artificial light harvesting system having multiple photosensitizers to promote efficient use of solar energy.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | | | | |
Collapse
|
39
|
Quantification of the Local Protein Content in Hydrogels Undergoing Swelling and Dissolution at Alkaline pH Using Fluorescence Microscopy. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2031-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Glossoscolex paulistus hemoglobin with fluorescein isothiocyanate: Steady-state and time-resolved fluorescence. Int J Biol Macromol 2017; 98:777-785. [DOI: 10.1016/j.ijbiomac.2017.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/20/2022]
|
41
|
Xu C, Yang X, Fu X, Tian R, Jacobson O, Wang Z, Lu N, Liu Y, Fan W, Zhang F, Niu G, Hu S, Ali IU, Chen X. Converting Red Blood Cells to Efficient Microreactors for Blood Detoxification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 27892639 PMCID: PMC5293620 DOI: 10.1002/adma.201603673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/03/2016] [Indexed: 05/13/2023]
Abstract
A simple method to convert red blood cells (RBCs) into efficient microreactors is reported. Triton X-100 is employed at finely tuned concentrations to render RBCs highly permeable to substrates, while low concentrations of glutaraldehyde are used to stabilize cells. The ability for blood detoxification of these microreactors is demonstrated.
Collapse
Affiliation(s)
- Can Xu
- Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiangyu Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Shuo Hu
- Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Iqbal Unnisa Ali
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
42
|
Thirupathi Kumara Raja S, Prakash T, Gnanamani A. Redox responsive albumin autogenic nanoparticles for the delivery of cancer drugs. Colloids Surf B Biointerfaces 2017; 152:393-405. [PMID: 28157647 DOI: 10.1016/j.colsurfb.2017.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
The present study explores preparation and characterization of redox sensitive albumin autogenic nanoparticles (ANPs) for drug delivery applications. Human serum albumin nanoparticles are prepared by desolvation method. The particles are stabilized through self-crosslinking and no external stabilizers are involved in the preparation. ANPs are then subjected to Camptothecin (CPT) drug loading. Experiments on in vitro and in vivo release profile, cytotoxic and cytocompatability, hemocompatability, blood clearance, tracking and bio imaging are studied in detail. The redox sensitive and drug release properties of ANPs studied in the presence of glutathione. Results on the physical, chemical and instrumental characterization warrant the property of the nanoparticles. ANPs obtained in the present study is biocompatible, biodegradable, effectively entangle the chosen drug, release the drug in the controlled manner, sensitive to reducing environment, nil toxicity and appreciable uptake by cells. In the current scenario on the requirement of a drug carrier with redox sensitive property to encounter cancer cells, the results of the present study on albumin nanoparticles with redox sensitivity is smart and pave the way in the cancer therapeutics.
Collapse
Affiliation(s)
- S Thirupathi Kumara Raja
- Biological Material Laboratory, Microbiology Division, CSIR-CLRI, Adyar, Chennai 600 020, Tamil Nadu, India
| | - T Prakash
- Biological Material Laboratory, Microbiology Division, CSIR-CLRI, Adyar, Chennai 600 020, Tamil Nadu, India
| | - A Gnanamani
- Biological Material Laboratory, Microbiology Division, CSIR-CLRI, Adyar, Chennai 600 020, Tamil Nadu, India.
| |
Collapse
|
43
|
Handschuh-Wang S, Wang T, Druzhinin SI, Wesner D, Jiang X, Schönherr H. Detailed Study of BSA Adsorption on Micro- and Nanocrystalline Diamond/β-SiC Composite Gradient Films by Time-Resolved Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:802-813. [PMID: 28025889 DOI: 10.1021/acs.langmuir.6b04177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The adsorption of bovine serum albumin (BSA) on micro- and nanocrystalline diamond/β-SiC composite films synthesized using the hot filament chemical vapor deposition (HFCVD) technique has been investigated by confocal fluorescence lifetime imaging microscopy. BSA labeled with fluorescein isothiocyanate (FITC) was employed as a probe. The BSAFITC conjugate was found to preferentially adsorb on both O-/OH-terminated microcrystalline and nanocrystalline diamond compared to the OH-terminated β-SiC, resulting in an increasing amount of BSA adsorbed to the gradient surfaces with an increasing diamond/β-SiC ratio. The different strength of adsorption (>30 times for diamond with a grain size of 570 nm) coincides with different surface energy parameters and differing conformational changes upon adsorption. Fluorescence data of the adsorbed BSAFITC on the gradient film with different diamond coverage show a four-exponential decay with decay times of 3.71, 2.54, 0.66, and 0.13 ns for a grain size of 570 nm. The different decay times are attributed to the fluorescence of thiourea fluorescein residuals of linked FITC distributed in BSA with different dye-dye and dye-surface distances. The longest decay time was found to correlate linearly with the diamond grain size. The fluorescence of BSAFITC undergoes external dynamic fluorescence quenching on the diamond surface by H- and/or sp2-defects and/or by amorphous carbon or graphite phases. An acceleration of the internal fluorescence concentration quenching in BSAFITC because of structural changes of albumin due to adsorption, is concluded to be a secondary contributor. These results suggest that the micro- and nanocrystalline diamond/β-SiC composite gradient films can be utilized to spatially control protein adsorption and diamond crystallite size, which facilitates systematic studies at these interesting (bio)interfaces.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- Physical Chemistry I, ‡Research Center of Micro and Nanochemistry and Engineering (Cμ), and §Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Tao Wang
- Physical Chemistry I, ‡Research Center of Micro and Nanochemistry and Engineering (Cμ), and §Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Sergey I Druzhinin
- Physical Chemistry I, ‡Research Center of Micro and Nanochemistry and Engineering (Cμ), and §Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Daniel Wesner
- Physical Chemistry I, ‡Research Center of Micro and Nanochemistry and Engineering (Cμ), and §Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Xin Jiang
- Physical Chemistry I, ‡Research Center of Micro and Nanochemistry and Engineering (Cμ), and §Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I, ‡Research Center of Micro and Nanochemistry and Engineering (Cμ), and §Institute of Materials Engineering, University of Siegen , 57076 Siegen, Germany
| |
Collapse
|
44
|
Pauli J, Pochstein M, Haase A, Napp J, Luch A, Resch-Genger U. Influence of Label and Charge Density on the Association of the Therapeutic Monoclonal Antibodies Trastuzumab and Cetuximab Conjugated to Anionic Fluorophores. Chembiochem 2016; 18:101-110. [DOI: 10.1002/cbic.201600299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jutta Pauli
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| | - Marieke Pochstein
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR); Department of Chemical and Product Safety; Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Joanna Napp
- Institute of Interventional and Diagnostic Radiology; University Medical Center Göttingen; Robert-Koch-Strasse 40 37075 Göttingen Germany
- Department of Haematology and Medical Oncology; University Medical Center Göttingen; Robert-Koch-Strasse 40,
- Department of Molecular Biology of Neuronal Signal; Max-Planck-Institute of Experimental Medicine; Hermann-Rein-Strasse 3 37075 Göttingen Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR); Department of Chemical and Product Safety; Max-Dohrn-Strasse 8-10 10589 Berlin Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM); Division 1.10 Biophotonics; Richard-Willstaetter-Strasse 11 12489 Berlin Germany
| |
Collapse
|
45
|
Shin WJ, Noh HJ, Noh YW, Kim S, Um SH, Lim YT. Hyaluronic acid-supported combination of water insoluble immunostimulatory compounds for anti-cancer immunotherapy. Carbohydr Polym 2016; 155:1-10. [PMID: 27702491 DOI: 10.1016/j.carbpol.2016.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 01/27/2023]
Abstract
A novel powder-form combination adjuvant system containing two immunostimulatory compounds was firstly developed and evaluated as a therapeutic intervention for cancer immunotherapy. With the help of hyaluronic acid (HA), water insoluble monophosphoryl lipid A (MPL), QS21 and imiquimod (R837), could be easily dispersed in aqueous solution and lyophilized as powder-form, which have an advantage in room-temperature storage stability compared with those conventional liquid formulation that requires cold storage. Two kinds of HA-based combination vaccine adjuvants (HA/MPL/QS21, HMQ and HA/MPL/R837, HMR) contributed to the increase of both humoral and cellular immunity, which is very important for efficient cancer immunotherapy. Through the challenge experiments in EG7-OVA (mouse lymphoma-expressing OVA) tumor-bearing mice model, we found out that the immunostimulatory effects of HMQ and HMR were successful in the inhibition of tumor proliferation. Taken together, both HA-based powder-form combination adjuvant systems are expected to be used as potent prophylactic and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Woo Jung Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jong Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Woock Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sohyun Kim
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
46
|
Kim HU, Choi DG, Roh YH, Shim MS, Bong KW. Microfluidic Synthesis of pH-Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3463-70. [PMID: 27197594 DOI: 10.1002/smll.201600798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 05/10/2023]
Abstract
Stimuli-responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side-effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH-sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid-cleavable polymer and stop-flow lithography. The particles exhibit a faster drug release rate at the acidic pH of tumors than at physiological pH, demonstrating their potential for tumor-selective drug release. The drug release rate of the particles can be adjusted by controlling the monomer composition. To accomplish multimodulated drug release, multicompartmental particles are synthesized. The drug release profile of each compartment is programmed by tailoring the monomer composition. These pH-sensitive, multicompartmental particles are promising drug carriers enabling tumor-selective and multimodulated release of multiple drugs for synergistic combination cancer therapy.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Dae Gun Choi
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| |
Collapse
|
47
|
Zolmajd-Haghighi Z, Hanley QS. WhenR > 0.8R0: fluorescence anisotropy, non-additive intensity, and cluster size. Methods Appl Fluoresc 2016; 4:024006. [DOI: 10.1088/2050-6120/4/2/024006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon.
| |
Collapse
|
49
|
Nardo L, Re F, Brioschi S, Cazzaniga E, Orlando A, Minniti S, Lamperti M, Gregori M, Cassina V, Brogioli D, Salerno D, Mantegazza F. Fluorimetric detection of the earliest events in amyloid β oligomerization and its inhibition by pharmacologically active liposomes. Biochim Biophys Acta Gen Subj 2016; 1860:746-56. [DOI: 10.1016/j.bbagen.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/04/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023]
|
50
|
Gonçalves AC, Pilla V, Oliveira E, Santos SM, Capelo JL, Dos Santos AA, Lodeiro C. The interaction of Hg2+and trivalent ions with two new fluorescein bio-inspired dual colorimetric/fluorimetric probes. Dalton Trans 2016; 45:9513-22. [DOI: 10.1039/c6dt01180b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new bio-inspired fluorescein derivatives were successfully synthesized and both the compounds showed a “turn on” fluorescence in the presence of trivalent (Al3+, Fe3+, Ga3+, Cr3+) and Hg2+metal ions, forming mononuclear complexes in acetonitrile.
Collapse
Affiliation(s)
- A. C. Gonçalves
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
- BIOSCOPE Group
| | - V. Pilla
- BIOSCOPE Group
- UCIBIO-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - E. Oliveira
- BIOSCOPE Group
- UCIBIO-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - S. M. Santos
- CICECO - Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - J. L. Capelo
- BIOSCOPE Group
- UCIBIO-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | | | - C. Lodeiro
- BIOSCOPE Group
- UCIBIO-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| |
Collapse
|