1
|
Peng J, Song Y, Lin Y, Huang Z. Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1648. [PMID: 39452983 PMCID: PMC11510290 DOI: 10.3390/nano14201648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.
Collapse
Affiliation(s)
- Jianping Peng
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yutao Song
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yue Lin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
2
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
3
|
Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022; 64:783-800. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that food safety has aroused extensive attentions from governments to researchers and to food industries. As a versatile technology based on molecular interactions, aptamer sensors which could specifically identify a wide range of food contaminants have been extensively studied in recent years. Surface-enhanced Raman spectroscopy integrated aptamer combines the advantages of both technologies, not only in the ability to specifically identify a wide range of food contaminants, but also in the ultra-high sensitivity, simplicity, portable and speed. To provide beneficial insights into the evaluation techniques in the field of food safety, we offer a comprehensive review on the design strategies for aptamer-SERS sensors in different scenarios, including non-nucleic acid amplification methods ("on/off" mode, sandwich mode, competition model and catalytic model) and nucleic acid amplification methods (hybridization chain reaction, rolling circle amplification, catalytic hairpin assembly). Meanwhile, a special attention is paid to the application of aptamer-SERS sensors in biological (foodborne pathogenic, bacteria and mycotoxins) and chemical contamination (drug residues, metal ions, and food additives) of food matrix. Finally, the challenges and prospects of developing reliable aptamer-SERS sensors for food safety were discussed, which are expected to offer a strong guidance for further development and extended applications.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ling Liu
- Wuxi Institute of Technology, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Brandão-Dias PFP, Deatsch AE, Tank JL, Shogren AJ, Rosi EJ, Ruggiero ST, Tanner CE, Egan SP. Novel Field-Based Protein Detection Method Using Light Transmission Spectroscopy and Antibody Functionalized Gold Nanoparticles. NANO LETTERS 2022; 22:2611-2617. [PMID: 35362986 DOI: 10.1021/acs.nanolett.1c04142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein detection is a universal tool critical to many applications in medicine, agriculture, and biotechnology. We developed a novel protein detection method combining light transmission spectroscopy and particle-size analysis of gold nanospheres monovalently functionalized with polyclonal antibodies and applied it to an emerging challenge for such technologies─the monitoring of environmental proteins (eProteins) present in natural aquatic systems. These are an underreported source of pollution and include the pseudopersistent Cry toxins that enter aquatic ecosystems from surrounding genetically engineered crops. The assay is capable of detecting proteins in complex matrices, such as water samples collected in the field, making it a competitive assay for eProtein detection. It is sensitive, reaching 1.25 ng mL-1, and we demonstrate its application to the detection of Cry1Ab from subsurface tile-drain and streamwater samples from agricultural waterways. The assay can also be quickly adapted for other protein detection applications in the future.
Collapse
Affiliation(s)
| | - Alison E Deatsch
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arial J Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| | - Steven T Ruggiero
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carol E Tanner
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Yan M, Li H, Li M, Cao X, She Y, Chen Z. Advances in Surface-Enhanced Raman Scattering-Based Aptasensors for Food Safety Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14049-14064. [PMID: 34798776 DOI: 10.1021/acs.jafc.1c05274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the excellent performances of high sensitivity, high specificity, on-site detection, and multiplexing capability, surface-enhanced Raman scattering (SERS)-based aptasensors have performed prosperous applications and gained impressive progress in food safety. Herein, we reviewed the SERS-based aptasensors from the principles to specific applications in food safety. First, the sensor-working principles, SERS label design and preparation are introduced. Then, the popular platforms in the aptasensors are summarized with their advantages and disadvantages, followed by their representative applications. Further, the specific applications of developing SERS-based aptasensors in food safety are systematically provided. Moreover, the multiplex analysis using SERS labels are highlighted. Finally, challenges and perspectives for improving the SERS-based aptasensor performance are also discussed, aiming to give some proposes for researchers to choose suitable SERS-based aptasensors according to specific applications.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Huidong Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Min Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zilei Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
6
|
A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021; 227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
Surface-enhanced Raman spectroscopy, due to its high sensitivity, unique vibrational fingerprint identification of molecules and easy operation, has been extensively applied in different fields. Aptamers, being the unique single stranded DNA/RNA sequences that can specifically recognize and seize the target analytes, combined with Surface-enhanced Raman spectroscopy (SERS), can offer potent multiplex detection capacity with high specificity and sensitivity. In this review, we summarize and classify the general working strategies of different types of aptamer-based SERS biosensors with diversified protocols which either take aptamer conformational change as intrinsic reporter, or make use of various extrinsic Raman reporters in different sensor designs via on/off approach, sandwich-type and magnetic nanoparticles (NPs)-assisted approach, and catalytic reaction assisted approach with amplification of alternative Raman signals. The advantages, applications and perspectives of these aptamer-based SERS biosensors are also discussed.
Collapse
|
7
|
|
8
|
Alves RS, Sigoli FA, Mazali IO. Aptasensor based on a flower-shaped silver magnetic nanocomposite enables the sensitive and label-free detection of troponin I (cTnI) by SERS. NANOTECHNOLOGY 2020; 31:505505. [PMID: 32927448 DOI: 10.1088/1361-6528/abb84f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acute myocardial infarction (AMI) is nowadays the leading death cause worldwide. For that reason, the early diagnosis of AMI is of central importance to reduce the risk of death. In this sense, aptamer-based sensors for surface-enhanced Raman spectroscopy (SERS aptasensors) emerged as an interesting alternative for future high-performance diagnostic tools. SERS aptasensors combine the fast, precise, and sensitive nature of SERS measurements with the selectivity of aptamers for specific biological targets. Herein, we report an efficient SERS aptasensor for the detection of cardiac troponin I (cTnI), a gold-standard biomarker for AMI. Our SERS platform comprises a magnetite core with an intermediate silica shell, and a flower-shaped silver layer (Fe3O4@SiO2@Ag) to confer excellent plasmonic properties and ease of collection by magnetism. The branched silver structure combined with magnetic aggregation offers a high near-field amplification to superior SERS performance. Additionally, a tailored DNA aptamer with high specificity for cTnI was anchored to the silver surface to produce the aptasensor with increased sensing capability towards cTnI. With our SERS aptasensor, a cTnI concentration as low as 10 ng ml-1 (10-11 mol l-1) could be detected. This value is ten times lower than the upper threshold of the typical concentration range of cTnI of AMI patients. Hence, our SERS aptasensor holds great promise to be explored in AMI diagnosis.
Collapse
Affiliation(s)
- Raisa Siqueira Alves
- Laboratory of Functional Materials/Institute of Chemistry-University of Campinas, P.O. Box 6154, 13084-970, Campinas, Brazil
| | - Fernando Aparecido Sigoli
- Laboratory of Functional Materials/Institute of Chemistry-University of Campinas, P.O. Box 6154, 13084-970, Campinas, Brazil
| | - Italo Odone Mazali
- Laboratory of Functional Materials/Institute of Chemistry-University of Campinas, P.O. Box 6154, 13084-970, Campinas, Brazil
| |
Collapse
|
9
|
Calzada V. Aptamers in Diagnostic and Molecular Imaging Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:141-160. [PMID: 31848635 DOI: 10.1007/10_2019_115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The origin of the term diagnostic comes from the Greek word gnosis, meaning "to know." In medicine, a diagnostic can predict the pathology risk, disease status, treatment, and prognosis, even following therapy. An early and correct diagnosis is necessary for an efficient treatment. Moreover, it is possible to predict if and why a therapy will be successful or fail, enabling the timely application of alternative therapeutic strategies. Available diagnostics are due to the advances in biotechnology; however, more sensitive, low-cost, and noninvasive methodologies are still a challenge. Knowledge about molecular characteristics provide personalized information, which is the goal of future medicine. Today, multiple diagnostic techniques have emerged, with which it is possible to distinguish molecular patterns.In this way, aptamers are the perfect tools to recognize molecular targets and can be easily modified to confer additional functions. Their versatile characteristics and low cost make aptamers ideal for diagnostic applications.This chapter is a review of aptamer-based diagnostics in biomedicine, with a special focus on probe design and molecular imaging. Graphical Abstract.
Collapse
Affiliation(s)
- Victoria Calzada
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
10
|
3D Ultrasensitive Polymers-Plasmonic Hybrid Flexible Platform for In-Situ Detection. Polymers (Basel) 2020; 12:polym12020392. [PMID: 32050477 PMCID: PMC7077657 DOI: 10.3390/polym12020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
This paper introduces a three-dimensional (3D) pyramid to the polymers-plasmonic hybrid structure of polymethyl methacrylate (PMMA) composite silver nanoparticle (AgNPs) as a higher quality flexible surface-enhanced Raman scattering (SERS) substrate. Benefiting from the effective oscillation of light inside the pyramid valley could provide wide distributions of 3D “hot spots” in a large space. The inclined surface design of the pyramid structure could facilitate the aggregation of probe molecules, which achieves highly sensitive detection of rhodamine 6G (R6G) and crystal violet (CV). In addition, the AgNPs and PMMA composite structures provide uniform space distribution for analyte detection in a designated hot spot zone. The incident light can penetrate the external PMMA film to trigger the localized plasmon resonance of the encapsulated AgNPs, achieving enormous enhancement factor (~6.24×108). After undergoes mechanical deformation, the flexible SERS substrate still maintains high mechanical stability, which was proved by experiment and theory. For practical applications, the prepared flexible SERS substrate is adapted to the in-situ Raman detection of adenosine aqueous solution and the methylene-blue (MB) molecule detection of the skin of a fish, providing a direct and nondestructive active-platform for the detecting on the surfaces with any arbitrary morphology and aqueous solution.
Collapse
|
11
|
Fang Q, Li Y, Miao X, Zhang Y, Yan J, Yu T, Liu J. Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology. Analyst 2019; 144:3649-3658. [PMID: 31074470 DOI: 10.1039/c9an00190e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Serious healthcare concerns have been raised on the issue of antibiotic residues after overuse, especially by accumulation in the human body through food webs. Here, we report a methodological development for sensitive detection of antibiotics with aptamer conformation cooperated enzyme-assisted SERS (ACCESS) technology. We design and integrate a set of nucleic acid oligos, realizing specific recognition of chloramphenicol (CAP) and efficient exonuclease III-assisted DNA amplification. It features a "signal-on" analysis of CAP with the limit of detection (15 fM), the lowest concentration detectable in the literature. Our method exhibits a high selectivity on the target analyte, free of interference of other potential antibiotic contaminants. The ACCESS assay promises an ultrasensitive and specific detection tool for trace amounts of antibiotic residues in samples of our daily life.
Collapse
Affiliation(s)
- Qianqian Fang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yingying Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xinxing Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yiqiu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jun Yan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Tainrong Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
12
|
Zhang N, Ye S, Wang Z, Li R, Wang M. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals. ACS Sens 2019; 4:924-930. [PMID: 30924337 DOI: 10.1021/acssensors.9b00031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Imaging and detecting microRNAs (miRNAs) is of central importance in tumor cell analysis. It stays challenging to establish simple, accurate, and sensitive analytical assays for imaging and detection of miRNA in a single living cell, because of intracellular complex environment and miRNA sequence similarity. Herein, we designed a dual-signal twinkling probe (DSTP) with triplex-stem structure which employed a fluorescence-SERS signal reciprocal switch. The spatiotemporal dynamics of the miRNA molecular and intracellular uptake of the probe are monitored by fluorescence-SERS signal switch of the DSTP. Meanwhile, using the surface-enhanced Raman scattering (SERS) signals of DSTP, the measure of absolute value coupling of reciprocal signals is first used to real-time detection of miRNA. Through simultaneous enhancing the target response signal value and reducing blank value, this work deducted the background effect, and showed high sensitivity and reproducibility. Moreover, the probe shows excellent reversibility and specificity in real quantitative detection of intracellular miRNA. miR-203 was successfully monitored in MCF-7, in accord with the results in vitro as well as in cell lysates. We anticipate that this new dual-signal twinkling and dual-spectrum switch method will be generally useful to image and detect various types of biomolecules in single living cell.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhenxing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ronghua Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Menglei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; State Key Laboratory Base for Eco-chemical Engineering; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
13
|
Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim KH, Deep A. Optical detection of waterborne pathogens using nanomaterials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
A simple strategy to improve the sensitivity of probe molecules on SERS substrates. Talanta 2019; 195:221-228. [DOI: 10.1016/j.talanta.2018.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022]
|
15
|
Szlag VM, Rodriguez RS, He J, Hudson-Smith N, Kang H, Le N, Reineke TM, Haynes CL. Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31825-31844. [PMID: 30134102 DOI: 10.1021/acsami.8b10303] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research at the interface of synthetic materials, biochemistry, and analytical techniques has enabled sensing platforms for applications across many research communities. Herein we review the materials used as affinity agents to create surface-enhanced Raman spectroscopy (SERS) sensors. Our scope includes those affinity agents (antibody, aptamer, small molecule, and polymer) that facilitate the intrinsic detection of targets relevant to biology, medicine, national security, environmental protection, and food safety. We begin with an overview of the analytical technique (SERS) and considerations for its application as a sensor. We subsequently describe four classes of affinity agents, giving a brief overview on affinity, production, attachment chemistry, and first uses with SERS. Additionally, we review the SERS features of the affinity agents, and the analytes detected by intrinsic SERS with that affinity agent class. We conclude with remarks on affinity agent selection for intrinsic SERS sensing platforms.
Collapse
Affiliation(s)
- Victoria M Szlag
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Rebeca S Rodriguez
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jiayi He
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalie Hudson-Smith
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hyunho Kang
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ngoc Le
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
16
|
Guo W, Hu Y, Wei H. Enzymatically activated reduction-caged SERS reporters for versatile bioassays. Analyst 2018; 142:2322-2326. [PMID: 28574077 DOI: 10.1039/c7an00552k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report a facile strategy for activating reduction caged Raman reporters for surface-enhanced Raman scattering (SERS) with peroxidases. After selecting suitable caged reporters, versatile bioassays were developed. First, the bioassays for bioactive small molecules were developed. Then, the immunoassay was developed for C reactive protein (CRP), a biomarker for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenjing Guo
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.
| | | | | |
Collapse
|
17
|
Wu J, Li S, Wei H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. NANOSCALE HORIZONS 2018; 3:367-382. [PMID: 32254124 DOI: 10.1039/c8nh00070k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over decades, as alternatives to natural enzymes, highly-stable and low-cost artificial enzymes have been widely explored for various applications. In the field of artificial enzymes, functional nanomaterials with enzyme-like characteristics, termed as nanozymes, are currently attracting immense attention. Significant progress has been made in nanozyme research due to the exquisite control and impressive development of nanomaterials. Since nanozymes are endowed with unique properties from nanomaterials, an interesting investigation is multifunctionality, which opens up new potential applications for biomedical sensing and sustainable chemistry due to the combination of two or more distinct functions of high-performance nanozymes. To highlight the progress, in this review, we discuss two representative types of multifunctional nanozymes, including iron oxide nanomaterials with magnetic properties and metal nanomaterials with surface plasmon resonance. The applications are also covered to show the great promise of such multifunctional nanozymes. Future challenges and prospects are discussed at the end of this review.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
18
|
Ultrasensitive detection of aflatoxin B1 and its major metabolite aflatoxin M1 using aptasensors: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Wei Y, Li L, Sun DX, Wang ML, Zhu YY. Density-matrix evaluation of the enhancement to resonant Raman scattering and fluorescence of molecules confined in metallic nanoparticle dimers. Sci Rep 2018; 8:1832. [PMID: 29382941 PMCID: PMC5789855 DOI: 10.1038/s41598-018-20328-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
In the present work we study the surface-enhanced resonant Raman scattering (SERRS) and fluorescence (SEF) spectra of a general model molecule confined in metallic dimers consisting of Ag, Au and hybrid AuAg nanoparticles (NPs). The electromagnetic (EM) enhancement factors were simulated by the generalized Mie scatting method and the scattering cross section of the molecules were obtained by density-matrix calculations. The influence of the size of the NPs and the separation between the dimer on the Raman scattering and fluorescence were systematically studied and analyzed in detail. It was found that the SERRS mainly related to EM enhancement and the SEF depended on the competition between EM enhancement and quantum yield, both of which could be controlled by tuning the radius and separation of the metallic dimers. The optimal radius of the NPs for SERRS were found to be around 30 nm for AgNPs, 40 nm for AuNPs and 50 nm for hybrid AuAgNPs. The strongest Raman enhancement as predicted by the theoretical simulations were 6.2 × 1010, 1.5 × 107 and 5.2 × 108 for the three types of structures, respectively. These results could offer valuable information for the design of metallic substrates for surface enhanced Raman and fluorescence measurements.
Collapse
Affiliation(s)
- Yong Wei
- Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Li Li
- Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - De-Xian Sun
- Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Ming-Li Wang
- Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yan-Ying Zhu
- Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
20
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
21
|
Prakash J, Harris R, Swart H. Embedded plasmonic nanostructures: synthesis, fundamental aspects and their surface enhanced Raman scattering applications. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1187006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Couto C, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles and bioconjugation: a pathway for proteomic applications. Crit Rev Biotechnol 2016; 37:238-250. [DOI: 10.3109/07388551.2016.1141392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cláudia Couto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| | - Rui Vitorino
- Mass Spectrometry Center, Organic Chemistry, Natural and Agro-Food Products Research Unit (QOPNA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
- Department of Medical Sciences, iBiMED - Institute for Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal and
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| |
Collapse
|
23
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|
24
|
Harris RA, Mlambo M, Mdluli PS. Qualitative analysis of some alkanethiols on Au nanoparticles during SERS. RSC Adv 2016. [DOI: 10.1039/c5ra24795k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The surface enhanced Raman spectroscopy enhancement factors (SERS EFs) for different AuNP–surfactant systems are measured and the observed trend is theoretically and qualitatively investigated.
Collapse
Affiliation(s)
- R. A. Harris
- University of the Free State
- Physics
- Bloemfontein
- South Africa
| | - M. Mlambo
- University of Pretoria
- Physics
- Pretoria
- South Africa
| | - P. S. Mdluli
- Durban University of Technology
- Chemistry
- Durban
- South Africa
| |
Collapse
|
25
|
Duan N, Chang B, Zhang H, Wang Z, Wu S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 2015; 218:38-43. [PMID: 26599860 DOI: 10.1016/j.ijfoodmicro.2015.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/19/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based aptasensor approach for quantitative detection of pathogenic bacteria. A SERS substrate bearing Au@Ag core/shell nanoparticles (NPs) is functionalized with aptamer 1 (apt 1) for the capture of target molecules. X-rhodamine (ROX)-modified aptamer 2 (apt 2) is used as recognition element and Raman reporter. Salmonella typhimurium specifically interacted with the aptamers to form Au@Ag-apt 1-target-apt 2-ROX sandwich-like complexes. As a result, the concentration of S. typhimurium was determined using this developed aptasensor structure, and a calibration curve is obtained in the range of 15 to 1.5 × 10(6) cfu/mL with a limit of detection of 15 cfu/mL. Our method was successfully applied to real food samples, and the results are consistent with the results obtained using plate counting methods. We believe that the developed method shows potential for the rapid and sensitive detection of pathogenic bacteria in food safety assurance.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Boya Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- China Rural Technology Development Center, Beijing 100045, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
26
|
Affiliation(s)
- Wen Zhou
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
27
|
Solovyeva EV, Myund LA, Denisova AS. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:196-200. [PMID: 25956332 DOI: 10.1016/j.saa.2015.04.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd(2+) ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd(2+) complex which desorption causes the loss of SERS signal.
Collapse
Affiliation(s)
- Elena V Solovyeva
- Chemistry Institute, Saint-Petersburg State University, Universitetsky pr. 26, Stary Peterhof, Saint-Petersburg 198504, Russian Federation
| | - Liubov A Myund
- Chemistry Institute, Saint-Petersburg State University, Universitetsky pr. 26, Stary Peterhof, Saint-Petersburg 198504, Russian Federation
| | - Anna S Denisova
- Chemistry Institute, Saint-Petersburg State University, Universitetsky pr. 26, Stary Peterhof, Saint-Petersburg 198504, Russian Federation.
| |
Collapse
|
28
|
Wu S, Wang Y, Duan N, Ma H, Wang Z. Colorimetric Aptasensor Based on Enzyme for the Detection of Vibrio parahemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7849-7854. [PMID: 26302256 DOI: 10.1021/acs.jafc.5b03224] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple colorimetric aptasensor system has been developed to detect Vibrio parahemolyticus. Magnetic nanoparticles (MNPs) are synthesized and conjugated with specific aptamers against target and used as capture probes. In addition, this method employs gold nanoparticles (AuNPs) as carriers of horseradish peroxidase (HRP) and aptamers, which served as signal probes. In the presence of target, a "sandwich-type" complex of AuNPs-HRP-aptamer-target-aptamer-MNPs is formed through specific recognition of aptamers and corresponding target. As a result, HRP molecules confined at the surface of the "sandwich" complexes catalyze the enzyme substrate, 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 and generate an optical signal. Under optimal conditions, the signals are linearly dependent on V. parahemolyticus concentrations from 10 to 10(6) colony-forming units (cfu)/mL in a logarithmic plot, with a limit of detection of 10 cfu/mL. Owing to AuNPs, a large amount of HRP could be loaded, resulting in an amplified signal, and the sensitivity would be improved. This strategy has the potential of being extended to the construction of simple monitor systems for a variety of biomolecules related to food safety.
Collapse
Affiliation(s)
- Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yinqiu Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| |
Collapse
|
29
|
Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1570-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Wang AX, Kong X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. MATERIALS (BASEL, SWITZERLAND) 2015; 8:3024-3052. [PMID: 26900428 PMCID: PMC4758820 DOI: 10.3390/ma8063024] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.
Collapse
Affiliation(s)
- Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xianming Kong
- Department of Forest Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; E-Mail:
| |
Collapse
|
31
|
Xu S, Man B, Jiang S, Wang J, Wei J, Xu S, Liu H, Gao S, Liu H, Li Z, Li H, Qiu H. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10977-87. [PMID: 25941901 DOI: 10.1021/acsami.5b02303] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped by a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based on the G/CuNPs system, the ultrasensitive SERS detection of adenosine in varied matrices was expected for the practical applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Shicai Xu
- †College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Baoyuan Man
- ‡College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Shouzhen Jiang
- ‡College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jihua Wang
- †College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jie Wei
- §Department of Neurology, Dezhou People's Hospital, Dezhou 253014, China
| | - Shida Xu
- ∥Department of Internal Medicine, Dezhou People's Hospital, Dezhou 253014,China
| | - Hanping Liu
- †College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Shoubao Gao
- ‡College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Huilan Liu
- †College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Zhenhua Li
- †College of Physics and Electronic Information, Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongsheng Li
- ⊥Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan 250117, China
| | - Hengwei Qiu
- ‡College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
32
|
Chang H, Kang H, Jeong S, Ko E, Lee YS, Lee HY, Jeong DH. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:055004. [PMID: 26026551 DOI: 10.1063/1.4921100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.
Collapse
Affiliation(s)
- Hyejin Chang
- Department of Chemistry Education, Seoul National University, Seoul 151-742, South Korea
| | - Homan Kang
- Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Sinyoung Jeong
- Department of Chemistry Education, Seoul National University, Seoul 151-742, South Korea
| | - Eunbyeol Ko
- Department of Chemistry Education, Seoul National University, Seoul 151-742, South Korea
| | - Yoon-Sik Lee
- Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, South Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
33
|
Tang L, Li S, Han F, Liu L, Xu L, Ma W, Kuang H, Li A, Wang L, Xu C. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelectron 2015; 71:7-12. [PMID: 25880832 DOI: 10.1016/j.bios.2015.04.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 04/05/2015] [Indexed: 01/26/2023]
Abstract
Dopamine (DA) is a neurotransmitter which plays a key role in the life science. Self-assembled Au@Ag nanorod dimers based on aptamers were developed for ultrasensitive dopamine detection. The electronic field was significantly enhanced by the addition of silver shell coating on the surface of Au NR dimer. The results displayed that Au@Ag NR dimers were ideal building blocks for constructing the SERS substrates with prominent Raman enhancement effects. It was found that with using this Surface-enhanced Raman scattering (SERS)-encoded this sensing system, a limit of detection of 0.006 pM and a wide linear range of 0.01-10 pM for dopamine detection were obtained. Our work open up a new avenue for the diagnosis and drug-discovery programs.
Collapse
Affiliation(s)
- Lijuan Tang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Si Li
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Fei Han
- Cereals & Oils Nutrition Research Group, Academy of Science & Technology of State Administration of Grain, Beijing 100037, PR China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Wei Ma
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Aike Li
- Cereals & Oils Nutrition Research Group, Academy of Science & Technology of State Administration of Grain, Beijing 100037, PR China.
| | - Libing Wang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu 214122, PR China.
| |
Collapse
|
34
|
Hu Y, Guo W, Wei H. Protein- and Peptide-directed Approaches to Fluorescent Metal Nanoclusters. Isr J Chem 2015. [DOI: 10.1002/ijch.201400178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Saha A, Jana NR. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. ACS APPLIED MATERIALS & INTERFACES 2015; 7:996-1003. [PMID: 25521159 DOI: 10.1021/am508123x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.
Collapse
Affiliation(s)
- Arindam Saha
- Centre for Advanced Materials, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | | |
Collapse
|
36
|
Foroushani A, Zhang Y, Li D, Mathesh M, Wang H, Yan F, Barrow CJ, He J, Yang W. Tunnelling current recognition through core–satellite gold nanoparticles for ultrasensitive detection of copper ions. Chem Commun (Camb) 2015; 51:2921-4. [DOI: 10.1039/c4cc09451d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The addition of copper ions induces the formation of GNP/l-cysteine/Cu2+/l-cysteine/GNP molecular junctions and generates a significant decrease in the resistance through the networks.
Collapse
Affiliation(s)
- Alireza Foroushani
- School of Life and Environmental Sciences
- Deakin University
- Victoria-3217
- Australia
| | - Yuanchao Zhang
- School of Life and Environmental Sciences
- Deakin University
- Victoria-3217
- Australia
- College of Chemistry and Chemical Engineering
| | - Da Li
- School of Life and Environmental Sciences
- Deakin University
- Victoria-3217
- Australia
| | - Motilal Mathesh
- School of Life and Environmental Sciences
- Deakin University
- Victoria-3217
- Australia
| | - Hongbin Wang
- School of Chemistry and Biotechnology
- Yunnan Minzu University
- Kunming 650500
- China
| | - Fuhua Yan
- Institute and Hospital of Stomatology
- Nanjing University Medical School
- Nanjing
- China
| | - Colin J. Barrow
- School of Life and Environmental Sciences
- Deakin University
- Victoria-3217
- Australia
| | - Jin He
- Physics Department
- Florida International University
- Miami
- USA
| | - Wenrong Yang
- School of Life and Environmental Sciences
- Deakin University
- Victoria-3217
- Australia
| |
Collapse
|
37
|
Yang XJ, Wang YH, Bai J, He XY, Jiang XE. Large mesoporous carbons decorated with silver and gold nanoparticles by a self-assembly method: enhanced electrocatalytic activity for H2O2 electroreduction and sodium nitrite electrooxidation. RSC Adv 2015. [DOI: 10.1039/c4ra14374d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The silver, gold nanoparticles were grown onto poly (diallyldimethyl ammoniumchloride, PDDA)-functionalized large mesoporous carbon (LMC) by simple self-assembly method. AuNPs or AgNPs/PDDA–LMC show superior electrocatalytic activity.
Collapse
Affiliation(s)
- X. J. Yang
- China West Normal University
- Nanchong 637002
- China
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
| | - Y. H. Wang
- China West Normal University
- Nanchong 637002
- China
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
| | - J. Bai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun 130022
- China
| | - X. Y. He
- China West Normal University
- Nanchong 637002
- China
| | - X. E. Jiang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun 130022
- China
| |
Collapse
|
38
|
Konopińska K, Pietrzak M, Malinowska E. Studies on potential use of tin(IV) porphyrin in a role of proteins' label. Anal Biochem 2014; 470:41-7. [PMID: 25447459 DOI: 10.1016/j.ab.2014.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/28/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
We present an electrochemical and optical characterization of 5,10,15,20-tetraphenylporphyrin tin(IV) dichloride (Sn-tpp) in terms of its potential use as a hybrid proteins' label. Our research comprised Sn-tpp and Sn-tpp in the presence of model proteins selected as to mimic a receptor or surface blocking agents: bovine serum albumin, ovalbumin, and immunoglobulin G. In the course of the study, we determined optimal conditions for analysis by means of differential pulse voltammetry, ultraviolet-visible spectrophotometry, and spectrofluorimetry. In electrochemical detection, the influence of the working electrode, solvent, and supporting electrolyte was examined. Displacements of the received signals along the potential axis (a shift of the potential) and changes in signal intensities due to the addition of proteins were observed and analyzed. Simultaneously, the suitability of Sn-tpp as a label in optical detection mode was assessed by using spectroscopic techniques. The obtained results prove Sn-tpp to be applicable in dual and triple detection systems. Such an approach will improve the reliability of the analysis and, at the same time, will allow for widening the range of the linear response with some overlapping ranges of concentrations.
Collapse
Affiliation(s)
- Kamila Konopińska
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Mariusz Pietrzak
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland.
| | - Elżbieta Malinowska
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
39
|
Yang S, Slotcavage D, Mai JD, Guo F, Li S, Zhao Y, Lei Y, Cameron CE, Huang TJ. Electrochemically Created Highly Surface Roughened Ag Nanoplate Arrays for SERS Biosensing Applications. JOURNAL OF MATERIALS CHEMISTRY. C 2014; 2:8350-8356. [PMID: 25383191 PMCID: PMC4217216 DOI: 10.1039/c4tc01276c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Highly surface-roughened Ag nanoplate arrays are fabricated using a simple electrodeposition and in situ electrocorrosion method with inorganic borate ions as capping agent. The electrocorrosion process is induced by a change in the local pH value during the electrochemical growth, which is used to intentionally carve the electrodeposited structures. The three dimensionally arranged Ag nanoplates are integrated with substantial surface-enhanced Raman scattering (SERS) hot spots and are free of organic contaminations widely used as shaping agents in previous works, making them excellent candidate substrates for SERS biosensing applications. The SERS enhancement factor of the rough Ag nanoplates is estimated to be > 109. These Ag nanoplate arrays are used for SERS-based analysis of DNA hybridization monitoring, protein detection, and virus differentiation without any additional surface modifications or labelling. They all exhibit an extremely high detection sensitivity, reliability, and reproducibility.
Collapse
Affiliation(s)
- Shikuan Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - Daniel Slotcavage
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - John D. Mai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| | - Yong Lei
- Center for Innovation Competence & Institute for Physics, Technical University of Ilmenau, 98693 Ilmenau, Germany
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812, USA
| |
Collapse
|
40
|
Zhang S, Ding Y, Wei H. Ruthenium polypyridine complexes combined with oligonucleotides for bioanalysis: a review. Molecules 2014; 19:11933-87. [PMID: 25116805 PMCID: PMC6271144 DOI: 10.3390/molecules190811933] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 02/01/2023] Open
Abstract
Ruthenium complexes are among the most interesting coordination complexes and they have attracted great attention over the past decades due to their appealing biological, catalytic, electronic and optical properties. Ruthenium complexes have found a unique niche in bioanalysis, as demonstrated by the substantial progress made in the field. In this review, the applications of ruthenium complexes coordinated with polypyridine ligands (and analogues) in bioanalysis are discussed. Three main detection methods based on electrochemistry, electrochemiluminescence, and photoluminscence are covered. The important targets, including DNA and other biologically important targets, are detected by specific biorecognition with the corresponding oligonucleotides as the biorecognition elements (i.e., DNA is probed by its complementary strand and other targets are detected by functional nucleic acids, respectively). Selected examples are provided and thoroughly discussed to highlight the substantial progress made so far. Finally, a brief summary with perspectives is included.
Collapse
Affiliation(s)
- Shuyu Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| | - Yubin Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
41
|
|
42
|
Shu L, Zhou J, Yuan X, Petti L, Chen J, Jia Z, Mormile P. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Talanta 2014; 123:161-8. [DOI: 10.1016/j.talanta.2014.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 11/27/2022]
|
43
|
Cao SH, Cai WP, Liu Q, Xie KX, Weng YH, Huo SX, Tian ZQ, Li YQ. Label-free aptasensor based on ultrathin-linker-mediated hot-spot assembly to induce strong directional fluorescence. J Am Chem Soc 2014; 136:6802-5. [PMID: 24785106 DOI: 10.1021/ja500976a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have demonstrated the proof-of-concept of a label-free biosensor based on emission induced by an extreme hot-spot plasmonic assembly. In this work, an ultrathin linking layer composed of cationic polymers and aptamers was fabricated to mediate the assembly of a silver nanoparticles (AgNPs)-dyes-gold film with a strongly coupled architecture through sensing a target protein. Generation of directional surface plasmon coupled emission (SPCE) was thus stimulated as a means of reporting biorecognition. Both the biomolecules and the nanoparticles were totally free of labeling, thereby ensuring the activity of biomolecules and allowing the use of freshly prepared metallic nanoparticles with large dimensions. This sensor smartly prevents the plasmonic assembly in the absence of targets, thus maintaining no signal through quenching fluorophores loaded onto a gold film. In the presence of targets, the ultrathin layer is activated to link NPs-film junctions. The small gap of the junction (no greater than 2 nm) and the large diameter of the nanoparticles (~100 nm) ensure that ultrastrong coupling is achieved to generate intense SPCE. A >500-fold enhancement of the signal was observed in the biosensing. This strategy provides a simple, reliable, and effective way to apply plasmonic nanostructures in the development of biosensing.
Collapse
Affiliation(s)
- Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mert S, Çulha M. Surface-enhanced Raman scattering-based detection of cancerous renal cells. APPLIED SPECTROSCOPY 2014; 68:617-24. [PMID: 25014716 DOI: 10.1366/13-07263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is used for the differentiation of human kidney adenocarcinoma, human kidney carcinoma, and non-cancerous human kidney embryonic cells. Silver nanoparticles (AgNPs) are used as substrate in the experiments. A volume of colloidal suspension containing AgNPs is added onto the cultured cells on a CaF(2) slide, and the slide is dried at the overturned position. A number of SERS spectra acquired from the three different cell lines are statistically analyzed to differentiate the cells. Principal component analysis (PCA) combined with linear discriminate analysis (LDA) was performed to differentiate the three kidney cell types. The LDA, based on PCA, provided for classification among the three cell lines with 88% sensitivity and 84% specificity. This study demonstrates that SERS can be used to identify renal cancers by combining this new sampling method and LDA algorithms.
Collapse
Affiliation(s)
- Sevda Mert
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, Istanbul 34755 Turkey
| | - Mustafa Çulha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, Istanbul 34755 Turkey
| |
Collapse
|
45
|
Ding Y, Shi L, Wei H. Protein-directed approaches to functional nanomaterials: a case study of lysozyme. J Mater Chem B 2014; 2:8268-8291. [DOI: 10.1039/c4tb01235f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using lysozyme as a model, protein-directed approaches to functional nanomaterials were reviewed, making rational materials design possible in the future.
Collapse
Affiliation(s)
- Yubin Ding
- Department of Biomedical Engineering
- Aerosol Bioeffects and Health Research Center
- College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Leilei Shi
- Department of Biomedical Engineering
- Aerosol Bioeffects and Health Research Center
- College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- Aerosol Bioeffects and Health Research Center
- College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|
46
|
Guerrini L, Pazos E, Penas C, Vázquez ME, Mascareñas JL, Alvarez-Puebla RA. Highly Sensitive SERS Quantification of the Oncogenic Protein c-Jun in Cellular Extracts. J Am Chem Soc 2013; 135:10314-7. [DOI: 10.1021/ja405120x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Luca Guerrini
- Departamento de Ingenieria
Electronica, Universitat Rovira i Virgili, Avda. Països Catalans
26, 43007 Tarragona, Spain
- Centro de Tecnologia Quimica de Cataluña, Carrer de Marcel·lí
Domingo s/n, 43007 Tarragona, Spain
| | - Elena Pazos
- Departamento de Química
Orgánica and Centro Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), C/Jenaro de la Fuente,
s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Penas
- Departamento de Química
Orgánica and Centro Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), C/Jenaro de la Fuente,
s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Departamento de Química
Orgánica and Centro Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), C/Jenaro de la Fuente,
s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jose Luis Mascareñas
- Departamento de Química
Orgánica and Centro Singular de Investigación en Química
Biolóxica e Materiais Moleculares (CIQUS), C/Jenaro de la Fuente,
s/n, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento de Ingenieria
Electronica, Universitat Rovira i Virgili, Avda. Països Catalans
26, 43007 Tarragona, Spain
- Centro de Tecnologia Quimica de Cataluña, Carrer de Marcel·lí
Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
47
|
Oh WK, Kwon OS, Jang J. Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing. POLYM REV 2013. [DOI: 10.1080/15583724.2013.805771] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Wu Z, Liu Y, Zhou X, Shen A, Hu J. A “turn-off” SERS-based detection platform for ultrasensitive detection of thrombin based on enzymatic assays. Biosens Bioelectron 2013; 44:10-5. [DOI: 10.1016/j.bios.2013.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 01/16/2023]
|
49
|
Wang G, He X, Wang L, Zhang X. A folate receptor electrochemical sensor based on terminal protection and supersandwich DNAzyme amplification. Biosens Bioelectron 2013. [DOI: 10.1016/j.bios.2012.10.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens Bioelectron 2013; 47:265-70. [PMID: 23584389 DOI: 10.1016/j.bios.2013.02.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 11/23/2022]
Abstract
A sensitive and selective aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance (SPR) sensor has been developed for real-time detection of subnanomolar thrombin. In this protocol, one thiol-modified thrombin aptamer (TBA29) was immobilized on gold nanoparticles (AuNPs) via Au-S bonding. The other biotinylated thrombin aptamer (TBA15) was grafted onto streptavidin pretreated SPR gold film through biotin-streptavidin recognition. The presence of thrombin would then induce the formation of a double aptamer sandwich structure on the SPR gold film and results in obvious enhancement of SPR signal, which was proportional to the concentration of thrombin. This proposed assay took advantage of sandwich binding of two affinity aptamers for increased specificity, AuNPs for signal enhancement, as well as SPR signal readout for real-time detection. The SPR signal had a good linear relationship with thrombin concentration in the range of 0.1-75nM, and the detection limit for thrombin was determined to be as low as 0.1nM. It was found that aptamer functionalized AuNPs enhanced the signal of SPR response and thus increased the limit of detection 4-fold and 5-fold compared to direct detection format without AuNPs. This sensor also showed good selectivity for thrombin without being affected by some other proteins, such as BSA and lysozyme. Furthermore, this proposed SPR sensing platform was successfully applied to thrombin analysis in diluted human serum samples.
Collapse
|