1
|
Kumar PV, Madhumitha G. Clay based heterogeneous catalysts for carbon-nitrogen bond formation: a review. RSC Adv 2024; 14:4810-4834. [PMID: 38318622 PMCID: PMC10840681 DOI: 10.1039/d3ra06358e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Clay and modified clay-based catalysts are widely used in organic transformation. Owing to the interlayer ions and good ion exchange capacity of clay, replacement with another ion and incorporation of different nanomaterials can be done. Due to these significant properties of clay, it can be utilized in the synthesis of various organic compounds. Carbon-nitrogen bonded compounds possess diverse applications in different fields. These compounds are prepared using different solid acid heterogeneous catalysts. This review presents a detailed discussion on clay used for the carbon-nitrogen bond formation reaction, such as the Biginelli reaction and A3 and KA2 coupling reactions. Additionally, other C-N bond formation reactions using various clay-based catalysts such as bentonite, montmorillonite, hydrotalcite and halloysite clay with various metals, metal oxides, Kegging type heteropoly acid and various nanomaterial incorporated clay heterogeneous catalysts are discussed.
Collapse
Affiliation(s)
- P Vinoth Kumar
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamilnadu India
| | - G Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamilnadu India
| |
Collapse
|
2
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
3
|
Fridolfsson E, Majaneva S, Hylander S. Limited effects of macro-nutrient ratios on thiamin content and transfer in phytoplankton and copepods. JOURNAL OF PLANKTON RESEARCH 2023; 45:360-371. [PMID: 37012974 PMCID: PMC10066808 DOI: 10.1093/plankt/fbad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/08/2023] [Indexed: 06/19/2023]
Abstract
Vitamin B1 (thiamin) is primarily produced by bacteria, phytoplankton and fungi in aquatic food webs and transferred to higher trophic levels by ingestion. However, much remains unknown regarding the dynamics this water-soluble, essential micronutrient; e.g. how it relates to macronutrients (carbon, nitrogen and phosphorous). Nutrient limitation has been found to be related to periods of thiamin deficiency as well as in models. Hence, thiamin transfer to copepods from three phytoplankton species from different taxa was investigated, along with the effect of various nutrient regimes on thiamin content. Nutrient levels did not affect thiamin content of phytoplankton nor the transfer to copepods. Instead, phytoplankton displayed species-specific thiamin and macronutrient contents and whilst a higher thiamin content in the prey lead to higher levels in copepods, the transfer was lower for Skeletonema compared to Dunaliella and Rhodomonas. In all, thiamin transfer to copepods is not only dependent on thiamin content of the prey, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study offers insights into the limited effect of macronutrients on the dynamics and transfer of thiamin in the aquatic food webs.
Collapse
Affiliation(s)
| | | | - Samuel Hylander
- Department of Biology and Environmental Sciences, Centre for Ecology and Evolution in Microbial model Systems – EEMiS, Linnaeus University, Kalmar SE-39182, Sweden
| |
Collapse
|
4
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
5
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
6
|
Llavero‐Pasquina M, Geisler K, Holzer A, Mehrshahi P, Mendoza‐Ochoa GI, Newsad SA, Davey MP, Smith AG. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches. THE NEW PHYTOLOGIST 2022; 235:1853-1867. [PMID: 35653609 PMCID: PMC9544697 DOI: 10.1111/nph.18296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.
Collapse
Affiliation(s)
| | - Katrin Geisler
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Andre Holzer
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Payam Mehrshahi
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | | | - Shelby A. Newsad
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Matthew P. Davey
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Scottish Association of Marine SciencesObanPA37 1QAUK
| | - Alison G. Smith
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
7
|
Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon LA, Wilkes H, Simon M. The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy. THE ISME JOURNAL 2022; 16:2599-2609. [PMID: 35963899 PMCID: PMC9561691 DOI: 10.1038/s41396-022-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.
Collapse
|
8
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
9
|
Bashir MA, Wei J, Wang H, Zhong F, Zhai H. Recent advances in catalytic oxidative reactions of phenols and naphthalenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review aims to provide an overview of oxidative phenol and naphthalenol transformations in nature and synthetic chemistry.
Collapse
Affiliation(s)
- Muhammad Adnan Bashir
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
10
|
Liu X, He K, Gao N, Jiang P, Lin J, Jin Y. A radical-mediated multicomponent cascade reaction for the synthesis of azide-biindole derivatives. Chem Commun (Camb) 2021; 57:9696-9699. [PMID: 34555141 DOI: 10.1039/d1cc03853b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A radical-mediated, one-pot, multicomponent cascade reaction was developed for the synthesis of azide-biindole derivatives. Mechanistic studies demonstrated that the nitrogen-centred free radical was formed by the reaction of heterocyclic N-H with CuII and PIFA and initiated the cascade reaction with indole to obtain the biindole intermediate. The biindole intermediate then reacted with sodium azide in the presence of CuII catalyst and PIFA to form the final products. This methodology may be useful for constructing other azido heterocycles.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Kun He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Na Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Peiyun Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
11
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
12
|
Dagar N, Sen PP, Roy SR. Electrifying Sustainability on Transition Metal-Free Modes: An Eco-Friendly Approach for the Formation of C-N Bonds. CHEMSUSCHEM 2021; 14:1229-1257. [PMID: 33373494 DOI: 10.1002/cssc.202002567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Embracing sustainable green methodologies and techniques in chemical transformations has always been in the limelight to the synthetic community. Electrosynthesis has emerged as a powerful, sustainable synthetic tool for molecular synthesis exploiting inexpensive electricity in place of sacrificial chemical oxidizing/reducing reagents. Herein, recent advances in the incorporation of transition metal-free redox mediators in electrosynthesis for the construction of C-N bonds are outlined. Furthermore, conjugation of this strategy with flow catalysis allows easy scale up of the synthesis of molecular assembly. This comprehensive Review provides an overview of metal-free mediated electro-construction of C-N bonds, focusing on the reaction mechanisms involved and its synthetic applications.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
13
|
Akhtar MS, Lee YR. Organocatalyzed Synthesis of Highly Functionalized Phthalimides via Diels-Alder Reaction Employing Two Dienophiles. J Org Chem 2020; 85:15129-15138. [PMID: 33147948 DOI: 10.1021/acs.joc.0c01991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and facile protocol for the synthesis of biologically and pharmaceutically important phthalimides is developed by l-proline-catalyzed reaction between two dienophiles of α,β-unsaturated aldehydes and maleimides. The reaction involves an efficient benzannulation that proceeds via a formal [4 + 2] cycloaddition of azadiene intermediates generated in situ from enals and N-substituted maleimides. This protocol provides a variety of functionalized phthalimide derivatives, including a potent COX-2 enzyme inhibitor.
Collapse
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
14
|
Kirschning A. The coenzyme/protein pair and the molecular evolution of life. Nat Prod Rep 2020; 38:993-1010. [PMID: 33206101 DOI: 10.1039/d0np00037j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2020What was first? Coenzymes or proteins? These questions are archetypal examples of causal circularity in living systems. Classically, this "chicken-and-egg" problem was discussed for the macromolecules RNA, DNA and proteins. This report focuses on coenzymes and cofactors and discusses the coenzyme/protein pair as another example of causal circularity in life. Reflections on the origin of life and hypotheses on possible prebiotic worlds led to the current notion that RNA was the first macromolecule, long before functional proteins and hence DNA. So these causal circularities of living systems were solved by a time travel into the past. To tackle the "chicken-and-egg" problem of the protein-coenzyme pair, this report addresses this problem by looking for clues (a) in the first hypothetical biotic life forms such as protoviroids and the last unified common ancestor (LUCA) and (b) in considerations and evidence of the possible prebiotic production of amino acids and coenzymes before life arose. According to these considerations, coenzymes and cofactors can be regarded as very old molecular players in the origin and evolution of life, and at least some of them developed independently of α-amino acids, which here are evolutionarily synonymous with proteins. Discussions on "chicken-and-egg" problems open further doors to the understanding of evolution.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
15
|
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg Chem 2020; 105:104425. [PMID: 33157344 DOI: 10.1016/j.bioorg.2020.104425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
16
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
17
|
Zaib S, Khan I. Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200726230848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Achieving challenging molecular diversity in contemporary chemical synthesis
remains a formidable hurdle, particularly in the delivery of diversified bioactive heterocyclic
pharmacophores for drug design and pharmaceutical applications. The coupling methods that
combine a diverse range of readily accessible and commercially available pools of substrates
under the action of earth-abundant first row transition metal catalysts have certainly matured
into powerful tools, thus offering sustainable alternatives to revolutionize the organic synthesis.
This minireview highlights the successful utilization of the catalytic ability of the first
row transition metals (Mn, Fe, Ni, Cu) in the modular assembly of quinazoline heterocycle,
ubiquitously present in numerous alkaloids, commercial medicines and is associated with a
diverse range of pharmacological activities. The broad substrate scope and high functional group tolerance of the
targeted methods were extensively explored, identifying the future strategic advances in the field. The investigation
will also be exemplified with mechanistic studies as long as they are deemed necessary.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
18
|
Wu PC, Chen CW, Choo CYL, Chen YK, Yago JI, Chung KR. Biotin biosynthesis affected by the NADPH oxidase and lipid metabolism is required for growth, sporulation and infectivity in the citrus fungal pathogen Alternaria alternata. Microbiol Res 2020; 241:126566. [PMID: 33032167 DOI: 10.1016/j.micres.2020.126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
The tangerine pathotype of Alternaria alternata affects many citrus cultivars, resulting in yield losses. The capability to produce the host-selective toxin and cell-wall-degrading enzymes and to mitigate toxic reactive oxygen species is crucial for A. alternata pathogenesis to citrus. Little is known about nutrient availability within citrus tissues to the fungal pathogen. In the present study, we assess the infectivity of a biotin deficiency mutant (ΔbioB) and a complementation strain (CP36) on citrus leaves to determine how biotin impacts A. alternata pathogenesis. Growth and sporulation of ΔbioB are highly dependent on biotin. ΔbioB retains its ability to acquire and transport biotin from the surrounding environment. Growth deficiency of ΔbioB can also be partially restored by the presence of oleic acid or Tween 20, suggesting the requirement of biotin in lipid metabolism. Experimental evidence indicates that de novo biotin biosynthesis is regulated by the NADPH oxidase, implicating in the production of H2O2, and is affected by the function of peroxisomes. Three genes involved in the biosynthesis of biotin are clustered and co-regulated by biotin indicating a transcriptional feedback loop activation. Infectivity assays using fungal mycelium reveal that ΔbioB cultured on medium without biotin fails to infect citrus leaves; co-inoculation with biotin fully restores infectivity. The CP36 strain re-expressing a functional copy of bioB displays wild-type growth, sporulation and virulence. Taken together, we conclude that the attainability or accessibility of biotin is extremely restricted in citrus cells. A. alternata must be able to synthesize biotin in order to utilize nutrients for growth, colonization and development within the host.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chia-Wen Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jonar I Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Nueva Vizcaya, 3700, Philippines
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
19
|
The Desotamide Family of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9080452. [PMID: 32727132 PMCID: PMC7459860 DOI: 10.3390/antibiotics9080452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products underpin the majority of antimicrobial compounds in clinical use and the discovery of new effective antibacterial treatments is urgently required to combat growing antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were discovered-the desotamide family. The desotamide family consists of desotamide, wollamide, surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size between six and ten amino acids in length. Their biosynthesis has attracted significant attention because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase. Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on their biosynthesis.
Collapse
|
20
|
Wang X, Wang L, Yang S, Zhang L, Li Y, Zhang Q. Copper-catalyzed 1,3-aminothiocyanation of arylcyclopropanes. Org Biomol Chem 2020; 18:4932-4935. [PMID: 32582895 DOI: 10.1039/d0ob01060j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed 1,3-aminothiocyanation of arylcyclopropanes with N-fluorobenzenesulfonimide (NFSI) and trimethylsilyl isothiocyanate (TMSNCS) has been developed for the first time, efficiently synthesizing a series of γ-aminothiocyanate derivatives in moderate to excellent yields from readily available substrates under mild conditions. The practicability of the reaction was demonstrated by gram-scale preparation. Furthermore, the easily prepared γ-aminothiocyanate derivatives were verified to be versatile building blocks.
Collapse
Affiliation(s)
- Xiaomin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Shengbiao Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Linli Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yan Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Fridolfsson E, Lindehoff E, Legrand C, Hylander S. Species-specific content of thiamin (vitamin B 1) in phytoplankton and the transfer to copepods. JOURNAL OF PLANKTON RESEARCH 2020; 42:274-285. [PMID: 32494089 PMCID: PMC7252500 DOI: 10.1093/plankt/fbaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Thiamin (vitamin B1) is primarily produced by bacteria and phytoplankton in aquatic food webs and transferred by ingestion to higher trophic levels. However, much remains unknown regarding production, content and transfer of this water-soluble, essential micronutrient. Hence, the thiamin content of six phytoplankton species from different taxa was investigated, along with the effect of thiamin amendment on thiamin content. Furthermore, thiamin transfer to copepods was estimated in feeding experiments. Prey type, not phytoplankton thiamin content per se, was the most important factor for the transfer of thiamin, as it was lowest from filamentous Cyanophyceae and highest from more easily ingested prey like Dunaliella tertiolecta and Rhodomonas salina. Cyanophyceae had the highest thiamin content of the investigated species, eightfold higher than the lowest. Phytoplankton varied in thiamin content related to the supply of thiamin, where thiamin addition enabled higher thiamin content in some species, while copepod thiamin content was less variable. In all, thiamin transfer is not only dependent on the prey thiamin content, but also the edibility and/or digestibility is of importance. Thiamin is essential for all organisms, and this study constitutes an important building block to understanding the dynamics and transfer of thiamin in the aquatic food web.
Collapse
Affiliation(s)
- Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Department of Biology and Environmental Science, Linnaeus University, Pedalstråket 13, SE-39231 Kalmar, Sweden
| |
Collapse
|
22
|
Li Y, Zhu Y, Xiang S, Fan W, Jin J, Huang D. Temperature controlled condensation of nitriles: efficient and convenient synthesis of β-enaminonitriles, 4-aminopyrimidines and 4-amidinopyrimidines in one system. RSC Adv 2020; 10:6576-6583. [PMID: 35496002 PMCID: PMC9049712 DOI: 10.1039/c9ra10866a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
A wide variety of β-enaminonitriles, 4-aminopyrimidines and 4-amidinopyrimidines were simply synthesized from organonitriles by controlling the reaction temperature.
Collapse
Affiliation(s)
- Yinghua Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- Fujian 350002
- China
| | - Yingzu Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- Fujian 350002
- China
| | - Shiqun Xiang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- Fujian 350002
- China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- Fujian 350002
- China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- Fujian 350002
- China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences Fuzhou
- Fujian 350002
- China
| |
Collapse
|
23
|
Romero AH. Fused Heteroaromatic Rings via Metal-Mediated/Catalyzed Intramolecular C–H Activation: A Comprehensive Review. Top Curr Chem (Cham) 2019; 377:21. [DOI: 10.1007/s41061-019-0246-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022]
|
24
|
Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Zhu Y, Li Y, Xiang S, Fan W, Jin J, Huang D. Utilization of nitriles as the nitrogen source: practical and economical construction of 4-aminopyrimidine and β-enaminonitrile skeletons. Org Chem Front 2019. [DOI: 10.1039/c9qo00619b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly practical and economical method for the synthesis of 4-aminopyrimidines and β-enaminonitriles from mixed organonitriles is reported.
Collapse
Affiliation(s)
- Yingzu Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Shiqun Xiang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
26
|
Xiang S, Zhang X, Chen H, Li Y, Fan W, Huang D. Copper(ii) facilitated decarboxylation for the construction of pyridyl–pyrazole skeletons. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00599d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyridyl–pyrazole carboxylic compounds were synthesized in one step by Cu(ii) facilitated decarboxylation of H3pdc and activation of pyridine in water.
Collapse
Affiliation(s)
- Shiqun Xiang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hui Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
27
|
Chen L, Hu C, Lok-Shun Lai N, Zhang W, Hua J, Lam PKS, Lam JCW, Zhou B. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:17-26. [PMID: 29729565 DOI: 10.1016/j.envpol.2018.04.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Contamination from lower brominated PBDEs is ubiquitous in the environments. However, their effects on gut microbiota and intestinal health have not yet been investigated. This study exposed adult zebrafish to an environmentally realistic concentration of pentaBDE mixture (DE-71) at 5.0 ng/L for 7 days, after which metagenomic sequencing of the intestinal microbiome was conducted and host physiological activities in the intestine and liver were also examined. The results showed that acute exposure to DE-71 significantly shifted the gut microbial community in a sex-specific manner. Certain genera (e.g., Mycoplasma, Ruminiclostridium, unclassified Firmicutes sensu stricto, and Fusobacterium) disappeared from the DE-71-exposed intestines, resulting in decreased bacterial diversity. Bacterial metabolic functions in guts were also affected by DE-71, namely those covering energy metabolism, virulence, respiration, cell division, cell signaling, and stress response. In addition, measurement of diverse sensitive biomarkers showed that the health of male intestines was remarkably compromised by the DE-71 exposure, as indicated by the disruption to its neural signaling (serotonin), epithelial barrier integrity (tight junction protein 2), inflammatory response (interleukin 1β), oxidative stress and antioxidant capacity, as well as detoxifying potential (ethoxyresorufin-O-deethylase activity). However, female intestines maintained intact physiological activities. Compared to the direct impact on intestines, a latent effect of DE-71 was observed in livers. Co-occurrence network analysis demonstrated that the gut bacteria vigorously interacted to establish the fittest community under DE-71 stress by promoting the reproduction of favorable genera, while diminishing the survival of unfavorable ones. Significant correlations between the zebrafish gut microbiota and physiological activities (e.g., oxidative stress, detoxification, neurotransmission, and epithelial integrity) were also observed. Overall, this study has demonstrated, for the first time, the high susceptibility of gut microbiota and intestinal health of zebrafish to DE-71, thus warranting more work to reveal its mode of toxicity.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Nelson Lok-Shun Lai
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
28
|
Heterogeneous gold(I)-catalyzed [2 + 2 + 2] annulation between ynamides and nitriles: Straightforward synthesis of tetrasubstituted pyrimidines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Su L, Sun K, Pan N, Liu L, Sun M, Dong J, Zhou Y, Yin SF. Cyclization of Ketones with Nitriles under Base: A General and Economical Synthesis of Pyrimidines. Org Lett 2018; 20:3399-3402. [DOI: 10.1021/acs.orglett.8b01324] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kang Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mengli Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
Naowarojna N, Cheng R, Chen L, Quill M, Xu M, Zhao C, Liu P. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry 2018; 57:3309-3325. [PMID: 29589901 DOI: 10.1021/acs.biochem.8b00239] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.
Collapse
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Ronghai Cheng
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Li Chen
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Melissa Quill
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Meiling Xu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Changming Zhao
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
31
|
Ghazi Z, Jahanshahi S, Li Y. RiboFACSeq: A new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing. PLoS One 2017; 12:e0188399. [PMID: 29211762 PMCID: PMC5718407 DOI: 10.1371/journal.pone.0188399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/06/2017] [Indexed: 12/02/2022] Open
Abstract
The elucidation of the cellular processes involved in vitamin and cofactor biosynthesis is a challenging task. The conventional approaches to these investigations rely on the discovery and purification of the products (i.e proteins and metabolites) of a particular transport or biosynthetic pathway, prior to their subsequent analysis. However, the purification of low-abundance proteins or metabolites is a formidable undertaking that presents considerable technical challenges. As a solution, we present an alternative approach to such studies that circumvents the purification step. The proposed approach takes advantage of: (1) the molecular detection capabilities of a riboswitch-based sensor to detect the cellular levels of its cognate molecule, as a means to probe the integrity of the transport and biosynthetic pathways of the target molecule in cells, (2) the high-throughput screening ability of fluorescence-activated cell sorters to isolate cells in which only these specific pathways are disrupted, and (3) the ability of next-generation sequencing to quickly identify the genes of the FACS-sorted populations. This approach was named “RiboFACSeq”. Following their identification by RiboFACSeq, the role of these genes in the presumed pathway needs to be verified through appropriate functional assays. To demonstrate the utility of our approach, an adenosylcobalamin (AdoCbl)-responsive riboswitch-based sensor was used in this study to demonstrate that RiboFACSeq can be used to track and sort cells carrying genetic mutations in known AdoCbl transport and biosynthesis genes with desirable sensitivity and specificity. This method could potentially be used to elucidate any pathway of interest, as long as a suitable riboswitch-based sensor can be created. We believe that RiboFACSeq would be especially useful for the elucidation of biological pathways in which the proteins and/or their metabolites are present at very low physiological concentrations in cells, as is the case with vitamin and cofactor biosynthesis.
Collapse
Affiliation(s)
- Zohaib Ghazi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shahrzad Jahanshahi
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
33
|
Kunisawa J. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody. Cell Mol Life Sci 2017; 74:1503-1509. [PMID: 27838744 PMCID: PMC11107571 DOI: 10.1007/s00018-016-2414-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023]
Abstract
To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.
Collapse
Affiliation(s)
- Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, 565-0871, Japan.
- Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
34
|
Hosomi K, Kunisawa J. The Specific Roles of Vitamins in the Regulation of Immunosurveillance and Maintenance of Immunologic Homeostasis in the Gut. Immune Netw 2017; 17:13-19. [PMID: 28261016 PMCID: PMC5334118 DOI: 10.4110/in.2017.17.1.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Vitamins are micronutrients which are essential for the maintenance of biological responses including immune system. Hence, vitamin deficiency increases a risk of infectious, allergic, and inflammatory diseases. Accumulating evidence has recently revealed the molecular and cellular mechanisms of vitamin-mediated regulation in the active and quiescent immune responses. In this review, we focus on the immunologic roles of vitamins in the regulation of homeostasis and surveillance in the gut.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan.; Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| |
Collapse
|
35
|
Bagoji AM, Gowda JI, Gokavi NM, Nandibewoor ST. Multi-spectroscopic and voltammetric evidences for binding, conformational changes of bovine serum albumin with thiamine. J Biomol Struct Dyn 2016; 35:2395-2406. [DOI: 10.1080/07391102.2016.1220332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Atmanand M. Bagoji
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad, India
| | - Jayant I. Gowda
- Department of Chemistry, P. C. Jabin Science College, Hubli, India
| | - Naveen M. Gokavi
- P. G. Department of Studies in Chemistry, Karnatak University, Dharwad, India
| | | |
Collapse
|
36
|
Choi H, Kim J, Lee K. Metal-free, Brønsted acid-mediated synthesis of coumarin derivatives from phenols and propiolic acids. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Karaca EÖ, Gürbüz N, Şahin O, Büyükgüngör O, Özdemir İ. Synthesis of palladium complexes derived from imidazolidin-2-ylidene ligands and used for catalytic amination reactions. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emine Özge Karaca
- Inönü University; Catalysis Research and Application Center; 44280 Malatya Turkey
| | - Nevin Gürbüz
- Inönü University; Catalysis Research and Application Center; 44280 Malatya Turkey
| | - Onur Şahin
- Sinop University; Scientific and Technological Research Application and Research Center; 57010 Sinop Turkey
| | - Orhan Büyükgüngör
- Ondokuz Mayıs University; Department of Physics; 55139 Samsun Turkey
| | - İsmail Özdemir
- Inönü University; Catalysis Research and Application Center; 44280 Malatya Turkey
| |
Collapse
|
38
|
Phukan N, Baruah JB. Anion Guided Conformational Adjustments by Protonation Leading to Conformation Reversal. ChemistrySelect 2016. [DOI: 10.1002/slct.201600020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nithi Phukan
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781 039, Assam India
| | - Jubaraj B. Baruah
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781 039, Assam India
| |
Collapse
|
39
|
Chen P, Song CX, Wang WS, Yu XL, Tang Y. TfOH-mediated [2 + 2 + 2] cycloadditions of ynamides with two discrete nitriles: synthesis of 4-aminopyrimidine derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra11408c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a concise and atom-economical TfOH-mediated [2 + 2 + 2] cycloaddition of ynamides with two discrete nitriles is developed to synthesize multi-substituted 4-aminopyrimidine.
Collapse
Affiliation(s)
- Ping Chen
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Cai-xia Song
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wan-shu Wang
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xue-liang Yu
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yu Tang
- School of Pharmaceutical Science and Technology
- Key Laboratory for Modern Drug Delivery & High-Efficiency
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
40
|
Liang H, Bi S, Liu Y, Tang YN, Liu C. Theoretical study on Au(i)-catalyzed [2 + 2 + 2] cycloadditions of ynamides with two discrete nitriles. Org Biomol Chem 2016; 14:2637-44. [DOI: 10.1039/c5ob02568k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Au-catalyzed [2 + 2 + 2] cycloadditions of ynamides with two discrete nitriles were theoretically studied with the aid of DFT calculations.
Collapse
Affiliation(s)
- Haosheng Liang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Siwei Bi
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Ya-nan Tang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Congcong Liu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|
41
|
Kunisawa J, Sugiura Y, Wake T, Nagatake T, Suzuki H, Nagasawa R, Shikata S, Honda K, Hashimoto E, Suzuki Y, Setou M, Suematsu M, Kiyono H. Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B 1. Cell Rep 2015; 13:122-131. [DOI: 10.1016/j.celrep.2015.08.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/08/2023] Open
|
42
|
Distinctions of positional isomers of N-(methylthiazol-2-yl)nitrobenzamide by copper and iron ions. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Synthesis of Organotin Polyamine Ethers Containing Thiamine (Vitamin B1) and Preliminary Ability to Inhibit Select Cancer Cell Lines. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0254-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Sun K, Wang X, Jiang Y, Lv Y, Zhang L, Xiao B, Li D, Zhu Z, Liu L. Direct N-Methylation Reaction Using DMSO as One-Carbon Bridge: Convenient Access to Heterocycle-Containing β-Amino Ketones. Chem Asian J 2015; 10:536-9. [DOI: 10.1002/asia.201403358] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 12/20/2022]
|
45
|
Wang X, Sun K, Lv Y, Ma F, Li G, Li D, Zhu Z, Jiang Y, Zhao F. Regioselective CH Imidation of Five-Membered Heterocyclic Compounds through a Metal Catalytic or Organocatalytic Approach. Chem Asian J 2014; 9:3413-6. [DOI: 10.1002/asia.201403052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 10/24/2022]
|
46
|
Living Supramolecular Compounds: Influence of Multiple Hydrogen Bond Connection on Molecular Configuration of Monophosphate or Pyrophosphate Thiamine with Anions or Coordination Anions. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201400412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Yu DJ, Hu J, Yan H, Yang XB, Yang JY, Shen HB. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble. BMC Bioinformatics 2014; 15:297. [PMID: 25189131 PMCID: PMC4261549 DOI: 10.1186/1471-2105-15-297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Vitamins are typical ligands that play critical roles in various metabolic processes. The accurate identification of the vitamin-binding residues solely based on a protein sequence is of significant importance for the functional annotation of proteins, especially in the post-genomic era, when large volumes of protein sequences are accumulating quickly without being functionally annotated. Results In this paper, a new predictor called TargetVita is designed and implemented for predicting protein-vitamin binding residues using protein sequences. In TargetVita, features derived from the position-specific scoring matrix (PSSM), predicted protein secondary structure, and vitamin binding propensity are combined to form the original feature space; then, several feature subspaces are selected by performing different feature selection methods. Finally, based on the selected feature subspaces, heterogeneous SVMs are trained and then ensembled for performing prediction. Conclusions The experimental results obtained with four separate vitamin-binding benchmark datasets demonstrate that the proposed TargetVita is superior to the state-of-the-art vitamin-specific predictor, and an average improvement of 10% in terms of the Matthews correlation coefficient (MCC) was achieved over independent validation tests. The TargetVita web server and the datasets used are freely available for academic use at http://csbio.njust.edu.cn/bioinf/TargetVita or http://www.csbio.sjtu.edu.cn/bioinf/TargetVita. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-297) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China.
| | | | | | | | | | | |
Collapse
|
48
|
Karad SN, Liu RS. Regiocontrolled Gold-Catalyzed [2+2+2] Cycloadditions of Ynamides with Two Discrete Nitriles to Construct 4-Aminopyrimidine Cores. Angew Chem Int Ed Engl 2014; 53:9072-6. [DOI: 10.1002/anie.201405312] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Indexed: 11/10/2022]
|
49
|
Karad SN, Liu RS. Regiocontrolled Gold-Catalyzed [2+2+2] Cycloadditions of Ynamides with Two Discrete Nitriles to Construct 4-Aminopyrimidine Cores. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Sousa FL, Martin WF. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:964-81. [PMID: 24513196 DOI: 10.1016/j.bbabio.2014.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
The deep dichotomy of archaea and bacteria is evident in many basic traits including ribosomal protein composition, membrane lipid synthesis, cell wall constituents, and flagellar composition. Here we explore that deep dichotomy further by examining the distribution of genes for the synthesis of the central carriers of one carbon units, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), in bacteria and archaea. The enzymes underlying those distinct biosynthetic routes are broadly unrelated across the bacterial-archaeal divide, indicating that the corresponding pathways arose independently. That deep divergence in one carbon metabolism is mirrored in the structurally unrelated enzymes and different organic cofactors that methanogens (archaea) and acetogens (bacteria) use to perform methyl synthesis in their H4F- and H4MPT-dependent versions, respectively, of the acetyl-CoA pathway. By contrast, acetyl synthesis in the acetyl-CoA pathway - from a methyl group, CO2 and reduced ferredoxin - is simpler, uniform and conserved across acetogens and methanogens, and involves only transition metals as catalysts. The data suggest that the acetyl-CoA pathway, while being the most ancient of known CO2 assimilation pathways, reflects two phases in early evolution: an ancient phase in a geochemically confined and non-free-living universal common ancestor, in which acetyl thioester synthesis proceeded spontaneously with the help of geochemically supplied methyl groups, and a later phase that reflects the primordial divergence of the bacterial and archaeal stem groups, which independently invented genetically-encoded means to synthesize methyl groups via enzymatic reactions. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute for Molecular Evolution,University of Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution,University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|