1
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
2
|
Julian T, Tang T, Hosokawa Y, Yalikun Y. Machine learning implementation strategy in imaging and impedance flow cytometry. BIOMICROFLUIDICS 2023; 17:051506. [PMID: 37900052 PMCID: PMC10613093 DOI: 10.1063/5.0166595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Imaging and impedance flow cytometry is a label-free technique that has shown promise as a potential replacement for standard flow cytometry. This is due to its ability to provide rich information and archive high-throughput analysis. Recently, significant efforts have been made to leverage machine learning for processing the abundant data generated by those techniques, enabling rapid and accurate analysis. Harnessing the power of machine learning, imaging and impedance flow cytometry has demonstrated its capability to address various complex phenotyping scenarios. Herein, we present a comprehensive overview of the detailed strategies for implementing machine learning in imaging and impedance flow cytometry. We initiate the discussion by outlining the commonly employed setup to acquire the data (i.e., image or signal) from the cell. Subsequently, we delve into the necessary processes for extracting features from the acquired image or signal data. Finally, we discuss how these features can be utilized for cell phenotyping through the application of machine learning algorithms. Furthermore, we discuss the existing challenges and provide insights for future perspectives of intelligent imaging and impedance flow cytometry.
Collapse
Affiliation(s)
- Trisna Julian
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | | |
Collapse
|
3
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
5
|
Chen YS, Huang CH, Pai PC, Seo J, Lei KF. A Review on Microfluidics-Based Impedance Biosensors. BIOSENSORS 2023; 13:bios13010083. [PMID: 36671918 PMCID: PMC9855525 DOI: 10.3390/bios13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 05/30/2023]
Abstract
Electrical impedance biosensors are powerful and continuously being developed for various biological sensing applications. In this line, the sensitivity of impedance biosensors embedded with microfluidic technologies, such as sheath flow focusing, dielectrophoretic focusing, and interdigitated electrode arrays, can still be greatly improved. In particular, reagent consumption reduction and analysis time-shortening features can highly increase the analytical capabilities of such biosensors. Moreover, the reliability and efficiency of analyses are benefited by microfluidics-enabled automation. Through the use of mature microfluidic technology, complicated biological processes can be shrunk and integrated into a single microfluidic system (e.g., lab-on-a-chip or micro-total analysis systems). By incorporating electrical impedance biosensors, hand-held and bench-top microfluidic systems can be easily developed and operated by personnel without professional training. Furthermore, the impedance spectrum provides broad information regarding cell size, membrane capacitance, cytoplasmic conductivity, and cytoplasmic permittivity without the need for fluorescent labeling, magnetic modifications, or other cellular treatments. In this review article, a comprehensive summary of microfluidics-based impedance biosensors is presented. The structure of this article is based on the different substrate material categorizations. Moreover, the development trend of microfluidics-based impedance biosensors is discussed, along with difficulties and challenges that may be encountered in the future.
Collapse
Affiliation(s)
- Yu-Shih Chen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hao Huang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ping-Ching Pai
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jungmok Seo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kin Fong Lei
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Electrical & Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
6
|
Ashley BK, Hassan U. Digital filtering dissemination for optimizing impedance cytometry signal quality and counting accuracy. Biomed Microdevices 2022; 24:36. [PMID: 36305954 PMCID: PMC9635870 DOI: 10.1007/s10544-022-00636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/29/2022]
Abstract
Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clinical and diagnostic settings. During development, a sensor's design and external factors are rigorously optimized, but improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A common solution involves digital signal processing after sample analysis, but these methods frequently fall short in providing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a comprehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems to determine their appropriately optimized filtering configuration.
Collapse
Affiliation(s)
- Brandon K Ashley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Electrical Engineering, Department of Biomedical Engineering, and Global Health Institute Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Kim B, Yao W, Rhie JW, Chun H. Microfluidic Potentiometric Cytometry for Size-Selective Micro Dispersion Analysis. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum. Biosens Bioelectron 2022; 205:114110. [DOI: 10.1016/j.bios.2022.114110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
|
9
|
Tang D, Jiang L, Tang W, Xiang N, Ni Z. Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing. Talanta 2022; 242:123274. [DOI: 10.1016/j.talanta.2022.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
|
10
|
Zhang Y, Murakami K, Borra VJ, Ozen MO, Demirci U, Nakamura T, Esfandiari L. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties. BIOSENSORS 2022; 12:bios12020104. [PMID: 35200364 PMCID: PMC8869858 DOI: 10.3390/bios12020104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomarkers since their structure and composition resemble the originating cells. The investigation of EVs' biochemical and biophysical properties is of great importance to map them to their parental cells and to better understand their functionalities. In this study, a novel frequency-dependent impedance measurement system has been developed to characterize EVs based on their unique dielectric properties. The system is composed of an insulator-based dielectrophoretic (iDEP) device to entrap and immobilize a cluster of vesicles followed by utilizing electrical impedance spectroscopy (EIS) to measure their impedance at a wide frequency spectrum, aiming to analyze both their membrane and cytosolic charge-dependent contents. The EIS was initially utilized to detect nano-size vesicles with different biochemical compositions, including liposomes synthesized with different lipid compositions, as well as EVs and lipoproteins with similar biophysical properties but dissimilar biochemical properties. Moreover, EVs derived from the same parental cells but treated with different culture conditions were characterized to investigate the correlation of impedance changes with biochemical properties and functionality in terms of pro-inflammatory responses. The system also showed the ability to discriminate between EVs derived from different cellular origins as well as among size-sorted EVs harbored from the same cellular origin. This proof-of-concept approach is the first step towards utilizing EIS as a label-free, non-invasive, and rapid sensor for detection and characterization of pathogenic EVs and other nanovesicles in the future.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Surgery, Division of Surgical Research, Mayo Clinic, Rochester, MN 55905, USA;
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kazutoshi Murakami
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.M.); (V.J.B.); (T.N.)
| | - Vishnupriya J. Borra
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.M.); (V.J.B.); (T.N.)
| | - Mehmet Ozgun Ozen
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Stanford University, Palo Alto, CA 94305, USA; (M.O.O.); (U.D.)
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Stanford University, Palo Alto, CA 94305, USA; (M.O.O.); (U.D.)
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.M.); (V.J.B.); (T.N.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8577, Miyagi, Japan
| | - Leyla Esfandiari
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Ashley BK, Hassan U. Time-domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer. Biotechnol Bioeng 2021; 118:4428-4440. [PMID: 34370302 PMCID: PMC8589102 DOI: 10.1002/bit.27910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023]
Abstract
Microfluidic impedance cytometry is a powerful system to measure micro and nano-sized particles and is routinely used in point-of-care disease diagnostics and other biomedical applications. However, small objects near a sensor's detection limit are plagued with relatively significant background noise and are difficult to identify for every case. While many data processing techniques can be utilized to reduce noise and improve signal quality, frequently they are still inadequate to push sensor detection limits. Here, we report the first demonstration of a novel signal averaging algorithm effective in noise reduction of microfluidic impedance cytometry data, improving enumeration accuracy, and reducing detection limits. Our device uses a 22 µm tall × 100 µm wide (with 30 µm wide focused aperture) microchannel and gold coplanar microelectrodes that generate an electric field, recording bipolar pulses from polystyrene microparticles flowing through the channel. In addition to outlining a modified moving signal averaging technique theoretically and with a model data set, we also performed a compendium of characterization experiments including variations in flow rate, input voltage, and particle size. Multivariate metrics from each experiment are compared including signal amplitude, pulse width, background noise, and signal-to-noise ratio (SNR). Incorporating our technique resulted in improved SNR and counting accuracy across all experiments conducted, and the limit of detection improved from 5 to 1 µm particles without modifying microchannel dimensions. Succeeding this, we envision implementing our modified moving average technique to develop next-generation microfluidic impedance cytometry devices with an expanded dynamic range and improved enumeration accuracy. This can be exceedingly useful for many biomedical applications, such as infectious disease diagnostics where devices may enumerate larger-scale immune cells alongside sub-micron bacterium in the same sample.
Collapse
Affiliation(s)
- Brandon K. Ashley
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Electrical and Computer Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Global Health Institute, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
12
|
Zhu S, Zhang X, Zhou Z, Han Y, Xiang N, Ni Z. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Talanta 2021; 233:122571. [PMID: 34215067 DOI: 10.1016/j.talanta.2021.122571] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Single-cell analysis has gained considerable attention for disease diagnosis, drug screening, and differentiation monitoring. Compared to the well-established flow cytometry, which uses fluorescent-labeled antibodies, microfluidic impedance cytometry (MIC) offers a simple, label-free, and noninvasive method for counting, classifying, and monitoring cells. Superior features including a small footprint, low reagent consumption, and ease of use have also been reported. The MIC device detects changes in the impedance signal caused by cells passing through the sensing/electric field zone, which can extract information regarding the size, shape, and dielectric properties of these cells. According to recent studies, electrode configuration has a remarkable effect on detection accuracy, sensitivity, and throughput. With the improvement in microfabrication technology, various electrode configurations have been reported for improving detection accuracy and throughput. However, the various electrode configurations of MIC devices have not been reviewed. In this review, the theoretical background of the impedance technique for single-cell analysis is introduced. Then, two-dimensional, three-dimensional, and liquid electrode configurations are discussed separately; their sensing mechanisms, fabrication processes, advantages, disadvantages, and applications are also described in detail. Finally, the current limitations and future perspectives of these electrode configurations are summarized. The main aim of this review is to offer a guide for researchers on the ongoing advancement in electrode configuration designs.
Collapse
Affiliation(s)
- Shu Zhu
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaozhe Zhang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zheng Zhou
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, And Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
13
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
14
|
Zhu Z, Geng Y, Wang Y. Monitoring Single S. cerevisiae Cells with Multifrequency Electrical Impedance Spectroscopy in an Electrode-Integrated Microfluidic Device. Methods Mol Biol 2021; 2189:105-118. [PMID: 33180297 DOI: 10.1007/978-1-0716-0822-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter describes an electrode-integrated microfluidic system with multiple functions of manipulating and monitoring single S. cerevisiae cells. In this system, hydrodynamic trapping and negative dielectrophoretic (nDEP) releasing of S. cerevisiae cells are implemented, providing a flexible method for single-cell manipulation. The multiplexing microelectrodes also enable sensitive electrical impedance spectroscopy (EIS) to discern the number of immobilized cells, classify different orientations of captured cells, as well as detect potential movements of immobilized single yeast cells during the overall recording duration by using principal component analysis (PCA) in data mining. The multifrequency EIS measurements can, therefore, obtain sufficient information of S. cerevisiae cells at single-cell level.
Collapse
Affiliation(s)
- Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.
| | - Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Yingying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
15
|
Xu J, Hong Z. Low Power Bio-Impedance Sensor Interfaces: Review and Electronics Design Methodology. IEEE Rev Biomed Eng 2020; 15:23-35. [PMID: 33245697 DOI: 10.1109/rbme.2020.3041053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Assessing blood flow, respiration patterns, and body composition with wearable and noninvasive bio-impedance (BioZ) sensors has distinctive advantages over the conventional clinical practice. The merits of BioZ sensors derive from having long-term monitoring capability and improved user friendliness. These open up the way to build medical grade wearable devices for chronic conditions. Low power, high precision BioZ sensor interface IC is the heart of such devices, it also determines the signal integrity of the overall system. Nevertheless, electrical design challenges from both circuit and system perspective still need to be addressed. This paper reviews the pioneering BioZ interface ICs and systems, and proposes major electrical specifications for wearable BioZ sensors. System design methodologies and circuit optimization techniques are summarized as guidelines to develop the next generation BioZ interface electronics.
Collapse
|
16
|
Daguerre H, Solsona M, Cottet J, Gauthier M, Renaud P, Bolopion A. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. LAB ON A CHIP 2020; 20:3665-3689. [PMID: 32914827 DOI: 10.1039/d0lc00616e] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microfluidic electrical impedance flow cytometry is now a well-known and established method for single-cell analysis. Given the richness of the information provided by impedance measurements, this non-invasive and label-free approach can be used in a wide field of applications ranging from simple cell counting to disease diagnostics. One of its major limitations is the variation of the impedance signal with the position of the cell in the sensing area. Indeed, identical particles traveling along different trajectories do not result in the same data. The positional dependence can be considered as a challenge for the accuracy of microfluidic impedance cytometers. On the other hand, it has recently been regarded by several groups as an opportunity to estimate the position of particles in the microchannel and thus take a further step in the logic of integrating sensors in so-called "Lab-on-a-chip" devices. This review provides a comprehensive overview of the physical grounds of the positional dependence of impedance measurements. Then, both the developed strategies to reduce position influence in impedance-based assays and the recent reported technologies exploiting that dependence for the integration of position detection in microfluidic devices are reviewed.
Collapse
Affiliation(s)
- Hugo Daguerre
- FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, AS2M Department, 24 rue Alain Savary, F-25000 Besançon, France.
| | | | | | | | | | | |
Collapse
|
17
|
Farooq A, Butt NZ, Hassan U. Exceedingly Sensitive Restructured Electrodes Design for Pathogen Morphology Detection using Impedance Flow Cytometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2500-2503. [PMID: 33018514 DOI: 10.1109/embc44109.2020.9176444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cellular morphology is a vital biological characteristic for determining explicit information about its physiological state. Monitoring real-time cell shape is of great importance in infectious pathogen detection. Here, we designed a highly sensitive coplanar electrode sensing system and merged it with planar electrodes for simultaneous impedance signals in two dimensions. We simulated the proposed design in this study for the detection of different single cell pathogens based on their morphology. The optimized design has a great potential to monitor and characterize different bacteria based on their sizes and shapes. In this report, spherical and rod shaped particles were used to illustrate the device performance. This simple and extremely sensitive modified electrode design is very promising for bacterial detection and will serve as a future guiding tool for discriminating different morphologies of singular cells.
Collapse
|
18
|
Thomas RSW, Mitchell PD, Oreffo ROC, Morgan H, Green NG. Image-based sorting and negative dielectrophoresis for high purity cell and particle separation. Electrophoresis 2019; 40:2718-2727. [PMID: 31206722 DOI: 10.1002/elps.201800489] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023]
Abstract
Microelectrode arrays are used to sort single fluorescently labeled cells and particles as they flow through a microfluidic channel using dielectrophoresis. Negative dielectrophoresis is used to create a "Dielectrophoretic virtual channel" that runs along the center of the microfluidic channel. By switching the polarity of the electrodes, the virtual channel can be dynamically reconfigured to direct particles along a different path. This is demonstrated by sorting particles into two microfluidic outlets, controlled by an automated system that interprets video data from a color camera and makes complex sorting decisions based on color, intensity, size, and shape. This enables the rejection of particle aggregates and other impurities, and the system is optimized to isolate high purity populations from a heterogeneous sample. Green beads are isolated from an excess of red beads with 100% purity at a rate of up to 0.9 particles per second, in addition application to the sorting of osteosarcoma and human bone marrow cells is evidenced. The extension of Dielectrophoretic Virtual Channels to an arbitrary number of sorting outputs is examined, with design, simulation, and experimental verification of two alternate geometries presented and compared.
Collapse
Affiliation(s)
- Rupert S W Thomas
- School of Electronics and Computer Science, University of Southampton Highfield, Southampton, UK
| | - Peter D Mitchell
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Hywel Morgan
- School of Electronics and Computer Science, University of Southampton Highfield, Southampton, UK.,Institute for Life Sciences, University of Southampton Highfield, Southampton, UK
| | - Nicolas G Green
- School of Electronics and Computer Science, University of Southampton Highfield, Southampton, UK
| |
Collapse
|
19
|
Yuan W, Tutuncuoglu G, Mohabir A, Liu L, Feldman LC, Filler MA, Shan JW. Contactless Electrical and Structural Characterization of Semiconductor Nanowires with Axially Modulated Doping Profiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805140. [PMID: 30884159 DOI: 10.1002/smll.201805140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Efficient characterization of semiconductor nanowires having complex dopant profiles or heterostructures is critical to fully understand these materials and the devices built from them. Existing electrical characterization techniques are slow and laborious, particularly for multisegment nanowires, and impede the statistical understanding of highly variable samples. Here, it is shown that electro-orientation spectroscopy (EOS)-a high-throughput, noncontact method for statistically characterizing the electrical properties of entire nanowire ensembles-can determine the conductivity and dimensions of two distinct segments in individual Si nanowires with axially encoded dopant profiles. This analysis combines experimental measurements and computational simulations to determine the electrical conductivity of the nominally undoped segment of two-segment Si nanowires, as well as the ratio of the segment lengths. The efficacy of this approach is demonstrated by comparing results generated by EOS with conventional four-point-probe measurements. This work provides new insights into the control and variability of semiconductor nanowires for electronic applications and is a critical first step toward the high-throughput interrogation of complete nanowire-based devices.
Collapse
Affiliation(s)
- Wuhan Yuan
- Department of Mechanical & Aerospace Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gozde Tutuncuoglu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amar Mohabir
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Liping Liu
- Department of Mathematics and Department of Mechanical & Aerospace Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Leonard C Feldman
- Department of Material Science & Engineering and Department of Physics & Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Michael A Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jerry W Shan
- Department of Mechanical & Aerospace Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
20
|
Zhou Y, Yang D, Zhou Y, Khoo BL, Han J, Ai Y. Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device. Anal Chem 2017; 90:912-919. [PMID: 29172457 DOI: 10.1021/acs.analchem.7b03859] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mechanical properties of cells, reflective of various biochemical characteristics such as gene expression and cytoskeleton, are promising label-free biomarkers for studying and characterizing cells. Electrical properties of cells, dependent on the cellular structure and content, are also label-free indicators of cell states and phenotypes. In this work, we have developed a microfluidic device that is able to simultaneously characterize the mechanical and electrical properties of individual biological cells in a high-throughput manner (>1000 cells/min). The deformability of MCF-7 breast cancer cells was characterized based on the passage time required for an individual cell to pass through a constriction smaller than the cell size. The total passage time can be divided into two components: the entry time required for a cell to deform and enter a constriction, which is dominated by the deformability of cells, and the transit time required for the fully deformed cell to travel inside the constriction, which mainly relies on the surface friction between cells and the channel wall. The two time durations for individual cells to pass through the entry region and transit region have both been investigated. In addition, undeformed cells and fully deformed cells were simultaneously characterized via electrical impedance spectroscopy technique. The combination of mechanical and electrical properties serves as a unique set of intrinsic cellular biomarkers for single-cell analysis, providing better differentiation of cellular phenotypes, which are not easily discernible via single-marker analysis.
Collapse
Affiliation(s)
- Ying Zhou
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre , Singapore 138602
| | - Dahou Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design , Singapore 487372
| | - Yinning Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design , Singapore 487372
| | - Bee Luan Khoo
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre , Singapore 138602
| | - Jongyoon Han
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre , Singapore 138602.,Department of Electrical Engineering and Computer Science, and Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design , Singapore 487372
| |
Collapse
|
21
|
Talukder N, Furniturewalla A, Le T, Chan M, Hirday S, Cao X, Xie P, Lin Z, Gholizadeh A, Orbine S, Javanmard M. A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring. Biomed Microdevices 2017; 19:36. [DOI: 10.1007/s10544-017-0161-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
|
23
|
Crassous JJ, Demirörs AF. Multiscale directed self-assembly of composite microgels in complex electric fields. SOFT MATTER 2016; 13:88-100. [PMID: 27906392 DOI: 10.1039/c6sm00857g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study explored the application of localized electric fields for reversible directed self-assembly of colloidal particles in 3 dimensions. Electric field microgradients, arising from the use of micro-patterned electrodes, were utilized to direct the localization and self-assembly of polarizable (charged) particles resulting from a combination of dielectrophoretic and multipolar forces. Deionized dispersions of spherical and ellipsoidal core-shell microgels were employed for investigating their assembly under an external alternating electric field. We demonstrated that the frequency of the field allowed for an exquisite control over the localization of the particles and their self-assembled structures near the electrodes. We extended this approach to concentrated binary dispersions consisting of polarizable and less polarizable composite microgels. Furthermore, we utilized the thermosensitivity of the microgels to adjust the effective volume fraction and the dynamics of the system, which provided the possibility to dynamically "solidify" the assembly of the field-responsive particles by a temperature quench from their initial fluid state into an arrested crystalline state. Reversible solidification enables us to re-write/reconstruct various 3 dimensional assemblies by varying the applied field frequency.
Collapse
Affiliation(s)
- Jérôme J Crassous
- Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden.
| | - Ahmet F Demirörs
- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
24
|
Akin C, Feldman LC, Durand C, Hus SM, Li AP, Hui HY, Filler MA, Yi J, Shan JW. High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires. LAB ON A CHIP 2016; 16:2126-2134. [PMID: 27171977 DOI: 10.1039/c6lc00217j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.
Collapse
Affiliation(s)
- Cevat Akin
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| | - Leonard C Feldman
- Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, NJ 08854, USA
| | - Corentin Durand
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Saban M Hus
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ho Yee Hui
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michael A Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jingang Yi
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA. and Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
Jivani RR, Lakhtaria GJ, Patadiya DD, Patel LD, Jivani NP, Jhala BP. Biomedical microelectromechanical systems (BioMEMS): Revolution in drug delivery and analytical techniques. Saudi Pharm J 2016; 24:1-20. [PMID: 26903763 PMCID: PMC4719786 DOI: 10.1016/j.jsps.2013.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/14/2013] [Indexed: 01/19/2023] Open
Abstract
Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology’s offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures.
Collapse
Affiliation(s)
- Rishad R Jivani
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Gaurang J Lakhtaria
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Dhaval D Patadiya
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Laxman D Patel
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Nurrudin P Jivani
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| | - Bhagyesh P Jhala
- Department of Pharmaceutics, C. U. Shah College of Pharmacy & Research, Surendranagar, Wadhwan, Gujarat, India
| |
Collapse
|
26
|
Affiliation(s)
| | - Tae-Hyun Shin
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul, 120-749, Korea
| | | |
Collapse
|
27
|
Yang Y, Wang L, Wang P, Yang X, Zhang F, Wen H, Teng Z. Design of tri-level excitation signals for broadband bioimpedance spectroscopy. Physiol Meas 2015; 36:1995-2007. [PMID: 26261063 DOI: 10.1088/0967-3334/36/9/1995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bioimpedance spectroscopy (BIS) measurement methods have been evolving from the traditional frequency-sweep approach to the multi-frequency simultaneous measurement technique which can drastically reduce measuring time and will be increasingly attractive for time-varying biological applications. Multi-frequency mixed (MFM) signals with sparsely distributed spectra are desirable for broadband BIS measurement. This paper proposes a synthesis method to design a series of tri-level MFM signals which contain only three values (+1, 0, -1), and has majority energy distributed on its (2(n))th primary harmonics. Tri-level MFM signals have both high energy efficiency and a low crest factor. An impedance measurement experiment excited by an 8th-order tri-level MFM signal on a RC three-element equivalent model has been performed, and the results on 8 primary harmonic frequencies ranging from 8 to 1024 kHz show a high accuracy with the mean amplitude relative error of 0.41% and mean phase absolute error of 0.18°, which has validated the feasibility of the tri-level MFM signals for broadband BIS measurement.
Collapse
Affiliation(s)
- Yuxiang Yang
- Department of Precision and Instrumentation Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci 2015; 16:9804-30. [PMID: 25938973 PMCID: PMC4463619 DOI: 10.3390/ijms16059804] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.
Collapse
|
29
|
Yang Y, Zhang F, Tao K, Wang L, Wen H, Teng Z. Multi-frequency simultaneous measurement of bioimpedance spectroscopy based on a low crest factor multisine excitation. Physiol Meas 2015; 36:489-501. [PMID: 25679488 DOI: 10.1088/0967-3334/36/3/489] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bioimpedance spectroscopy (BIS) is becoming a powerful diagnostic tool for a wide variety of medical applications, and the multi-frequency simultaneous (MFS) measurement of BIS can greatly reduce measurement time and record the transient physiological status of a living body compared with traditional frequency-sweep measurement technology. This paper adopts the Van der Ouderaa's multisine, which has 31 equidistant and flat amplitude spectra and a low crest factor of 1.405 as the broadband excitation, and realizes the MFS measurement of BIS by means of spectral analysis using the fast Fourier transform algorithm. The approach to implement the multisine based on a field-programmable gate array and a digital to analog converter is described in detail, and impedance measurement experiments are performed on three resistance-capitance three-element phantoms. Experimental results show a commendable accuracy with a mean relative error of 0.55% for the impedance amplitudes, and a mean absolute error of 0.20° for the impedance phases on the 31 frequencies ranging linearly from 32 to 992 kHz. This paper validates the feasibility of the MFS technology for BIS measurement based on the multisine excitation.
Collapse
Affiliation(s)
- Yuxiang Yang
- Department of Precision Instrumentation Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng 2014; 2014:381251. [PMID: 27006932 PMCID: PMC4782691 DOI: 10.1155/2014/381251] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Collapse
|
31
|
Abstract
The metastatic dissemination and spread of malignant circulating tumor cells (CTCs) accounts for more than 90% of cancer-related deaths. CTCs detach from a primary tumor, travel through the circulatory system, and then invade and proliferate in distant organs. The detection of CTCs from blood has been established for prognostic monitoring and is predictive of patient outcome. Analysis of CTCs could enable the means for early detection and screening in cancer, as well as provide diagnostic access to tumor tissues in a minimally invasive way. The fundamental challenge with analyzing CTCs is the fact that they occur at extremely low concentrations in blood, on the order of one out of a billion cells. Various technologies have been proposed to isolate CTCs for enrichment. Here we focus on antigen-independent approaches that are not limited by specific capture antibodies. Intrinsic physical properties of CTCs, including cell size, deformability, and electrical properties, are reviewed, and technologies developed to exploit them for enrichment from blood are summarized. Physical enrichment technologies are of particular interest as they have the potential to increase yield and enable the analysis of rare CTC phenotypes that may not be otherwise obtained.
Collapse
Affiliation(s)
- Ramdane A. Harouaka
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Bioengineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A
- Penn State Hershey Cancer Institute, Hershey, PA 17033, U.S.A
| | - Merisa Nisic
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Bioengineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A
- Penn State Hershey Cancer Institute, Hershey, PA 17033, U.S.A
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Bioengineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A
- Penn State Hershey Cancer Institute, Hershey, PA 17033, U.S.A
| |
Collapse
|
32
|
Ghazani AA, McDermott S, Pectasides M, Sebas M, Mino-Kenudson M, Lee H, Weissleder R, Castro CM. Comparison of select cancer biomarkers in human circulating and bulk tumor cells using magnetic nanoparticles and a miniaturized micro-NMR system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:1009-17. [PMID: 23570873 DOI: 10.1016/j.nano.2013.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/25/2013] [Accepted: 03/31/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Circulating tumor cells (CTC) harvested from peripheral blood have received significant interest as sources for serial sampling to gauge treatment efficacy. Nanotechnology and microfluidic based approaches are emerging to facilitate such analyses. While of considerable clinical importance, there is little information on how similar or different CTCs are from their shedding bulk tumors. In this clinical study, paired tumor fine needle aspirate and peripheral blood samples were obtained from cancer patients during image-guided biopsy. Using targeted magnetic nanoparticles and a point-of-care micro-NMR system, we compared selected biomarkers (EpCAM, EGFR, HER-2 and vimentin) in both CTC and fine needle biopsies of solid epithelial cancers. We show a weak correlation between each paired sample, suggesting that use of CTC as "liquid biopsies" and proxies to metastatic solid lesions could be misleading. FROM THE CLINICAL EDITOR In this clinical study, paired tumor fine needle aspirate and peripheral blood samples were obtained from patients with solid epithelial cancers during image-guided biopsy. Using targeted magnetic nanoparticles and a point-of-care micro-NMR system, the authors compared selected biomarkers in both circulating tumor cells (CTC) and fine needle biopsies, demonstrating a weak correlation between each paired sample, suggesting that use of CTC could be misleading in this context.
Collapse
Affiliation(s)
- Arezou A Ghazani
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M, Tompkins RG. Inertial focusing cytometer with integrated optics for particle characterization. TECHNOLOGY 2013; 1:27-36. [PMID: 25346940 PMCID: PMC4206911 DOI: 10.1142/s233954781350009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microfluidic inertial focusing has been shown as a simple and effective method to localize cells and particles within a flow cell for interrogation by an external optical system. To enable portable point of care optical cytometry, however, requires a reduction in the complexity of the large optical systems that are used in standard flow cytometers. Here, we present a new design that incorporates optical waveguides and focusing elements with an inertial focusing flow cell to make a compact robust cytometer capable of enumerating and discriminating beads, cells, and platelets.
Collapse
Affiliation(s)
- Kenneth T Kotz
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Anne C Petrofsky
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Ramin Haghgooie
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Robert Granier
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Mehmet Toner
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
34
|
Kemna EWM, Segerink LI, Wolbers F, Vermes I, van den Berg A. Label-free, high-throughput, electrical detection of cells in droplets. Analyst 2013; 138:4585-92. [DOI: 10.1039/c3an00569k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Kim J, Kim EG, Bae S, Kwon S, Chun H. Potentiometric Multichannel Cytometer Microchip for High-throughput Microdispersion Analysis. Anal Chem 2012. [DOI: 10.1021/ac302905x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junhoi Kim
- Department of Electrical
Engineering and Computer Science, Seoul National University, Seoul 151-744, Korea
- Inter-university Semiconductor
Research Center, Seoul National University, Seoul 151-742, Korea
| | - Eun-Geun Kim
- Department of Electrical
Engineering and Computer Science, Seoul National University, Seoul 151-744, Korea
- Quantamatrix Inc., Seoul 151-742, Korea
| | - Sangwook Bae
- Interdisciplinary
Program for Bioengineering, Seoul National University, Seoul 151-742, Korea
| | - Sunghoon Kwon
- Department of Electrical
Engineering and Computer Science, Seoul National University, Seoul 151-744, Korea
- Inter-university Semiconductor
Research Center, Seoul National University, Seoul 151-742, Korea
- Quantamatrix Inc., Seoul 151-742, Korea
- Center for Nanoparticle Research, Institute
for Basic Science, Seoul National University, Seoul 151-742, Korea
| | - Honggu Chun
- Department of Biomedical
Engineering, Korea University, Seoul 136-703, Korea
| |
Collapse
|
36
|
Pierzchalski A, Hebeisen M, Mittag A, Bocsi J, Di Berardino M, Tarnok A. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer. LAB ON A CHIP 2012; 12:4533-4543. [PMID: 22907524 DOI: 10.1039/c2lc40408g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Impedance flow cytometry (IFC) was evaluated as a possible alternative to fluorescence-based methods for on-line quality monitoring of hybridoma cells. Hybridoma cells were cultured at different cell densities and viability was estimated by means of IFC and fluorescence-based flow cytometry (FCM). Cell death was determined by measuring the impedance phase value at high frequency in low conductivity buffer. IFC data correlate well with reference FCM measurements using AnnexinV and 7-AAD staining. Hybridoma cells growing at different densities in cell culture revealed a density-dependent subpopulation pattern. Living cells of high density cultures show reduced impedance amplitudes, indicating particular cellular changes. Dead cell subpopulations become evident in cultures with increasing cell densities. In addition, a novel intermediate subpopulation, which most probably represents apoptotic cells, was identified. These results emphasize the extraordinary sensitivity of high frequency impedance measurements and their suitability for hybridoma cell culture quality control.
Collapse
|
37
|
Issadore D, Chung J, Shao H, Liong M, Ghazani AA, Castro CM, Weissleder R, Lee H. Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Transl Med 2012; 4:141ra92. [PMID: 22764208 DOI: 10.1126/scitranslmed.3003747] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to detect rare cells (<100 cells/ml whole blood) and obtain quantitative measurements of specific biomarkers on single cells is increasingly important in basic biomedical research. Implementing such methodology for widespread use in the clinic, however, has been hampered by low cell density, small sample sizes, and requisite sample purification. To overcome these challenges, we have developed a microfluidic chip-based micro-Hall detector (μHD), which can directly measure single, immunomagnetically tagged cells in whole blood. The μHD can detect single cells even in the presence of vast numbers of blood cells and unbound reactants, and does not require any washing or purification steps. In addition, the high bandwidth and sensitivity of the semiconductor technology used in the μHD enables high-throughput screening (currently ~10(7) cells/min). The clinical use of the μHD chip was demonstrated by detecting circulating tumor cells in whole blood of 20 ovarian cancer patients at higher sensitivity than currently possible with clinical standards. Furthermore, the use of a panel of magnetic nanoparticles, distinguished with unique magnetization properties and bio-orthogonal chemistry, allowed simultaneous detection of the biomarkers epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor 2 (HER2)/neu, and epidermal growth factor receptor (EGFR) on individual cells. This cost-effective, single-cell analytical technique is well suited to perform molecular and cellular diagnosis of rare cells in the clinic.
Collapse
Affiliation(s)
- David Issadore
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Han SI, Lee SM, Joo YD, Han KH. Lateral dielectrophoretic microseparators to measure the size distribution of blood cells. LAB ON A CHIP 2011; 11:3864-72. [PMID: 21964758 DOI: 10.1039/c1lc20413k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lateral displacement of blood cells occurred when they were passed over a planar interdigitated electrode array placed at an angle to the direction of flow, and was determined to be a function of cell size. A simplified line charge model was used to estimate numerically the lateral displacement. Based on the size-specific lateral displacement, a lateral dielectrophoretic (DEP) microseparator was developed to measure the size distribution of blood cells using fluorescence microscopy. To determine whether the lateral DEP microseparator was useful, it was used to detect acute leukemia by measuring the size distribution of blood cells. The lateral DEP microseparator provided a practical method for continuously and simultaneously separating multi-cell populations by size from a heterogeneous cell population. In the future, sensitivity of the lateral DEP microseparator could be improved and it could be automated by integrating subsequent advanced detection technologies in a micro-format.
Collapse
Affiliation(s)
- Song-I Han
- Department of Nano Engineering, Center for Nano Manufacturing, Inje University, GyongNam, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Gou HL, Zhang XB, Bao N, Xu JJ, Xia XH, Chen HY. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device. J Chromatogr A 2011; 1218:5725-9. [DOI: 10.1016/j.chroma.2011.06.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/21/2011] [Accepted: 06/26/2011] [Indexed: 01/12/2023]
|
40
|
Bernabini C, Holmes D, Morgan H. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. LAB ON A CHIP 2011; 11:407-12. [PMID: 21060945 DOI: 10.1039/c0lc00099j] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The sensitivity of a microfluidic impedance flow cytometer is governed by the dimensions of the sample analysis volume. A small volume gives a high sensitivity, but this can lead to practical problems including fabrication and clogging of the device. We describe a microfluidic impedance cytometer which uses an insulating fluid to hydrodynamically focus a sample stream of particles suspended in electrolyte, through a large sensing volume. The detection region consists of two pairs of electrodes fabricated within a channel 200 µm wide and 30 µm high. The focussing technique increases the sensitivity of the system without reducing the dimensions of the microfluidic channel. We demonstrate detection and discrimination of 1 µm and 2 µm diameter polystyrene beads and also Escherichia coli. Impedance data from single particles are correlated with fluorescence emission measured simultaneously. Data are also compared with conventional flow cytometry and dynamic light scattering: the coefficient of variation (CV) of size is found to be comparable between the systems.
Collapse
Affiliation(s)
- Catia Bernabini
- School of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | | | | |
Collapse
|
41
|
Kim JS, Ligler FS. Utilization of microparticles in next-generation assays for microflow cytometers. Anal Bioanal Chem 2010; 398:2373-82. [PMID: 20526882 PMCID: PMC2965807 DOI: 10.1007/s00216-010-3848-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 11/26/2022]
Abstract
Micron-sized particles have primarily been used in microfabricated flow cytometers for calibration purposes and proof-of-concept experiments. With increasing frequency, microparticles are serving as a platform for assays measured in these small analytical devices. Light scattering has been used to measure the agglomeration of antibody-coated particles in the presence of an antigen. Impedance detection is another technology being integrated into microflow cytometers for microparticle-based assays. Fluorescence is the most popular detection method in flow cytometry, enabling highly sensitive multiplexed assays. Finally, magnetic particles have also been used to measure antigen levels using a magnetophoretic micro-device. We review the progress of microparticle-based assays in microflow cytometry in terms of the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Jason S. Kim
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - Frances S. Ligler
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| |
Collapse
|
42
|
Nasir M, Price DT, Shriver-Lake LC, Ligler F. Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor. LAB ON A CHIP 2010; 10:2787-2795. [PMID: 20725680 DOI: 10.1039/c005257d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper investigated the effects of diffusion between non-conductive sheath and conductive sample fluids in an impedance-based biosensor. Impedance measurements were made with 2- and 4-electrode configurations. The 4-electrode design offers the advantage of impedance measurements at low frequencies (<1 kHz) without the deleterious effects of double layer impedance which are present in the 2-electrode design. Hydrodynamic flow focusing was achieved with a modified T-junction design with a smaller cross-section for the sample channel than for the focusing channel, which resulted in 2D focusing of the sample stream with just one sheath stream. By choosing a non-conductive sheath fluid and a conductive sample fluid, the electric field was confined to the focused stream. In order to utilize this system for biosensing applications, we characterized it for electrical and flow parameters. In particular, we investigated the effects of varying flow velocities and flow-rate ratios on the focused stream. Increasing flow-rate ratios reduced the cross-sectional area of the focused streams as was verified by finite element modeling and confocal microscopy. Antibody mediated binding of Escherichia coli to the electrode surface caused an increase in solution resistance at low frequencies. The results also showed that the diffusion mass transport at the interface of the two streams limited the benefits of increased flow focusing. Increasing flow velocities could be used to offset the diffusion effect. To optimize detection sensitivity, flow parameters and mass transport must be considered in conjunction, with the goal of reducing diffusion of conducting species out of the focused stream while simultaneously minimizing its cross-sectional area.
Collapse
Affiliation(s)
- Mansoor Nasir
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| | | | | | | |
Collapse
|
43
|
Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tárnok A. Microfluidic impedance-based flow cytometry. Cytometry A 2010; 77:648-66. [PMID: 20583276 DOI: 10.1002/cyto.a.20910] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microfabricated flow cytometers can detect, count, and analyze cells or particles using microfluidics and electronics to give impedance-based characterization. Such systems are being developed to provide simple, low-cost, label-free, and portable solutions for cell analysis. Recent work using microfabricated systems has demonstrated the capability to analyze micro-organisms, erythrocytes, leukocytes, and animal and human cell lines. Multifrequency impedance measurements can give multiparametric, high-content data that can be used to distinguish cell types. New combinations of microfluidic sample handling design and microscale flow phenomena have been used to focus and position cells within the channel for improved sensitivity. Robust designs will enable focusing at high flowrates while reducing requirements for control over multiple sample and sheath flows. Although microfluidic impedance-based flow cytometers have not yet or may never reach the extremely high throughput of conventional flow cytometers, the advantages of portability, simplicity, and ability to analyze single cells in small populations are, nevertheless, where chip-based cytometry can make a large impact.
Collapse
Affiliation(s)
- Karen C Cheung
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu HW, Hsu RC, Lin CC, Hwang SM, Lee GB. An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. BIOMICROFLUIDICS 2010; 4:024112. [PMID: 20697577 PMCID: PMC2917870 DOI: 10.1063/1.3454767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/26/2010] [Indexed: 05/05/2023]
Abstract
This study reports an integrated microfluidic system capable of isolation, counting, and sorting of hematopoietic stem cells (HSCs) from cord blood in an automatic format by utilizing a magnetic-bead-based immunoassay. Three functional modules, including cell isolation, cell counting, and cell sorting modules are integrated on a single chip by using microfluidic technology. The cell isolation module is comprised of a four-membrane-type micromixer for binding of target stem cells and magnetic beads, two pneumatic micropumps for sample transport, and an S-shaped channel for isolation of HSCs using a permanent magnet underneath. The counting and sorting of HSCs are performed by utilizing the cell counting and sorting modules. Experimental results show that a separation efficiency as high as 88% for HSCs from cord blood is achieved within 40 min for a sample volume of 100 mul. Therefore, the development of this integrated microfluidic system may be promising for various applications such as stem cell research and cell therapy.
Collapse
|
45
|
Sun T, Swindle EJ, Collins JE, Holloway JA, Davies DE, Morgan H. On-chip epithelial barrier function assays using electrical impedance spectroscopy. LAB ON A CHIP 2010; 10:1611-7. [PMID: 20379587 DOI: 10.1039/c000699h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A bio-impedance chip has been developed for real-time monitoring of the kinetics of epithelial cell monolayers in vitro. The human bronchial epithelial cell line (16-HBE 14o-) was cultured in Transwells creating a sustainable and interactive model of the airway epithelium. Conducting polymer polypyrrole (PPy) doped with polystyrene sulfonate (PSS) was electrochemically deposited onto the surface of gold-plated electrodes to reduce the influence of the electrical double layer on the impedance measurements. Finite element and equivalent circuit models were used to model and determine the electrical properties of the epithelial cell monolayer from the impedance spectra. Electrically tight, confluent monolayers of 16 HBE 14o- cells were treated with increasing concentrations of either Triton X-100 to solubilize cell membranes or ethylene glycol-bis(2-aminoethyl-ether)-N,N,N'N'-tetraacetic acid (EGTA) to disrupt cell-cell adhesion. Experimental impedance data showed that disruption of epithelial barrier function in response to Triton X-100 and EGTA can be successfully measured by the bio-impedance chip. The results were consistent with the conventional hand-held trans-epithelial electrical resistance measurements. Immunofluorescent staining of the ZO-1 tight junction protein in the untreated and treated 16HBEs was performed to verify the disruption of the tight junctions by EGTA.
Collapse
Affiliation(s)
- Tao Sun
- Nano Research Group, School of Electronics and Computer Science, University of Southampton, SO17 1BJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Sun T, Bernabini C, Morgan H. Single-colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3821-8. [PMID: 19845351 DOI: 10.1021/la903609u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a high-speed microfluidic technique for characterizing the dielectric properties of individual polyelectrolyte microcapsules with different shell thicknesses using single-particle electrical impedance spectroscopy. Complete equivalent circuit analysis is developed to describe the electrical behavior of solid homogeneous microparticles and shelled microcapsules in suspension. The complete circuit model, which includes the resistance of the shell layer and the capacitance of the inner core, has been used to determine the permittivity and conductivity in the shell of single capsules. The PSpice circuit simulations, based on the developed complete circuit models, are used to analyze the experimental data. The relative permittivity of the polyelectrolyte capsule shell is determined to be 50, and the conductivities of the shells of six- and nine-layer microcapsules are estimated to be 28 +/- 6 and 3.3 +/- 1.7 mS m(-1), respectively.
Collapse
Affiliation(s)
- Tao Sun
- Nano Research Group, School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
47
|
Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 2010; 39:1203-17. [PMID: 20179832 DOI: 10.1039/b915999c] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The progress in microfabrication and lab-on-a-chip technologies has been a major area of development for new approaches to bioanalytics and integrated concepts for cell biology. Fundamental advances in the development of elastomer based microfluidics have been driving factors for making microfluidic technology available to a larger scientific community in the past years. In line with this, microfluidic separation of cells and particles is currently developing rapidly where key areas of interest are found in designing lab-on-a-chip systems that offer controlled microenvironments for studies of fundamental cell biology. More recently industrial interests are seen in the development of micro chip based flow cytometry technology both for preclinical research and clinical diagnostics. This critical review outlines the most recent developments in microfluidic technology for cell and particle separation in continuous flow based systems. (130 references).
Collapse
Affiliation(s)
- Andreas Lenshof
- Dept. Measurement Technology and Industrial Electrical Engineering, Div. Nanobiotechnology, Lund University, 22100 Lund, Sweden.
| | | |
Collapse
|
48
|
Watkins N, Venkatesan BM, Toner M, Rodriguez W, Bashir R. A robust electrical microcytometer with 3-dimensional hydrofocusing. LAB ON A CHIP 2009; 9:3177-84. [PMID: 19865723 PMCID: PMC4142320 DOI: 10.1039/b912214a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this paper, we present a device to electrically count blood cell populations using an AC impedance interrogation technique in a microfabricated cytometer (microcytometer). Specifically, we direct our attention to obtaining the concentration of human CD4+ T lymphocytes (helper T cells), which is a necessary method to diagnose patients for HIV/AIDS and to give an accurate prognosis on the effectiveness of ARV (anti-retroviral) drug treatments. We study the effectiveness of a simple-to-fabricate 3-dimensional (3D) hydrodynamic focusing mechanism through fluidic simulations and corresponding experiments to increase the signal-to-noise ratio of impedance pulses caused by particle translocation and ensure lower variance in particle translocation height through the electrical sensing region. We found that the optimal 3D sheath flow settings result in a 44.4% increase in impedance pulse signal-to-noise ratio in addition to giving a more accurate representation of particle size distribution. Our microcytometer T cell counts closely with those found using an industry-standard flow cytometer for the concentration range of over three orders of magnitude and using a sample volume approximately the size of a drop of blood (approximately 20 microL). In addition, our device displayed the capability to differentiate between live and dead/dying lymphocyte populations. This microcytometer can be the basis of a portable, rapid, inexpensive solution to obtaining live/dead blood cell counts even in the most resource-poor regions of the world.
Collapse
Affiliation(s)
- Nicholas Watkins
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Bala Murali Venkatesan
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Mehmet Toner
- Surgical Services and Bio MEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, and Shiners Hospital for Children, Boston, MA 02114, USA
| | - William Rodriguez
- Partners AIDS Research Center, Massachusetts General Hospital and Division of AIDS, Harvard Medical School, and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rashid Bashir
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Holmes D, Pettigrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, Davies DE, Morgan H. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. LAB ON A CHIP 2009; 9:2881-9. [PMID: 19789739 DOI: 10.1039/b910053a] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Miniature high speed label-free cell analysis systems have yet to be developed, but have the potential to deliver fast, inexpensive and simple full blood cell analysis systems that could be used routinely in clinical practice. We demonstrate a microfluidic single cell impedance cytometer that performs a white blood cell differential count. The device consists of a microfluidic chip with micro-electrodes that measure the impedance of single cells at two frequencies. Human blood, treated with saponin/formic acid to lyse erythrocytes, flows through the device and a complete blood count is performed in a few minutes. Verification of cell dielectric parameters was performed by simultaneously measuring fluorescence from CD antibody-conjugated cells. This enabled direct correlation of impedance signals from individual cells with phenotype. Tests with patient samples showed 95% correlation against commercial (optical/Coulter) blood analysis equipment, demonstrating the potential clinical utility of the impedance microcytometer for a point-of-care blood analysis system.
Collapse
Affiliation(s)
- David Holmes
- School of Electronics and Computing Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Requa MV, Fraikin JL, Stanton MA, Cleland AN. Nanoscale radiofrequency impedance sensors with unconditionally stable tuning. JOURNAL OF APPLIED PHYSICS 2009; 106:74308. [PMID: 19902001 PMCID: PMC2774346 DOI: 10.1063/1.3243315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Impedance sensors perform an important role in a number of biosensing applications, including particle counting, sizing, and velocimetry. Detection of nanoparticles, or changes in, e.g., the interfacial Debye-Hückel layer, can also be performed using nanoscale impedance sensors. One method for monitoring changes in the local impedance is to use radiofrequency reflectometry, which when combined with an impedance-matched sensor can afford very high sensitivity with very large detection bandwidth. Maintaining sensitivity and dynamic range, however, requires continuous tuning of the impedance matching network. Here we demonstrate a dual feedback tuning circuit, which allows us to maintain near-perfect impedance matching, even in the presence of long-term drifts in sensor impedance. We apply this tuning technique to a nanoscale interdigitated impedance sensor, designed to allow the direct detection of nanoparticles or real-time monitoring of molecular surface binding. We demonstrate optimal performance of the nanoscale sensor and tuned impedance network both when modulating the concentration of saline to which the sensor is exposed and when electronically switching between sensors configured in a two-element differential array, achieving a stabilization response time of <20 ms.
Collapse
|