1
|
Duggin M, Bissember AC, Fuller RO. Applications of Verdazyl Radicals in Energy Storage, Molecular Electronics and Magnetism: Teaching Old Molecules New Tricks. Chem Asian J 2025; 20:e202401550. [PMID: 39843396 DOI: 10.1002/asia.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Verdazyls are a fundamental class of stable organic radicals that have been traditionally overshadowed by the more synthetically accessible stable nitroxide radicals. With the advent of enhanced synthetic routes to verdazyls, particularly in recent years, these systems are now poised to realise their potential in a range of applications across emerging technologies that will be important to addressing challenges faced by modern society. This review discusses the enabling properties of a selection of verdazyl-based systems that feature promising applications in energy storage, molecular electronics and magnetic molecules. Emphasis is placed on progress in these areas over the past ~5 years.
Collapse
Affiliation(s)
- Margot Duggin
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
2
|
Xu X, Sahalianov I, Sun H, Li Z, Wu S, Jiang B, Ågren H, Baryshnikov GV, Zhang M, Zhu L. Rapidly Generated, Ultra-Stable, and Switchable Photoinduced Radicals: A Solid-State Photochromic Paradigm for Reusable Paper Light-Writing. Angew Chem Int Ed Engl 2025; 64:e202422856. [PMID: 39667947 DOI: 10.1002/anie.202422856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
Although photochromic molecules have attracted widespread interest in various fields, solid-state photochromism remains a formidable challenge, owing to the substantial conformational constraints that hinder traditional molecular photoisomerization processes. Benefiting from the significant color change upon radical generation, chemical systems enabling a photoinduced radical (PIR) behavior through photoinduced electron transfer (PET) could be ideal candidates for solid-state photochromism within minimized need of conformational freedom. However, the transient nature of radicals causes a dilemma in this Scheme. Herein, we present a general crystal engineering strategy for rapidly generated (7-s irradiation to saturation) and ultra-stable (lasting 12 weeks) PIRs in the solid state, based on the anti-parallel alignment of para-hydroxyphenyl groups of persulfurated arenes to form a strong non-covalent network for efficient PET and radical stabilization. Using this strategy, a PIR platform was constructed, with a superior photochromic behavior remaining in different solid forms (even in the fully-ground sample) due to their transcendent crystallization ability. On this basis, our compounds can be further processed into reusable papers for light-writing, accompanied by water fumigation for modulating the reversible process. This work provides new insights into addressing solid-state photochromism and can inspire a wide range of optical material design from the switchable radical perspective.
Collapse
Affiliation(s)
- Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ihor Sahalianov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Hao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shengliang Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Boru Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Bar-David J, Daaoub A, Chen S, Sibug-Torres SM, Rocchetti S, Kang G, Davidson RJ, Salthouse RJ, Guo C, Mueller NS, Sangtarash S, Bryce MR, Sadeghi H, Baumberg JJ. Electronically Perturbed Vibrational Excitations of the Luminescing Stable Blatter Radical. ACS NANO 2025; 19:7650-7660. [PMID: 39981951 PMCID: PMC11887450 DOI: 10.1021/acsnano.4c09661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Stable radicals are spin-active species with a plethora of proposed applications in fields from energy storage and molecular electronics to quantum communications. However, their optical properties and vibrational modes are so far not well understood. Furthermore, it is not yet clear how these are affected by the radical oxidation state, which is key to understanding their electronic transport. Here, we identify the properties of 1,2,4-benzotriazin-4-yl, a stable doubly thiolated variant of the Blatter radical, using surface-enhanced Raman scattering (SERS). Embedding molecular monolayers in plasmonic nanocavities gives access to their vibrational modes, photoluminescence, and optical response during redox processes. We reveal the influence of the adjacent metallic surfaces and identify fluctuating SERS signals that suggest a coupling between the unpaired radical electron and a spatially overlapping vibrational mode. This can potentially be exploited for information-storage devices and chemically designed molecular qubits.
Collapse
Affiliation(s)
- Jonathan Bar-David
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Abdalghani Daaoub
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Shangzhi Chen
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Sarah May Sibug-Torres
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Sara Rocchetti
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Gyeongwon Kang
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | | | | | - Chenyang Guo
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Niclas Sven Mueller
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Sara Sangtarash
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Hatef Sadeghi
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
4
|
Nath AR, Kumar M, Ali ME. Intramolecular Magnetic Exchange Interaction in Dichalcogenide Substituted Organic Diradical Dications. J Chem Theory Comput 2025; 21:1684-1694. [PMID: 39904514 DOI: 10.1021/acs.jctc.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Organic diradical dications, due to reduced intermolecular interactions, exhibit a greater tendency to adopt high spin states in the solid phase compared to their neutral diradical counterparts. This characteristic makes them promising candidates for applications involving organic electronics. We present a theoretical study of a recently synthesized sulfur-based diradical dication, a unique system exhibiting a robust triplet ground state. Using a number of density functional theory (DFT)-based methods (e.g., standard broken-symmetry DFT, constrained DFT, spin-flip TDDFT) and wave function-based multireference CASSCF+NEVPT2 methods, we investigate its magnetic properties and explore the influence of chalcogen substitution on magnetic exchange coupling. An active space scanning method was adopted to overcome the difficulties in choosing the correct active space for multireference calculation. Our findings highlight the critical role of multireference methods in accurately capturing the magnetic behavior of highly π-conjugated systems. The study reveals a surprising variation in magnetic properties among sulfur, selenium, and tellurium-based diradical dications despite being elements of the same group. These results offer valuable insights into the design and tuning of magnetic properties in organic diradical dications.
Collapse
Affiliation(s)
- Abhishek R Nath
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Manish Kumar
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Constantinides CP, Berezin AA, Flores GE, Early B, Zissimou GA, Flesariu DF, Lawson DB, Manoli M, Leitus G, Koutentis PA. Ferromagnetic Interactions within a Dimer of a π-Extended 1,2,4-Benzotriazin-4-yl. CRYSTAL GROWTH & DESIGN 2025; 25:1164-1173. [PMID: 39991688 PMCID: PMC11844355 DOI: 10.1021/acs.cgd.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/25/2025]
Abstract
1,3,7-Triphenyl-4,8-dihydro-1H-imidazo[4,5-g][1,2,4]benzotriazin-4-yl, a stable radical, forms 1 D π stacks. These stacks consist of dimers with alternating interplanar distances measuring 3.443 Å (short) and 4.169 Å (long). Magnetic susceptibility (χT) reaches its peak at 18 ± 4 K, signifying the presence of a dimer with ferromagnetic interactions, quantified by 2J = 18.1 cm-1. The magneto-structural relationship is corroborated by DFT calculations.
Collapse
Affiliation(s)
- Christos P. Constantinides
- Department
of Natural Sciences, University of Michigan−Dearborn, 4901 Evergreen Rd, Dearborn, Michigan 48128, United States
| | - Andrey A. Berezin
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Gerard Estiva Flores
- Department
of Natural Sciences, University of Michigan−Dearborn, 4901 Evergreen Rd, Dearborn, Michigan 48128, United States
| | - Brayden Early
- Department
of Natural Sciences, University of Michigan−Dearborn, 4901 Evergreen Rd, Dearborn, Michigan 48128, United States
| | - Georgia A. Zissimou
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Dragos F. Flesariu
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Daniel B. Lawson
- Department
of Natural Sciences, University of Michigan−Dearborn, 4901 Evergreen Rd, Dearborn, Michigan 48128, United States
| | - Maria Manoli
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Gregory Leitus
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | | |
Collapse
|
6
|
Jiang W, Wu S, Xu D, Tu L, Xie Y, Pasqués-Gramage P, Boj PG, Díaz-García MA, Li F, Wu J, Li Z. Stable Xanthene Radicals and Their Heavy Chalcogen Analogues Showing Tunable Doublet Emission from Green to Near-infrared. Angew Chem Int Ed Engl 2025; 64:e202418762. [PMID: 39450583 DOI: 10.1002/anie.202418762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 10/26/2024]
Abstract
Organic luminescent radicals, unlike traditional closed-shell fluorescent emitters, exhibit distinct luminescence mechanisms, offering promising potential for optoelectronic devices. To date, stable luminescent radicals have predominantly been confined to polychlorinated triphenylmethyl radicals, underscoring the need for new platforms to expand their emission spectra. In this study, we report the synthesis of stable 9-aryl-substituted xanthene radicals and their heavy chalcogen analogues (1 a-c and 2 a-c), which exhibited excellent chemical stability and emission ranging from green to near-infrared (527-714 nm). Notably, the selenium-substituted radical (1 c) demonstrates a significantly enhanced photoluminescence quantum yield of 41 % when doped into its precursor solid. Additionally, the introduction of methoxyphenyl groups has largely enhanced the stability of the radical, showcasing an excellent photostability with the longest half-life of around 1792 h. The high internal quantum efficiency of up to 81 % was further validated in organic light-emitting diode. This study introduces a novel class of stable carbon-centered radicals with high tunability and functionality for photoelectric applications.
Collapse
Affiliation(s)
- Wanqing Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Shaofei Wu
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Duo Xu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Pablo Pasqués-Gramage
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Pedro G Boj
- Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante 03080, Spain
| | - María A Díaz-García
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Acan AS, Wenzel JO, Breher F, Podlech J. A Stable Carbon-Centered Radical Showing Six Amphoteric Redox States. Chemistry 2025; 31:e202403670. [PMID: 39641992 DOI: 10.1002/chem.202403670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
An air- and moisture-stable hydrocarbon radical with four six- and three five-membered rings alternately fused to a heptacycle was obtained by ortho fusion in a suitably ortho,ortho'-substituted diphenylfluorene and subsequent re-establishment of the conjugation. The radical was obtained in five consecutive steps from commercially available starting materials with a total yield of 34 %; key steps are Suzuki couplings and cyclizing SEAr reactions. Mesityl substituents at the five-membered rings ensure the stability of the radical. This cyclopenta-fused polyaromatic hydrocarbon (CP-PAH) was characterized by EPR and UV/Vis spectroscopy and by cyclic voltammetry. Quantum chemical calculation disclosed further properties and led to simulated spectra (spin densities, aromaticity, orbital energies, and UV/Vis/NIR). This radical is best described with the unpaired electron centered in the outer five-membered rings; these resonance formulas show the largest number of fully intact benzene rings. Its triradical character was computed to be very small and can be neglected. The five-membered rings show notable antiaromatic character, especially in the central ring. The constitution of the radical could be further substantiated by X-ray crystallographic analysis of its direct precursor.
Collapse
Affiliation(s)
- Ali S Acan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Jonas O Wenzel
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Frank Breher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Joachim Podlech
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
8
|
Zhang Z, Zhang J, Zhi Sun J, Zhang H, Zhang X, Zhong Tang B. Luminescent Radical Polymers. Chemistry 2025; 31:e202403493. [PMID: 39475206 DOI: 10.1002/chem.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/19/2024]
Abstract
Organic radicals are gaining significant interest in luminescent materials due to their unique properties, which present unprecedented opportunities for innovation across various fields, from display technology to biomedical applications. However, addressing challenges related to stability and low fluorescence efficiency is crucial to unlocking their full potential for practical applications. Polymerization has emerged as an effective strategy to enhance intra- and interchain through-space interactions, enabling the creation of stable luminescent radicals with excellent processing and multifunctional properties. This concept emphasizes the strategic use of polymerization in designing and synthesizing stable main-chain and side-chain radical polymers. This approach not only broadens the scope of stable radicals but also improves their luminescence properties as photofunctional materials.
Collapse
Affiliation(s)
- Ziteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Jianyu Zhang
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK Shenzhen), Guangdong, 518172, China
| |
Collapse
|
9
|
Chung HT, Schramm TK, Head-Gordon M, Shee J, Toste FD. Regioisomeric Engineering for Multicharge and Spin Stabilization in Two-Electron Organic Catholytes. J Am Chem Soc 2025; 147:2115-2128. [PMID: 39746122 PMCID: PMC11745167 DOI: 10.1021/jacs.4c16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Developing multicharge and spin stabilization strategies is fundamental to enhancing the lifetime of functional organic materials, particularly for long-term energy storage in multiredox organic redox flow batteries. Current approaches are limited to the incorporation of electronic substituents to increase or decrease the overall electron density or bulky substituents to sterically shield reactive sites. With the aim to further expand the molecular toolbox for charge and spin stabilization, we introduce regioisomerism as a scaffold-diversifying design element that considers the collective and cumulative electronic and steric contributions from all of the substituents based on their relative regioisomeric arrangements. Through a systematic study of regioisomers of near-planar aromatic cyclic triindoles and nonplanar nonaromatic cyclic tetraindoles, we demonstrate that this regioisomeric engineering strategy significantly enhances the H-cell cycling stability in the above two new classes of 2e- catholytes, even when current strategies failed to stabilize the multicharged species. Density functional theory calculations reveal that the strategy operates by redistributing the charge and spin densities while highlighting the role of aromaticity in charge stabilization. The most stable 2e- catholyte candidate was paired with a viologen derivative anolyte to achieve a proof-of-concept all-organic flow battery with 1.26-1.49 V, 98% capacity retention, and only 0.0117% fade/h and 0.00563% fade/cycle over 400 cycles (192 h), which is the highest capacity retention ever reported over 400 cycles in a multielectron all-organic flow battery setup. We anticipate regioisomeric engineering to be a promising strategy complementary to conventional electronic and steric approaches for multicharge and spin stabilization in other functional organic materials.
Collapse
Affiliation(s)
- H. T.
Katie Chung
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint
Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Tim K. Schramm
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - James Shee
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - F. Dean Toste
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
- Joint
Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
10
|
Mamveedu Saji N, Taylor MR, Mazzucato DM, Low PJ, Lim LF, Cox N, Chilton NF, Moggach SA, Turner GF, Giansiracusa MJ, Boskovic C, Ho CC, Thickett SC, Stanfield MK, Bissember AC, Fuller RO. Synthesis, Structure, and Redox Properties of Nonsymmetric 6-Oxoverdazyls. Org Lett 2024; 26:8696-8701. [PMID: 39387825 DOI: 10.1021/acs.orglett.4c02854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nonsymmetric 6π-electron ("oxidized") 6-oxoverdazyls have been synthesized for the first time. After formal incorporation of a hydrogen atom, the corresponding 7π-electron neutral verdazyl radical is generated. The 7π radical can undergo a further electrochemically reversible reduction to an 8π anion. Both redox processes occur at more moderate potentials than the parent verdazyl, tuning the accessible potential windows of 6π, 7π, and 8π verdazyl species.
Collapse
Affiliation(s)
- Nagalexmi Mamveedu Saji
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Madeleine R Taylor
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Daniel M Mazzucato
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Li Feng Lim
- Research School of Chemistry, The Australia National University, Australian Capital Territory 2601, Australia
| | - Nicholas Cox
- Research School of Chemistry, The Australia National University, Australian Capital Territory 2601, Australia
| | - Nicholas F Chilton
- Research School of Chemistry, The Australia National University, Australian Capital Territory 2601, Australia
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stuart C Thickett
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Melissa K Stanfield
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Rebecca O Fuller
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
11
|
Budny-Godlewski K, Piekarski DG, Justyniak I, Leszczyński MK, Nawrocki J, Kubas A, Lewiński J. Uncovering Factors Controlling Reactivity of Metal-TEMPO Reaction Systems in the Solid State and Solution. Chemistry 2024; 30:e202401968. [PMID: 38801170 DOI: 10.1002/chem.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jan Nawrocki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
12
|
Zhao Y, Zhang Y, Wang T, Pei R, Zhao Y, Xue XS, Wang X. A Thermally Populated Germylene-Based Donor-Acceptor Diradical. Angew Chem Int Ed Engl 2024:e202411180. [PMID: 39192703 DOI: 10.1002/anie.202411180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
This work reports synthesis of a germylene based donor-acceptor molecule and its thermal excitation to a triplet state by coordination with a Lewis acid. Products have been characterized by single crystal X-ray diffraction, EPR spectroscopy, and SQUID measurement, in conjunction with DFT calculation. The singlet-triplet energy gap of the donor-acceptor molecule is dramatically reduced from -18.8 to -7.2 kcal/mol by the coordination with B(C6F5)3 (BCF), which enables an intramolecular single electron transfer from one germylene moiety to another upon heating, forming an intramolecular radical ion pair with diradical character. The work provides an approach to the formation of thermally populated open-shell species of heavier main group elements.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Song Xue
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
13
|
Kumar Thakur S, De S, Adhikari M, Manar KK, Koley D, Singh S. Synthesis of MeBICAAC Supported Si(III) Radicals and a Silylone via Reduction Route From MeBICAAC-Si(IV) Precursors. Chem Asian J 2024:e202400730. [PMID: 39132698 DOI: 10.1002/asia.202400730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
Past one decade has witnessed a tremendous growth in the field of carbene stabilized low-valent silicon compounds unravelling very exciting properties of these molecules. Herein, we have employed a bicyclic (alkyl)(amino)carbene, (MeBICAAC) to explore the low-valent chemistry of silicon. The reduction of bicyclic (alkyl)(amino)carbene-SiCl4 complex, [(MeBICAAC)SiCl4] (1) with KC8 afforded low-valent Si complexes, including Si(III) radical [(MeBICAAC)SiCl3] (2) and a complex with silicon center in a formal zero-valent state, [(MeBICAAC)2Si] (3). Similarly, the reduction of in-situ generated MeBICAAC adduct of Me2SiCl2 with one equivalent of KC8 led to the formation of [(MeBICAAC)SiMe2Cl] (4) complex having an unpaired electron. These complexes have been characterized by IR, UV-Vis., NMR, HRMS, EPR and their solid-state structures were also elucidated by single crystal X-ray crystallography. Further, DFT calculations revealed the lower energy singlet state for complexes 1, 3 and doublet state for complexes 2, 4.
Collapse
Affiliation(s)
- Sandeep Kumar Thakur
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar Mohali, 140306, Punjab, India
| | - Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Manu Adhikari
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar Mohali, 140306, Punjab, India
| | - Krishna K Manar
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar Mohali, 140306, Punjab, India
- Present address, Department of Chemistry, University of Allahabad, Prayagraj-, 211002, Uttar Pradesh, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, 741246, India
| | - Sanjay Singh
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar Mohali, 140306, Punjab, India
| |
Collapse
|
14
|
Stanitska M, Keruckiene R, Sini G, Volyniuk D, Marsalka A, Shi ZE, Liu CM, Lin YR, Chen CP, Grazulevicius JV. Exploring the Charge-Transport and Optical Characteristics of Organic Doublet Radicals: A Theoretical and Experimental Study with Photovoltaic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41230-41243. [PMID: 39052450 PMCID: PMC11310911 DOI: 10.1021/acsami.4c08524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Herein, we present a series of stable radicals containing a trityl carbon-centered radical moiety exhibiting interesting properties. The radicals demonstrate the most blue-shifted anti-Kasha doublet emission reported so far with high color purity (full width at half-maximum of 46 nm) and relatively high photoluminescence quantum yields of deoxygenated toluene solutions reaching 31%. The stable radicals demonstrate equilibrated bipolar charge transport with charge mobility values reaching 10-4 cm2/V·s at high electric fields. The experimental results in combination with the results of TD-DFT calculations confirm that the blue emission of radicals violates the Kasha rule and originates from higher excited states, whereas the bipolar charge transport properties are found to stem from the particularity of radicals to involve the same molecular orbital(s) in electron and hole transport. The radicals act as the efficient materials for interlayers, passivating interfacial defects and enhancing charge extraction in PSCs. Consequently, this leads to outstanding performance of PSC, with power conversion efficiency surpassing 21%, accompanied by a remarkable increase in open-circuit voltage and exceptional stability.
Collapse
Affiliation(s)
- Mariia Stanitska
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| | - Rasa Keruckiene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| | - Gjergji Sini
- Laboratoire
de Physicochimie des Polymères et des Interfaces, CY Paris Cergy Université, EA 2528, 5 mail Gay-Lussac, Cergy-Pontoise, Cedex 95031, France
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| | - Arunas Marsalka
- Faculty
of Physics, Vilnius University, Sauletekio st. 9-3, LT-10222 Vilnius, Lithuania
| | - Zhong-En Shi
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
| | - Chung-Ming Liu
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
| | - Yan-Ru Lin
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
| | - Chih-Ping Chen
- Department
of Materials Engineering, Ming Chi University
of Technology, 84 Gunjuan
Road, Taishan, New Taipei City 24301, Taiwan, Republic of China
- College
of Engineering, Chang Gung University, Taoyuan City 33302, Taiwan, Republic of
China
| | - Juozas V. Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, K. Barsausko St. 59, LT-50254 Kaunas, Lithuania
| |
Collapse
|
15
|
Hackney HE, Perepichka DF. Dynamic Knoevenagel Condensation of p-Tolyl Carbenium Cations. Org Lett 2024; 26:5125-5129. [PMID: 38856013 DOI: 10.1021/acs.orglett.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We report here that methyl-substituted hexamethoxytrityl (HMT) and the derived trioxatriangulene (TOTA) salts react with aldehydes, forming π-extended tristyryl-substituted HMT and TOTA dyes via a dynamic Knoevenagel condensation. These cations undergo a reversible electrochemical (or chemical) reduction, forming neutral radicals, including the first persistent TOTA radical. This reaction represents a promising platform to generate novel π-conjugated systems.
Collapse
Affiliation(s)
- Hannah E Hackney
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
16
|
Tang J, Xu N, Ren A, Ma L, Xu W, Han Z, Chen Z, Li Q. Two-Orders-of-Magnitude Enhancement of Photoinitiation Activity via a Simple Surface Engineering of Metal Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202403645. [PMID: 38530138 DOI: 10.1002/anie.202403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S-C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.
Collapse
Affiliation(s)
- Jin Tang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ning Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - An Ren
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang Ma
- The State Key Laboratory of Fluid Power and Mechatronic Systems. School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zijie Chen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
17
|
Xiao J, Li WZ, Xiong RY, Xu SY, Liu CS, Ruan Y, Li H, Zhang H, Wang W, Wang XQ. Boron Cluster Renders Organic Radicals Water-Stable for Photothermal Anti-Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26537-26546. [PMID: 38739859 DOI: 10.1021/acsami.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.
Collapse
Affiliation(s)
- Ju Xiao
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Ren-Yi Xiong
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Shi-Yuan Xu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Chang-Sheng Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Yiru Ruan
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Hang Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Haibo Zhang
- National Demonstration Center for Experimental Chemistry, Engineering Research Center of Organosilicon Compounds Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Wenjing Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
- Precision Medicine Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
18
|
Tang X, Mei S, Xu JF, Zhang X. Supramolecularly modulated carbon-centered radicals: toward selective oxidation from benzyl alcohol to aldehyde. Chem Commun (Camb) 2024; 60:5286-5289. [PMID: 38659373 DOI: 10.1039/d4cc01240b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The reactivity of ketyl radicals and benzoyl radicals, two key intermediates of photo-induced oxidation of benzyl alcohol, can be stabilized by the host-guest interaction of the radicals with cucurbit[7]uril. As a result, the selectivity of photo-induced oxidation from benzyl alcohol to aldehyde is significantly improved by diminishing side reactions and inhibiting the generation of carboxylic acid products. This work presents a new route to modulate the reactivity of radical intermediates, enriching the chemistry of supramolecular intermediates and the toolbox of supramolecular catalysis.
Collapse
Affiliation(s)
- Xingchen Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Shan Mei
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Weinert HM, Wölper C, Radović A, Cutsail GE, Siera H, Haberhauer G, Schulz S. From Neutral Diarsenes to Diarsene Radical Ions and Diarsene Dications. Chemistry 2024; 30:e202400204. [PMID: 38391392 DOI: 10.1002/chem.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
Diarsene [L(MeO)GaAs]2 (L=HC[C(Me)N(Ar)]2, Ar=2,6-iPr2C6H3, 4) reacts with MeOTf and MeNHC (MeNHC=1,3,4,5-tetra-methylimidazol-2-ylidene) to the diarsene [L(TfO)GaAs]2 (5) and the carbene-coordinated diarsene [L(MeO)GaAsAs(MeNHC)Ga(OMe)L] (6). The NHC-coordination results in an inversion of the redox properties of the diarsene 4, which shows only a reversible reduction event at E1/2=-2.06 V vs Fc0/+1, whereas the carbene-coordinated diarsene 6 shows a reversible oxidation event at E1/2=-1.31 V vs Fc0/+1. Single electron transfer reactions of 4 and 6 yielded [K[2.2.2.]cryp][L(MeO)GaAs]2 (8) and [L(MeO)GaAsAs(MeNHC)-Ga(OMe)L][B(C6F5)4] (9) containing the radical anion [L(MeO)GaAs]2⋅- (8⋅-) and the NHC-coordinated radical cation [L(MeO)GaAsAs(MeNHC)Ga(OMe)L]⋅+ (9⋅+), respectively, while the salt-elimination reaction of the triflate-coordinated diarsene 5 with Na[B(C6F5)4] gave [LGaAs]2[B(C6F5)4]2 (11) containing the dication [LGaAs]2 2+ (112+). Compounds 1-11 were characterized by 1H and 13C NMR, EPR (8, 9), IR, and UV-Vis spectroscopy and by single crystal X-ray diffraction (sc-XRD). DFT calculations provided a detailed understanding of the electronic nature of the diarsenes (4, 6) and the radical ions (8⋅-, 9⋅+), respectively.
Collapse
Affiliation(s)
- Hanns Micha Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Aleksa Radović
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Hannah Siera
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
20
|
Zhang L, Li H, Zhu Y, Zhang S. A quantum-chemical insight into SOMO-HOMO conversion in phosphorus-boron cation radicals. Phys Chem Chem Phys 2024; 26:8273-8286. [PMID: 38385562 DOI: 10.1039/d4cp00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Organic radicals exhibiting SOMO-HOMO conversion (SHC) electronic configurations have recently garnered increasing attention due to their exceptional stability and photophysical properties. In this study, we investigate two series of phosphorus-boron cation radicals based on 1,3,5-trimethylphenyl units substituted with P and B atoms, varying numbers of P-B moieties, and π-conjugation linkers. We perform quantum-chemical calculations to systematically assess the influence of chemical substituents on the SHC electronic structural features. Our computational results demonstrate that the SHC electronic configurations of the studied complexes are primarily determined by the number of P-B moieties, specifically, phosphorus-boron cation radicals with two P-B moieties as terminal groups in π-conjugation linkers, which efficiently arrange electrons to increase HOMO energies compared to corresponding radicals with only one P-B unit. Furthermore, spin density distributions change as the size of π-conjugation linkers increases. Natural bond orbital (NBO) and atoms-in-molecules (AIM) analyses reveal strong intramolecular charge transfer between P and B atoms along with other stabilized donor-acceptor interactions and significant covalent bonds between P and B atoms. Moreover, synergistic effects resulting from 1,3,5-trimethylphenyl substitutions and enlarged π-conjugation linkers containing P-B units confer excellent photophysical properties upon these studied radicals, making them potential stable radicals in optoelectronic applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Hongbo Li
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Yanbin Zhu
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Shoufeng Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| |
Collapse
|
21
|
Deng CL, Hollister KK, Molino A, Tra BYE, Dickie DA, Wilson DJD, Gilliard RJ. Unveiling Three Interconvertible Redox States of Boraphenalene. J Am Chem Soc 2024; 146:6145-6156. [PMID: 38380615 DOI: 10.1021/jacs.3c13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Mizuno A, Matsuoka R, Mibu T, Kusamoto T. Luminescent Radicals. Chem Rev 2024; 124:1034-1121. [PMID: 38230673 DOI: 10.1021/acs.chemrev.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organic radicals are attracting increasing interest as a new class of molecular emitters. They demonstrate electronic excitation and relaxation dynamics based on their doublet or higher multiplet spin states, which are different from those based on singlet-triplet manifolds of conventional closed-shell molecules. Recent studies have disclosed luminescence properties and excited state dynamics unique to radicals, such as highly efficient electron-photon conversion in OLEDs, NIR emission, magnetoluminescence, an absence of heavy atom effect, and spin-dependent and spin-selective dynamics. These are difficult or sometimes impossible to achieve with closed-shell luminophores. This review focuses on luminescent organic radicals as an emerging photofunctional molecular system, and introduces the material developments, fundamental properties including luminescence, and photofunctions. Materials covered in this review range from monoradicals, radical oligomers, and radical polymers to metal complexes with radical ligands demonstrating radical-involved emission. In addition to stable radicals, transiently formed radicals generated in situ by external stimuli are introduced. This review shows that luminescent organic radicals have great potential to expand the chemical and spin spaces of luminescent molecular materials and thus broaden their applicability to photofunctional systems.
Collapse
Affiliation(s)
- Asato Mizuno
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, HayamaKanagawa 240-0193, Japan
| | - Takuto Mibu
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, HayamaKanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
23
|
Tanuma Y, Kladnik G, Schio L, van Midden Mavrič M, Anézo B, Zupanič E, Bavdek G, Canton-Vitoria R, Floreano L, Tagmatarchis N, Wegner HA, Morgante A, Ewels CP, Cvetko D, Arčon D. Noncontact Layer Stabilization of Azafullerene Radicals: Route toward High-Spin-Density Surfaces. ACS NANO 2023; 17:25301-25310. [PMID: 38085812 PMCID: PMC10753892 DOI: 10.1021/acsnano.3c08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
We deposit azafullerene C59N• radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML). The layers are characterized using X-ray photoemission (XPS) and X-ray absorption fine structure (NEXAFS) spectroscopy, low-temperature scanning tunneling microscopy (STM), and by density functional calculations (DFT). The singly unoccupied C59N orbital (SUMO) has been identified in the N 1s NEXAFS/XPS spectra of C59N layers as a spectroscopic fingerprint of the molecular radical state. At low molecular coverages (up to 1 ML), films of monomeric C59N are stabilized with the nonbonded carbon orbital neighboring the nitrogen oriented toward the Au substrate, whereas in-plane intermolecular coupling into diamagnetic (C59N)2 dimers takes over toward the completion of the second layer. By following the C59N• SUMO peak intensity with increasing molecular coverage, we identify an intermediate high-spin-density phase between 1 and 2 ML, where uncoupled C59N• monomers in the second layer with pronounced radical character are formed. We argue that the C59N• radical stabilization of this supramonolayer phase of monomers is achieved by suppressed coupling to the substrate. This results from molecular isolation on top of the passivating azafullerene contact layer, which can be explored for molecular radical state stabilization and positioning on solid substrates.
Collapse
Affiliation(s)
- Yuri Tanuma
- Jožef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Center
for Advanced Research of Energy and Materials (CAREM), Hokkaido University, Kita 13, Nishi 8, Kitaku, Sapporo 060-8628, Japan
| | - Gregor Kladnik
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- CNR-IOM, Istituto Officina dei Materiali, Basovizza Area Science Park, 34149 Trieste, Italy
| | - Luca Schio
- CNR-IOM, Istituto Officina dei Materiali, Basovizza Area Science Park, 34149 Trieste, Italy
| | | | - Bastien Anézo
- Institut
des Matériaux de Nantes Jean Rouxel (IMN), UMR 6502 CNRS, Nantes University, 44322 Nantes, France
| | - Erik Zupanič
- Jožef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Gregor Bavdek
- CNR-IOM, Istituto Officina dei Materiali, Basovizza Area Science Park, 34149 Trieste, Italy
- Faculty
of
Education, University of Ljubljana, Kardeljeva ploščad
16, SI-1000 Ljubljana Slovenia
| | - Ruben Canton-Vitoria
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Luca Floreano
- CNR-IOM, Istituto Officina dei Materiali, Basovizza Area Science Park, 34149 Trieste, Italy
| | - Nikos Tagmatarchis
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Hermann A. Wegner
- Institute
of Organic Chemistry, Justus Liebig University
Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center
for Materials Research (ZfM/LaMa), Justus
Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Alberto Morgante
- CNR-IOM, Istituto Officina dei Materiali, Basovizza Area Science Park, 34149 Trieste, Italy
- Physics
Department, University of Trieste, Via Valerio 2, 34012 Trieste, Italy
| | - Christopher P. Ewels
- Institut
des Matériaux de Nantes Jean Rouxel (IMN), UMR 6502 CNRS, Nantes University, 44322 Nantes, France
| | - Dean Cvetko
- Jožef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- CNR-IOM, Istituto Officina dei Materiali, Basovizza Area Science Park, 34149 Trieste, Italy
| | - Denis Arčon
- Jožef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Haga N, Ishida T. A Triplet/Singlet Ground-State Switch via the Steric Inhibition of Conjugation in 4,6-Bis(trifluoromethyl)-1,3-phenylene Bisnitroxide. Molecules 2023; 29:70. [PMID: 38202653 PMCID: PMC10779647 DOI: 10.3390/molecules29010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis indicates that the torsion angles (|θ| ≤ 90°) between the benzene ring and nitroxide groups were 74.9 and 84.8° in the adduct, which are larger than those of the starting material TF2PBN. Steric congestion due to o-trifluoromethyl groups gives rise to the reduction of π-conjugation. Two hydrogen bonds enhance this deformation. Susceptometry of the adduct indicates a ground singlet with 2J/kB = -128(2) K, where 2J corresponds to the singlet-triplet gap. The observed magneto-structure relation is qualitatively consistent with Rajca's pioneering work. A density functional theory calculation at the UB3LYP/6-311+G(2d,p) level using the atomic coordinates determined provided a result of 2J/kB = -162.3 K for the adduct, whilst the corresponding calculation on intact TF2PBN provided +87.2 K. After a comparison among a few known compounds, the 2J vs. |θ| plot shows a negative slope with a critical torsion of 65(3)°. The ferro- and antiferromagnetic coupling contributions are balanced in TF2PBN, being responsible for ground-state interconversion by means of small structural perturbation like hydrogen bonds.
Collapse
Affiliation(s)
| | - Takayuki Ishida
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Tokyo Prefecture, Japan
| |
Collapse
|
25
|
Wang P, Xiang Q, Tian M, Tao S, Xu Z, Guo Y, Hu W, Sun Z. Spin-Distribution-Directed Regioselective Substitution Strategy for Highly Stable Olympicenyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202313257. [PMID: 37771246 DOI: 10.1002/anie.202313257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
The synthesis of bench-stable conjugated π-radicals is challenging owing to the lack of modular approaches, which greatly hampers their practical material screens and applications. Here, we demonstrate a spin-distribution-directed regioselective substitution strategy to introduce substituents into the specific positions of an olympicenyl radical in a stepwise manner, resulting in a series of highly stable radical species. The substituents can also adjust the crystal packing by means of steric and electronic factors, enabling the changing from a π-dimer to a pseudo-one-dimensional chain. The first single crystal organic field-effect transistor device based on a graphenic radical is fabricated in air, showing a hole mobility of up to 0.021 cm2 V-1 s-1 and excellent device stability. This approach may be generalized to diverse spin-delocalized open-shell organic radicals.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Miaoyue Tian
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Sheng Tao
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
26
|
Kaymak P, Yang M, Benkő Z. A quest for stable phosphonyl radicals: limitations and possibilities of carbocyclic backbones and bulky substituents. Dalton Trans 2023; 52:13930-13945. [PMID: 37753839 DOI: 10.1039/d3dt02658b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Although phosphonyl radicals play an important role as transient species in many chemical transformations, such as photoinitiated polymerisation reactions, permanently stable phosphonyl radicals are yet to be discovered. In this computational study, we aim at a conceptual understanding of the electronic effects influencing the stabilities of phosphonyl radicals through computing radical stabilisation energies (RSEs) for a large set of phosphonyl radicals with carbocyclic backbones. The studied radicals exhibit ring sizes varying from 3- to 7-membered with full saturation or different grades of unsaturation adjacent to the P-centre in an endo or exocyclic fashion. To gain deeper insight into the stabilisation effects and delocalisation, the geometrical aspects, electronic structures, and spin distributions of the radicals were scrutinised. The five-membered, fully unsaturated ring (phospholyl oxide), which has a planar structure, offers the most substantial electronic stabilisation. By embedding this ring into a more extended π-system, the possibility of gaining further stabilisation was also explored. To screen the effect of steric congestion on the stabilities of previously selected radicals toward dimerisation, a large number of bulky substituents with different sizes and shapes were systematically investigated. Our results outline that stable phosphonyl radicals seem accessible, provided that the electronic stabilisation effects are supplemented by well-designed bulky substituents.
Collapse
Affiliation(s)
- Pelin Kaymak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Meng Yang
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
- HUN-REN-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary
| |
Collapse
|
27
|
Gao H, Zhi X, Wu F, Zhao Y, Cai F, Li P, Shen Z. Molecular Engineering of Corrole Radicals by Polycyclic Aromatic Fusion: Towards Open-Shell Near-Infrared Materials for Efficient Photothermal Therapy. Angew Chem Int Ed Engl 2023; 62:e202309208. [PMID: 37590036 DOI: 10.1002/anie.202309208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Open-shell radicals are promising near-infrared (NIR) photothermal agents (PTAs) owing to their easily accessible narrow band gaps, but their stabilization and functionalization remain challenging. Herein, highly stable π-extended nickel corrole radicals with [4n+1] π systems are synthesized and used to prepare NIR-absorbing PTAs for efficient phototheranostics. The light-harvesting ability of corrole radicals gradually improves as the number of fused benzene rings on β-pyrrolic locations increases radially, with naphthalene- and anthracene-fused radicals and their one-electron oxidized [4n] π cations exhibiting panchromatic visible-to-NIR absorption. The extremely low doublet excited states of corrole radicals promote heat generation via nonradiative decay. By encapsulating naphthocorrole radicals with amphiphilic polymer, water-soluble nanoparticles Na-NPs are produced, which exhibit outstanding photostability and high photothermal conversion efficiency of 71.8 %. In vivo anti-tumor therapy results indicate that Na-NPs enable photoacoustic imaging of tumors and act as biocompatible PTAs for tumor ablation when triggered by 808 nm laser light. The "aromatic-ring fusion" strategy for energy-gap tuning of corrole radicals opens a new platform for developing robust NIR-absorbing photothermal materials.
Collapse
Affiliation(s)
- Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Fangjian Cai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Pengfei Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
28
|
Abstract
Robust organic triradicals with high-spin quartet ground states provide promising applications in molecular magnets, spintronics, etc. In this context, a triradical based on Blatter's radical has been synthesized recently, having two low-lying non-degenerate doublet states with a quartet ground state. The traditional broken-symmetry (BS)-DFT computed doublet-quartet energy gaps are reported to be somewhat overestimated in comparison to the experimentally observed values. In this work, we have employed different ab initio methods on this prototypical system to obtain more accurate doublet-quartet energy gaps for this triradical. The spin-constraint broken-symmetry (CBS)-DFT method has been used to reduce the overestimation of energy gaps from BS-DFT. To address the issues of spin-contamination and the multireference nature of low-spin states affecting the DFT methods, we have computed the energy gaps using appropriately state-averaged CASSCF and NEVPT2 computations. Using a series of active spaces, our calculations are shown to provide quite accurate values in concordance with the experimentally observed results. Furthermore, we have proposed and modeled another two triradicals based on Blatter's radical, which are of interest for experimental synthesis and characterization. Our computations show that all these triradicals also have a quartet ground state with a similar energy difference between the excited doublet states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - K R Shamasundar
- Indian Institute of Science Education and Research Mohali, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
29
|
Li L, Prindle CR, Shi W, Nuckolls C, Venkataraman L. Radical Single-Molecule Junctions. J Am Chem Soc 2023; 145:18182-18204. [PMID: 37555594 DOI: 10.1021/jacs.3c04487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Radicals are unique molecular systems for applications in electronic devices due to their open-shell electronic structures. Radicals can function as good electrical conductors and switches in molecular circuits while also holding great promise in the field of molecular spintronics. However, it is both challenging to create stable, persistent radicals and to understand their properties in molecular junctions. The goal of this Perspective is to address this dual challenge by providing design principles for the synthesis of stable radicals relevant to molecular junctions, as well as offering current insight into the electronic properties of radicals in single-molecule devices. By exploring both the chemical and physical properties of established radical systems, we will facilitate increased exploration and development of radical-based molecular systems.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wanzhuo Shi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Budnikov AS, Krylov IB, Ushakov IE, Subbotina IR, Monin FK, Nikishin GI, Efimov NN, Gorbunov DE, Gritsan NP, Tretyakov EV, Yu B, Terent'ev AO. Two Discoveries in One Crystal: σ-Type Oxime Radical as an Unforeseen Building Block in Molecular Magnetics and Its Spatial Structure. Inorg Chem 2023. [PMID: 37399244 DOI: 10.1021/acs.inorgchem.3c00947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
In the present work, the study of the unusual interaction between copper hexafluoroacetylacetonate and the diacetyliminoxyl radical resulted in two discoveries from different fields: the determination of the oxime radical spatial structure and the introduction of an oxime radical into the field of molecular magnetic material design. Oxime radicals are key plausible intermediates in the processes of oxidative CH-functionalization and in the synthesis of functionalized isoxazolines from oximes. Due to the lack of X-ray diffraction data for oxime radicals, the knowledge about their structure is based mainly on indirect approaches, spectroscopic methods (electron paramagnetic resonance and IR), and quantum chemical calculations. The structure of the oxime radical was determined for the first time by stabilizing the diacetyliminoxyl radical in the form of its complex with copper (II) hexafluoroacetylacetonate (Cu(hfac)2), followed by single-crystal X-ray diffraction analysis. Although oxime radicals are known to undergo oxidative coupling with acetylacetonate ligands in transition-metal complexes, a complex is formed with intact hfac ligands. X-ray diffraction studies have shown that the oxime radical is coordinated with copper ions through the oxygen atoms of the carbonyl groups without the direct involvement of the C═N-O• radical moiety. The structure of the coordinated diacetyliminoxyl is in good agreement with the density functional theory (DFT) prediction for free diacetyliminoxyl due to the very weak interaction of the radical molecule with copper ions. Remarkably, both weak ferromagnetic and antiferromagnetic interactions between Cu (II) and oxime radicals have been revealed by modeling the temperature dependence of magnetic susceptibility and confirmed by DFT calculations, rendering diacetyliminoxyl a promising building block for the design of molecular magnets.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Ivan E Ushakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova Str., Moscow 119991, Russian Federation
| | - Irina R Subbotina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Fedor K Monin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Nikolay N Efimov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Leninsky Prospect 31, Moscow 119991, Russia
| | - Dmitry E Gorbunov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Nina P Gritsan
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Evgeny V Tretyakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| |
Collapse
|
31
|
Yuan F, Su B, Yu Y, Wang J. Study and design of amino acid-based radical enzymes using unnatural amino acids. RSC Chem Biol 2023; 4:431-446. [PMID: 37292061 PMCID: PMC10246556 DOI: 10.1039/d2cb00250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Radical enzymes harness the power of reactive radical species by placing them in a protein scaffold, and they are capable of catalysing many important reactions. New native radical enzymes, especially those with amino acid-based radicals, in the category of non-heme iron enzymes (including ribonucleotide reductases), heme enzymes, copper enzymes, and FAD-radical enzymes have been discovered and characterized. We discussed recent research efforts to discover new native amino acid-based radical enzymes, and to study the roles of radicals in processes such as enzyme catalysis and electron transfer. Furthermore, design of radical enzymes in a small and simple scaffold not only allows us to study the radical in a well-controlled system and test our understanding of the native enzymes, but also allows us to create powerful enzymes. In the study and design of amino acid-based radical enzymes, the use of unnatural amino acids allows precise control of pKa values and reduction potentials of the residue, as well as probing the location of the radical through spectroscopic methods, making it a powerful research tool. Our understanding of amino acid-based radical enzymes will allow us to tailor them to create powerful catalysts and better therapeutics.
Collapse
Affiliation(s)
- Feiyan Yuan
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Binbin Su
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Yang Yu
- Institute of Biochemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 102488 China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
32
|
Tan Y, Boudouris BW, Savoie BM. Bridging the Monomer to Polymer Gap in Radical Polymer Design. ACS Macro Lett 2023:801-807. [PMID: 37257139 DOI: 10.1021/acsmacrolett.3c00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Radical polymers bearing open-shell moieties at pendant sites exhibit unique redox and optoelectronic properties that are promising for many organic electronic applications. Nevertheless, gaps remain in relating the electronic properties of repeat units, which can be easily calculated, to the condensed-phase charge transport behaviors of these materials. To address this gap, we have performed the first quantum chemical study on a broad swathe of radical polymer design space that explicitly includes the coupling between polymer constraints and radical-mediated intramolecular charge transfer. For this purpose, a chemical space of 64 radical polymer chemistries was constructed based on varying backbone units, open-shell chemistries, and spacer units between the backbone and the radical groups. For each combination of backbone, radical, and spacer, comprehensive conformational sampling was used to calculate expected values of intrachain charge transport using several complementary metrics, including the end-to-end thermal Green's function, Delta-Wye transformed inverse resistance, and the Kirchhoff transport index. We observe that charge transport in radical polymers is primarily driven by the choice radical chemistry, which influences the optimal choice of backbone chemistry and spacer group that mediate radical alignment and avoid the formation of undesired trap states. Given the limited exploration of radical chemistries beyond the TEMPO radical for this class of materials, these findings suggest tremendous opportunities exist for synthetic exploration in radical polymers.
Collapse
Affiliation(s)
- Ying Tan
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, USA
| | - Bryan W Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, USA
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - Brett M Savoie
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, USA
| |
Collapse
|
33
|
Kodama T, Uchida K, Nakasuji C, Kishi R, Kitagawa Y, Tobisu M. Open-Shell Germylene Stabilized by a Phenalenyl-Based Ligand. Inorg Chem 2023; 62:7861-7867. [PMID: 37163696 DOI: 10.1021/acs.inorgchem.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An open-shell germylene 1 stabilized by a phenalenyl-based bidentate ligand was synthesized and characterized. Because of the high thermal stability originating from spin delocalization over the phenalenyl moiety, it was possible to isolate compound 1 in crystalline form by sublimation at ca. 300 °C. Electron spin resonance (ESR) spectra, crystallographic analysis, theoretical calculations, and reactivities with carbon radicals suggest that the spin of 1 is distributed on the phenalenyl moiety, while 1 reacted with C2Cl6, PhSSPh, and p-benzoquinone at the germanium center to form Ge-E (E = Cl, S, O) bonds. Furthermore, compound 1 is featured by its reactivity as a "formal germylyne", which allows for the formation of three new σ-bonds or one σ-bond with metal complexation on the germanium center.
Collapse
Affiliation(s)
- Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 561-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenta Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 561-0871, Japan
| | - Chihiro Nakasuji
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 Japan
| | - Ryohei Kishi
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB), Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yasutaka Kitagawa
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB), Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (SRN-OTRI), Toyonaka, Osaka 560-8531, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 561-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Boudalis AK, Constantinides CP, Chrysochos N, Carmieli R, Leitus G, Kourtellaris A, Lawson DB, Koutentis PA. Deciphering the ground state of a C 3-symmetrical Blatter-type triradical by CW and pulse EPR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107406. [PMID: 36841142 DOI: 10.1016/j.jmr.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
3,3',3''-(Benzene-1,3,5-triyl)tris(1-phenyl-1H-benzo[e][1,2,4]triazin-4-yl) (1) is a C3-symmetrical triradical comprised of three Blatter radical units connected at the 1, 3, 5 positions of a central trimethylenebenzene core. This triradical has an excellent air, moisture, and thermal stability. Single-crystal XRD indicates that triradical 1 adopts a propeller-like geometry with the benzotriazinyl moieties twisted by 174.1(2)° and packs in 1D chains along the c axis to form an extensive network of weak intermolecular interactions. Frozen solution continuous wave (CW) EPR spectra and variable-temperature field-sweep echo-detected (FSED) spectra revealed an intramolecular ferromagnetic exchange within the spin system, supporting a quartet S = 3/2 ground state. DFT calculations further supported these experimental findings.
Collapse
Affiliation(s)
- Athanassios K Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France.
| | - Christos P Constantinides
- Department of Natural Sciences, University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States.
| | - Nicolas Chrysochos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gregory Leitus
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andreas Kourtellaris
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Daniel B Lawson
- Department of Natural Sciences, University of Michigan - Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States
| | | |
Collapse
|
35
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
36
|
Zhu K, Ma Y, Wu Z, Wu J, Lu Y. Energy-Transfer-Enabled Regioconvergent Alkylation of Azlactones via Photocatalytic Radical–Radical Coupling. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
37
|
Li L, Su Y, Ji Y, Wang P. A Long-Lived Water-Soluble Phenazine Radical Cation. J Am Chem Soc 2023; 145:5778-5785. [PMID: 36791217 DOI: 10.1021/jacs.2c12683] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Long-lived water-soluble organic radical species have long been desired for applications in bioimaging and aqueous energy storage technologies. In the present work, we report a phenazine radical cation sodium 3,3'-(phenazine-5,10-diyl)bis(propane-1-sulfonate) (PSPR) with a high solubility of 1.4 M and high stability in water. Collaboratively demonstrated by experiments and theoretical calculations, PSPR is not prone to undergo dimerization or disproportionation reactions, and its appropriate electron density avoids reactions with oxygen or water, which contribute together to its long lifetime in water under air. With an open-shell configuration, PSPR shows interesting magnetic activity with a narrow linewidth in the electron paramagnetic resonance spectra and a magnetic circular dichroism response. PSPR exhibits an ambipolar redox activity in water. By pairing with a cheap zinc negative electrolyte, a high-performance aqueous organic redox flow battery based on PSPR as a positive electrolyte with an open-circuit voltage of 1.0 V is established, which shows no obvious capacity fade after cycling for 2500 cycles (∼27 days), demonstrating the great promise of PSPR for large-scale energy-storage technology.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310024 Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yihang Su
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yunlong Ji
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Pan Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310024 Zhejiang, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
38
|
Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
39
|
Li X, Tan W, Bai X, Li F. Stable Near-infrared-emitting Radical Nanoparticles for Fluorescence Imaging. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
40
|
Deng W, Liu Y, Shimizu D, Tanaka T, Nakai A, Rao Y, Xu L, Zhou M, Osuka A, Song J. Facile Formation of Stable Neutral Radicals and Cations from [22]Smaragdyrin BF 2 Complexes. Chemistry 2023; 29:e202203484. [PMID: 36422469 DOI: 10.1002/chem.202203484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
meso-Trimesityl-substituted [20]smaragdyrin freebase was synthesized by p-toluenesulfonic acid catalyzed reaction of 5-mesityldipyrromethane and 2,14-dibromodipyrrin in an improved yield of 63 %. Unexpectedly, treatment of the [20]smaragdyrin freebase with BF3 ⋅ OEt2 and triethylamine (TEA) gave a stable radical species, in which the BF2 unit is coordinated at the tripyrrin site, probably by ready release of a hydrogen atom of a [22]smaragdyrin BF2 complex. Similar treatment of [22]smaragdyrin free base produced another [22]smaragdyrin BF2 complex, in which the BF2 unit is coordinated at the dipyrrin site. The tripyrrin site coordinated neutral radical was oxidized with AgSbF6 to give a stable antiaromatic cation; this was reduced with NaBH4 to its 22π congener, which was easily oxidized back to the neutral radical in the air and rearranged to thermodynamically stable dipyrrin site coordinated [22]smaragdyrin BF2 complex upon treatment with BF3 ⋅ OEt2 and TEA. Further, the dipyrrin site coordinated [22]smaragdyrin BF2 complex was similarly oxidized to a stable neutral radical and a stable cation in a stepwise manner. This work demonstrates a rare ability of smaragdyrin BF2 complexes to exist in multiple redox states, particularly forming a stable neutral radical by facile release of a hydrogen atom.
Collapse
Affiliation(s)
- Weikang Deng
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yang Liu
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akito Nakai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yutao Rao
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ling Xu
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and, Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of, Organic Functional molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
41
|
Lu C, Cho E, Cui Z, Gao Y, Cao W, Brédas JL, Coropceanu V, Li F. Towards Efficient and Stable Donor-Acceptor Luminescent Radicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208190. [PMID: 36417767 DOI: 10.1002/adma.202208190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In contrast to closed-shell luminescent molecules, the electronic ground state and lowest excited state in organic luminescent radicals are both spin doublet, which results in spin-allowed radiative transitions. Most reported luminescent radicals with high photoluminescent quantum efficiency (PLQE) have a donor-acceptor (D-A•) chemical structure where an electron-donating group is covalently attached to an electron-withdrawing radical core (A•). Understanding the main factors that define the efficiency and stability of D-A• type luminescent radicals remains challenging. Here, we designed and synthesized a series of tri(2,4,6-trichlorophenyl)methyl (TTM) radical derivatives with donor substituents varying by their extent of conjugation and their number of imine-type nitrogen atoms. The experimental results suggest that the luminescence efficiency and stability of the radicals are proportional to the degree of conjugation but inversely proportional to the number of imine nitrogen atoms in the substituents. These experimental trends are very well reproduced by density functional theory calculations. The theoretical results indicate that both the luminescence efficiency and radical stability are related to the energy difference between the charge transfer (CT) and local-excitation (LE) states, which decreases as either the number of imine nitrogen atoms in the substituent increases or its conjugation length decreases.
Collapse
Affiliation(s)
- Chen Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, University of Arizona College of Science, Tucson, AZ, 85721-0088, USA
| | - Zhiyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuhang Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenjuan Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, University of Arizona College of Science, Tucson, AZ, 85721-0088, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, University of Arizona College of Science, Tucson, AZ, 85721-0088, USA
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
42
|
Muhasina PV, Parameswaran P. σ versus π-radical: Tuning the electronic nature of neutral carbon (I) compounds with three non-bonding electrons. J Comput Chem 2023; 44:422-431. [PMID: 35802539 DOI: 10.1002/jcc.26964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/31/2022]
Abstract
The bonding and reactivity of the hypo-coordinated compounds with one, two, and four non-bonding electrons namely, carbon-centered free radical, carbenes, and carbones were well earlier established. Here, we report stability, bonding and reactivity of compounds RCL, where R is one-electron donor group (R = CH3 (a), CHO (b), and NO2 (c)) and L is two-electron donor ligand (L = cAAC (1), CO (2), NHC (3) and PMe3 (4)), having three non-bonding electrons. The ground states of molecules exist in a doublet with a lone pair of electrons and an unpaired electron at the central carbon atom (C1). The spin hops over from π- to σ-type orbitals is observed as the π-acceptor strength of the donor ligand increases. The replacement of the methyl group by CHO and NO2 indicate that the cAAC and CHO substituted compounds gives a σ-radical except in compound 2c. These molecules show very high proton affinity and exothermic reaction energy for the hydrogen atom addition indicating dual reactivity namely, radical and lone pair reactivity.
Collapse
|
43
|
Peltier JL, Serrato MR, Thery V, Pecaut J, Tomás-Mendivil E, Bertrand G, Jazzar R, Martin D. An air-stable radical with a redox-chameleonic amide. Chem Commun (Camb) 2023; 59:595-598. [PMID: 36524847 DOI: 10.1039/d2cc05404c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An air-stable (amino)(amido)radical was synthesized by reacting a cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by one-electron reduction. We show that an adjacent radical center weakens the amide bond. It enables the amino group to act as a strong acceptor under steric contraint, thus enhancing the stabilizing capto-dative effect.
Collapse
Affiliation(s)
- Jesse L Peltier
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Valentin Thery
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| | - Jacques Pecaut
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, Grenoble 38000, France
| | | | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - David Martin
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| |
Collapse
|
44
|
Wang C, Gao P. ‘Radicalize’ the Performance of Perovskite Solar Cells with Radical Compounds. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Salvitti G, Pizzano E, Baroncelli F, Melandri S, Evangelisti L, Negri F, Coreno M, Prince KC, Ciavardini A, Sa'adeh H, Pori M, Mazzacurati M, Maris A. Spectroscopic and quantum mechanical study of a scavenger molecule: N,N-diethylhydroxylamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121555. [PMID: 35926273 DOI: 10.1016/j.saa.2022.121555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
We report a combination of quantum mechanical calculations and a range of spectroscopic measurements in the gas phase of N,N-diethylhydroxylamine, an important scavenger compound. Three conformers were observed by pulsed jet Fourier transform microwave spectroscopy in the 6.5-18.5 GHz frequency range. They are characterized by the hydroxyl hydrogen atom being in trans orientation with respect to the bisector of the CNC angle while the side alkyl chains can be both trans (global minimum, Cs symmetry, A = 7608.1078(4), B = 2020.2988(2) and C = 1760.5423(2) MHz) or one trans and the other gauche (second energy minimum, A = 5302.896(1), B = 2395.9822(4) and C = 1804.8567(3) MHz) or gauche' (third energy minimum, A = 5960.8025(6), B = 2273.6627(4) and C = 1975.8074(4) MHz). For the global minimum, the 13Cα,13Cβ and 15N isotopologues were observed in natural abundance, allowing for an accurate partial structure determination. Moreover, several lines were detected by free jet absorption millimeter wave spectroscopy in the 59.6-74.4 GHz spectral range. The electron binding energies of the highest occupied molecular orbital and the next-to-highest occupied molecular orbital, determined by photoelectron spectroscopy, are 8.95 and 10.76 eV, respectively. Supporting calculations evidence that, (i) upon ionization of the HOMO, the molecular structure changes from an amine to an N-oxoammonium arrangement and (ii) the 0-0 of the HOMO-1 photoionization is 10.46 eV. The K-shell binding energies, determined by X-ray photoelectron spectroscopy, are 290.42 eV (Cβ), 291.45 eV (Cα), 405.98 eV (N) and 538.75 eV (O). The Fourier transform near infrared spectrum is reported and a tentative assignment is proposed. The equilibrium wavenumber (ω̃ = 3811 cm-1) and the anharmonicity constant (ω̃χ = -87.5 cm-1) of the hydroxyl stretching mode were estimated using a quadratic model.
Collapse
Affiliation(s)
- Giovanna Salvitti
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, Italy
| | - Emanuele Pizzano
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, Italy; BASF Italia S.p.A., Pontecchio Marconi, I-40037 Bologna, Italy
| | - Filippo Baroncelli
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, Italy
| | - Sonia Melandri
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), University of Bologna, I-47121 Forlì, Italy; Interdepartmental Centre for Industrial Agrifood Research (CIRI Agrifood), University of Bologna, I-47521 Cesena, Italy
| | - Luca Evangelisti
- Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), University of Bologna, I-47121 Forlì, Italy; Interdepartmental Centre for Industrial Agrifood Research (CIRI Agrifood), University of Bologna, I-47521 Cesena, Italy; Department of Chemistry "G. Ciamician", University of Bologna I-48123 Ravenna, Italy
| | - Fabrizia Negri
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, Italy; INSTM, UdR Bologna, I-40126 Bologna, Italy
| | - Marcello Coreno
- CNR-ISM, Trieste LD2 Unit, I-34149 Basovizza, Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste, Italy; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Alessandra Ciavardini
- CNR-ISM, Trieste LD2 Unit, I-34149 Basovizza, Trieste, Italy; Elettra-Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste, Italy; Laboratory of Quantum Optics, University of Nova Gorica, Sl-5001 Nova Gorica, Slovenia
| | - Hanan Sa'adeh
- Elettra-Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste, Italy; Department of Physics, The University of Jordan, JO-11942 Amman, Jordan
| | - Matteo Pori
- BASF Italia S.p.A., Pontecchio Marconi, I-40037 Bologna, Italy
| | | | - Assimo Maris
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, Italy; Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), University of Bologna, I-47121 Forlì, Italy.
| |
Collapse
|
46
|
Budnikova YH. Phosphorus-Centered Radicals: Synthesis, Properties, and Applications. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
47
|
Liu J, Rong X, Wu J, Chen B, Lu Z, Huang Y. Air-stable organic radicals in solid state from a triphenylamine derivative by UV irradiation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Ye X, Chung LH, Li K, Zheng S, Wong YL, Feng Z, He Y, Chu D, Xu Z, Yu L, He J. Organic radicals stabilization above 300 °C in Eu-based coordination polymers for solar steam generation. Nat Commun 2022; 13:6116. [PMID: 36253477 PMCID: PMC9576730 DOI: 10.1038/s41467-022-33948-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022] Open
Abstract
Organic radicals feature unpaired electrons, and these compounds may have applications in biomedical technology and as materials for solar energy conversion. However, unpaired electrons tend to pair up (to form chemical bonds), making radicals unstable and hampering their applications. Here we report an organic radical system that is stable even at 350 °C, surpassing the upper temperature limit (200 °C) observed for other organic radicals. The system reported herein features a sulfur-rich organic linker that facilitates the formation of the radical centers; on the solid-state level, the molecules are crystallized with Eu(III) ions to form a 3D framework featuring stacks of linker molecules. The stacking is, however, somewhat loose and allows the molecules to wiggle and transform into sulfur-stabilized radicals at higher temperatures. In addition, the resulting solid framework remains crystalline, and it is stable to water and air. Moreover, it is black and features strong broad absorption in the visible and near IR region, thereby enhancing both photothermal conversion and solar-driven water evaporation. Organic radicals have potential applications in a variety of fields, including energy conversion. Here, the authors report Eu-based coordination polymers that enable the stabilization of organic radicals up to 350 °C; these systems can be used to enhance solar steam generation.
Collapse
Affiliation(s)
- Xinhe Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Saili Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Lung Wong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zihao Feng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yonghe He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dandan Chu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore.
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
49
|
Enhancing the durability and performance of radiation-induced grafted low-density polyethylene-based anion-exchange membranes by controlling irradiation conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Murata T, Yoshida K, Suzuki S, Ueda A, Nishida S, Kawai J, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y. Double‐σ‐Bonded Close‐Shell Dimers and Peroxy‐Linked Open‐Shell Dimer Derived from a
C
3
Symmetric Trioxophenalenyl Neutral Diradical. Chemistry 2022; 28:e202201426. [DOI: 10.1002/chem.202201426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Tsuyoshi Murata
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Kenta Yoshida
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Shuichi Suzuki
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama 1–3 Toyonaka Osaka Japan
| | - Akira Ueda
- Department of Chemistry Faculty of Advanced Science and Technology Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto Japan
| | - Shinsuke Nishida
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| | - Junya Kawai
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kozo Fukui
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science Graduate School of Science Osaka City University/Osaka Metropolitan University Sugimoto 3–3-138 Sumiyoshi-ku Osaka Japan
| | - Kazuhiro Nakasuji
- Department of Chemistry Graduate School of Science Osaka University Machikaneyama 1–1 Toyonaka Osaka Japan
| | - Yasushi Morita
- Department of Applied Chemistry, Faculty of Engineering Aichi Institute of Technology Yachigusa 1247, Yakusa Toyota Aichi Japan
| |
Collapse
|