1
|
de Melo SMG, Dos Santos T, Silva DG, Martins YA, Eckhardt P, Lopez RFV, Opatz T, Protti S, da Silva Emery F. Versatile Metal-Free Arylation of BODIPY and Bis(BF 2) Chromophores by Using Arylazosulfones in a Sunflow System. Chemistry 2024; 30:e202402634. [PMID: 39078075 DOI: 10.1002/chem.202402634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 07/31/2024]
Abstract
BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core. This method represents an advantageous approach for BODIPY functionalization compared to existing strategies.
Collapse
Affiliation(s)
- Shaiani Maria Gil de Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Thiago Dos Santos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Daniel Gedder Silva
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Yugo Araújo Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Renata Fonseca Vianna Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Flavio da Silva Emery
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| |
Collapse
|
2
|
Chao M, Huang Y, Zhou P, Wu G, Ren Y, Yan H, Dong S, Yan X, Chen H, Gao F. Au/Ag@ZnS yolk-shell photocatalysts enhanced with noble metals and hyaluronic acid for efficient hydrogen production in rheumatoid arthritis therapy. Int J Biol Macromol 2024; 280:135929. [PMID: 39322151 DOI: 10.1016/j.ijbiomac.2024.135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Rheumatoid arthritis, characterized by the abnormal proliferation of synovial cells and extensive macrophage infiltration, is a chronic inflammatory disease. Molecular hydrogen, known for its antioxidant properties, has shown promise in eliminating reactive oxygen species. However, the low solubility and bioavailability of hydrogen limit the effectiveness of this therapy. To overcome these issues, we developed a novel yolk-shell heterostructure, H-AAZS (Au/Ag@ZnS modified hyaluronic acid), utilizing a hydrothermal cation exchange process. Through ion doping, semiconductor hybridization, and Schottky barriers in H-AAZS, photocatalysis for hydrogen generation has been successfully implemented using 660 nm laser irradiation. Additionally, the H-AAZS demonstrate the capacity for mild photothermal therapy, inducing apoptosis in synovial cells with Au's hot electrons with 660 nm laser irradiation. This strategy not only improves the abnormal proliferation of synovial cells but also avoids the exacerbation of inflammation caused by thermal stimulation. Both in vitro and in vivo experiments validate the synergistic effects of hydrogen production mediated anti-inflammatory responses, macrophage polarization and photothermal therapy. Therefore, this work represents a significant advancement as it ingeniously harnesses photocatalysis to modulate the synovial microenvironment while mitigating the side effects associated with photothermal therapy. This nanocrystal provides new and valuable insights into the potential treatment of Rheumatoid arthritis.
Collapse
Affiliation(s)
- Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China; Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Yuqi Huang
- Department of Dermatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, Jiangsu, China
| | - Peng Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China; Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China
| | - Hongliang Chen
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, XuZhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
3
|
Lahlou A, Coghill I, Davidson MLH, Billon R, Barneche F, Lazar D, Le Saux T, Jullien L. Leaves to Measure Light Intensity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304420. [PMID: 39081001 PMCID: PMC11423135 DOI: 10.1002/advs.202304420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Indexed: 09/26/2024]
Abstract
Quantitative measurement of light intensity is a key step in ensuring the reliability and the reproducibility of scientific results in many fields of physics, biology, and chemistry. The protocols presented so far use various photoactive properties of manufactured materials. Here, leaves are introduced as an easily accessible green material to calibrate light intensity. The measurement protocol consists in monitoring the chlorophyll fluorescence of a leaf while it is exposed to a jump of constant light. The inverse of the characteristic time of the initial chlorophyll fluorescence rise is shown to be proportional to the light intensity received by the leaf over a wide range of wavelengths and intensities. Moreover, the proportionality factor is stable across a wide collection of plant species, which makes the measurement protocol accessible to users without prior calibration. This favorable feature is finally harnessed to calibrate a source of white light from exploiting simple leaves collected from a garden.
Collapse
Affiliation(s)
- Aliénor Lahlou
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
- Sony Computer Science LaboratoriesParis75005France
| | - Ian Coghill
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
| | - Mhairi L. H. Davidson
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieureCNRS, INSERM, Université PSLParis75005France
| | - Romain Billon
- Jardin des Plantes de ParisMuseum National d'Histoire NaturelleParis75005France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieureCNRS, INSERM, Université PSLParis75005France
| | - Dusan Lazar
- Department of Biophysics, Faculty of SciencePalacký UniversityOlomouc77900Czech Republic
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRSParis75005France
| |
Collapse
|
4
|
He J, Gong X, Li Y, Zhao Q, Zhu C. Synthesis and Photocatalytic sp 3 C-H Bond Functionalization of Salen-Ligand-Supported Uranyl(VI) Complexes. Molecules 2024; 29:4077. [PMID: 39274925 PMCID: PMC11397425 DOI: 10.3390/molecules29174077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Recent years have seen increasing interest in uranyl(VI) photocatalysis. In this study, uranyl complexes were successfully synthesized from ligands L1-L6 and UO2(NO3)2·6H2O under reflux conditions, yielding products 1-6 with yields ranging from 30% to 50%. The complexes were thoroughly characterized using NMR spectroscopy, single-crystal X-ray diffraction, and elemental analysis. The results indicate that complexes 1-5 possess a pentagonal bipyramidal geometry, whereas complex 6 exhibits an octahedral structure. The photocatalytic properties of these novel complexes for sp3 C-H bond functionalization were explored. The results demonstrate that complex 4 functions as an efficient photocatalyst for converting C-H bonds to C-C bonds via hydrogen atom transfer under blue light irradiation.
Collapse
Affiliation(s)
- Jialu He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingxing Gong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yafei Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhang W, Xu H, Huang Z, Hu Y, Luo L, Zhu L, Yao X. Photoinduced Deoxygenative C2 Arylation of Quinoline N-oxides with Phenylhydrazines to 2-Arylquinolines over Porous Tubular Graphitic Carbon Nitride Semiconductor Photocatalyst. Chemistry 2024:e202402662. [PMID: 39166710 DOI: 10.1002/chem.202402662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The photo-induced deoxygenative C2 arylation of quinoline N-oxides to 2-arylquinolines is achieved over a heterogeneous porous tubular graphitic carbon nitride (PTCN) catalyst with phenylhydrazines as arylation reagent. A wide range of quinoline N-oxides can be efficiently transformed into their corresponding 2-arylquinolines under visible light irradiation. Moreover, PTCN catalyst is easily separated and could be reused several times without loss to its original activity.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Applied Chemistry,Institution School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Hang Xu
- Department of Applied Chemistry,Institution School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Zezhao Huang
- Department of Applied Chemistry,Institution School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Yan Hu
- Department of Applied Chemistry,Institution School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Lin Luo
- Department of Chemistry,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Li Zhu
- Department of Chemistry,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaoquan Yao
- Department of Applied Chemistry,Institution School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| |
Collapse
|
6
|
Alomayrah N, Ikram M, Zulfiqar S, Alomairy S, Al-Buriahi MS, Shakir I, Warsi MF, Cochran EW. Fabrication of a highly efficient CuO/ZnCo 2O 4/CNTs ternary composite for photocatalytic degradation of hazardous pollutants. RSC Adv 2024; 14:24874-24897. [PMID: 39119282 PMCID: PMC11308865 DOI: 10.1039/d4ra04395b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In the current study, CuO, ZnCo2O4, CuO/ZnCo2O4, and CuO/ZnCo2O4/CNTs photocatalysts were prepared to remove crystal violet (CV) and colorless pollutants (diclofenac sodium and phenol) from wastewater. Herein, sol-gel and co-precipitation methods were used to synthesize CuO and ZnCo2O4, respectively. The sonication method was used to synthesize CuO/ZnCo2O4 and a CNTs-based composite (CuO/ZnCo2O4/CNTs). From the UV-Vis spectra of CuO, ZnCo2O4, CuO/ZnCo2O4, and CuO/ZnCo2O4/CNTs, the optical band gap value was calculated to be 2.11, 2.18, 1.71 and 1.63 eV respectively. The photocatalytic results revealed that CuO/ZnCo2O4/CNTs exhibited higher degradation of 87.7% against CV dye, 82% against diclofenac sodium, and 72% against phenol as compared to other prepared photocatalysts. The OH˙ radical is identified as the active species in the photocatalytic process over CuO/ZnCo2O4/CNTs. The impact of several parameters, such as pH, concentration, and catalyst dosage, has also been investigated. The better activity of the CNTs-based composite was due to the synergic effect of both CuO/ZnCo2O4 nanocomposite and carbon nanotubes. Therefore, the synthesized CuO/ZnCo2O4/CNTs photocatalyst has the potential to degrade organic wastewater effluents effectively.
Collapse
Affiliation(s)
- Norah Alomayrah
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mustabshira Ikram
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur-63100 Pakistan
| | - Sonia Zulfiqar
- Department of Physical Sciences, Lander University 320 Stanley Ave Greenwood South Carolina 29649 USA
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
| | - Sultan Alomairy
- Department of Physics, College of Science, Taif University Taif 21944 Saudi Arabia
| | | | - Imran Shakir
- Department of Physics, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur-63100 Pakistan
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
| |
Collapse
|
7
|
Elhajj S, Gozem S. First and Second Reductions in an Aprotic Solvent: Comparing Computational and Experimental One-Electron Reduction Potentials for 345 Quinones. J Chem Theory Comput 2024; 20:6227-6240. [PMID: 38970475 PMCID: PMC11270834 DOI: 10.1021/acs.jctc.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Using reference reduction potentials of quinones recently measured relative to the saturated calomel electrode (SCE) in N,N-dimethylformamide (DMF), we benchmark absolute one-electron reduction potentials computed for 345 Q/Q•- and 265 Q•-/Q2- half-reactions using adiabatic electron affinities computed with density functional theory and solvation energies computed with four continuum solvation models: IEF-PCM, C-PCM, COSMO, and SM12. Regression analyses indicate a strong linear correlation between experimental and absolute computed Q/Q•- reduction potentials with Pearson's correlation coefficient (r) between 0.95 and 0.96 and the mean absolute error (MAE) relative to the linear fit between 83.29 and 89.51 mV for different solvation methods when the slope of the regression is constrained to 1. The same analysis for Q•-/Q2- gave a linear regression with r between 0.74 and 0.90 and MAE between 95.87 and 144.53 mV, respectively. The y-intercept values obtained from the linear regressions are in good agreement with the range of absolute reduction potentials reported in the literature for the SCE but reveal several sources of systematic error. The y-intercepts from Q•-/Q2- calculations are lower than those from Q/Q•- by around 320-410 mV for IEF-PCM, C-PCM, and SM12 compared to 210 mV for COSMO. Systematic errors also arise between molecules having different ring sizes (benzoquinones, naphthoquinones, and anthraquinones) and different substituents (titratable vs nontitratable). SCF convergence issues were found to be a source of random error that was slightly reduced by directly optimizing the solute structure in the continuum solvent reaction field. While SM12 MAEs were lower than those of the other solvation models for Q/Q•-, SM12 had larger MAEs for Q•-/Q2- pointing to a larger error when describing multiply charged anions in DMF. Altogether, the results highlight the advantages of, and further need for, testing computational methods using a large experimental data set that is not skewed (e.g., having more titratable than nontitratable substituents on different parent groups or vice versa) to help further distinguish between sources of random and systematic errors in the calculations.
Collapse
Affiliation(s)
- Sarah Elhajj
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia
State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
8
|
Zhu YY, He YY, Li YX, Liu CH, Lin W. Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations. Chemistry 2024; 30:e202400842. [PMID: 38691421 DOI: 10.1002/chem.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan-Yuan He
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yan-Xiang Li
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
10
|
Gu C, Yatabe T, Yamaguchi K, Suzuki K. Photocatalytic aerobic α-oxygenation of amides to imides using a highly durable decatungstate tetraphenylphosphonium salt. Chem Commun (Camb) 2024; 60:4906-4909. [PMID: 38619883 DOI: 10.1039/d4cc01016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Decatungstate is a potent photocatalyst for hydrogen atom transfer (HAT) but faces degradation issues when using a typical tetra-n-butylammonium salt. Herein, we employed tetraphenylphosphonium as a countercation to yield a highly durable and efficient HAT photocatalyst, enabling α-oxygenation of amides to their corresponding imides using O2 as an oxidant.
Collapse
Affiliation(s)
- Chen Gu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
11
|
Gusarov S. Advances in Computational Methods for Modeling Photocatalytic Reactions: A Review of Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2119. [PMID: 38730926 PMCID: PMC11085804 DOI: 10.3390/ma17092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Photocatalysis is a fascinating process in which a photocatalyst plays a pivotal role in driving a chemical reaction when exposed to light. Its capacity to harness light energy triggers a cascade of reactions that lead to the formation of intermediate compounds, culminating in the desired final product(s). The essence of this process is the interaction between the photocatalyst's excited state and its specific interactions with reactants, resulting in the creation of intermediates. The process's appeal is further enhanced by its cyclic nature-the photocatalyst is rejuvenated after each cycle, ensuring ongoing and sustainable catalytic action. Nevertheless, comprehending the photocatalytic process through the modeling of photoactive materials and molecular devices demands advanced computational techniques founded on effective quantum chemistry methods, multiscale modeling, and machine learning. This review analyzes contemporary theoretical methods, spanning a range of lengths and accuracy scales, and assesses the strengths and limitations of these methods. It also explores the future challenges in modeling complex nano-photocatalysts, underscoring the necessity of integrating various methods hierarchically to optimize resource distribution across different scales. Additionally, the discussion includes the role of excited state chemistry, a crucial element in understanding photocatalysis.
Collapse
Affiliation(s)
- Sergey Gusarov
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
12
|
Wu J, Zhong H, Huang ZF, Zou JJ, Zhang X, Zhang YC, Pan L. Research progress of dual-atom site catalysts for photocatalysis. NANOSCALE 2024. [PMID: 38639199 DOI: 10.1039/d3nr06386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.
Collapse
Affiliation(s)
- Jinting Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoming Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yong-Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Hou H, Ou W, Su C. Photochemical C(sp 3)-H Activation for Diversity-Oriented Synthesis of 3-Functionalized Oxindoles. J Org Chem 2024; 89:4120-4127. [PMID: 38439707 DOI: 10.1021/acs.joc.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Heteroatom-adjacent C(sp3) radical cyclization of N-arylacrylamides provides a straightforward pathway to synthesize valuable 3-functionalized oxindoles. Traditional cyclization reactions normally require harsh conditions or transition-metal catalysts. Here, we developed a metal-free, diversity-oriented synthesis of 3-functionalized oxindoles via photochemically induced selective cleavage of C(sp3)-H bonds. A variety of 3-substituted oxindoles with functionalities such as ethers, polyhalogens, benzyl, and formyl groups can be obtained by a rational design. This strategy is characterized by its simple operation and mild conditions, aligning well with the developmental requirements for sustainable chemistry. The gram-scale continuous-flow synthesis and efficient construction of bioactive molecules highlight its practical utility.
Collapse
Affiliation(s)
- Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
14
|
Ma B, Gong Y, Long Y, Chen Z, Yuan Y, Yang J. Synthesis of Acylhydroquinones through Visible-Light-Mediated Hydroacylation of Quinones with α-Keto Acids. J Org Chem 2024; 89:1669-1680. [PMID: 38204383 DOI: 10.1021/acs.joc.3c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A mild and eco-friendly visible-light-induced protocol for the hydroacylation of quinones with α-keto acids has been developed. In the absence of any catalyst or additive, the decarboxylative hydroacylation proceeded smoothly under visible-light irradiation at room temperature. A wide range of quinones and α-keto acids were well-tolerated and afforded hydroacylation products up to 88% isolated yield. The reaction can be scaled up, and the induced groups are useful for further synthetic applications. Preliminarily, mechanistic studies indicated that photoactive quinones absorb visible light to facilitate the transformation.
Collapse
Affiliation(s)
- Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yawen Gong
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun'e Long
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhiyong Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
15
|
Xia C, Hu H, Xu W, Yang B, Shao Q, Wu M. Defluoroalkylation of gem-Difluoroalkenes with Alcohols via C-F/C-H Coupling. Org Lett 2024; 26:310-314. [PMID: 38134354 DOI: 10.1021/acs.orglett.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
A feasible and effective method to synthesize α-fluoroalkenyl alcohols was reported. With the cooperation of photoredox and hydrogen atom transfer (HAT) processes, defluoroalkylations of gem-difluoroalkenes occurred smoothly with alcohols under visible-light irradiation. Notably, the protocols feature broad scopes, mild conditions, and validity for the late-stage functionalization of bioactive molecule derivatives. Mechanistic studies suggested that the reaction occurred through the radical coupling of the alkyl radical and the fluoroalkenyl radical.
Collapse
Affiliation(s)
- Congjian Xia
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Haiyang Hu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Wengang Xu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Baokai Yang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Qi Shao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| |
Collapse
|
16
|
Jagadeeswararao M, Galian RE, Pérez-Prieto J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:94. [PMID: 38202549 PMCID: PMC10780689 DOI: 10.3390/nano14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Heterogeneous photocatalysts incorporating metal halide perovskites (MHPs) have garnered significant attention due to their remarkable attributes: strong visible-light absorption, tuneable band energy levels, rapid charge transfer, and defect tolerance. Additionally, the promising optical and electronic properties of MHP nanocrystals can be harnessed for photocatalytic applications through controlled crystal structure engineering, involving composition tuning via metal ion and halide ion variations, dimensional tuning, and surface chemistry modifications. Combination of perovskites with other materials can improve the photoinduced charge separation and charge transfer, building heterostructures with different band alignments, such as type-II, Z-scheme, and Schottky heterojunctions, which can fine-tune redox potentials of the perovskite for photocatalytic organic reactions. This review delves into the activation of organic molecules through charge and energy transfer mechanisms. The review further investigates the impact of crystal engineering on photocatalytic activity, spanning a diverse array of organic transformations, such as C-X bond formation (X = C, N, and O), [2 + 2] and [4 + 2] cycloadditions, substrate isomerization, and asymmetric catalysis. This study provides insights to propel the advancement of metal halide perovskite-based photocatalysts, thereby fostering innovation in organic chemical transformations.
Collapse
Affiliation(s)
| | - Raquel E. Galian
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
17
|
Mandal M, Tehrani HS, Mai Q, Simon E, Plamont MA, Rampon C, Vriz S, Aujard I, Le Saux T, Jullien L. A series of caged fluorophores for calibrating light intensity. Chem Sci 2023; 14:13799-13811. [PMID: 38075640 PMCID: PMC10699554 DOI: 10.1039/d3sc04183b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 10/12/2024] Open
Abstract
Absolute measurement of light intensity is sought for in multiple areas of chemistry, biology, physics, and engineering. It can be achieved by using an actinometer from analyzing the time-course of its reaction extent on applying constant light. However, most reported actinometers exploit the absorbance observable for reporting the reaction extent, which is not very sensitive nor relevant in imaging systems. In this work, we report a series of hydrophobic and hydrophilic caged fluorophores that overcome the preceding limitations. Based on the robust pyranine backbone, they can easily be synthesized on a large scale in one to a few steps. Their brightness increases over illumination and their uncaging cross-sections have been thoroughly characterized upon one- and two-photon excitation. As a demonstration of their use, we calibrated light intensity in various chemical and biological samples, which have been observed with epifluorescence and confocal imaging systems.
Collapse
Affiliation(s)
- Mrinal Mandal
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Hessam Sepasi Tehrani
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Qianhua Mai
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Emma Simon
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Marie-Aude Plamont
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Christine Rampon
- Laboratoire des biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Sophie Vriz
- Laboratoire des biomolécules (LBM), Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Isabelle Aujard
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS 24, rue Lhomond 75005 Paris France
| |
Collapse
|
18
|
Lahlou A, Tehrani HS, Coghill I, Shpinov Y, Mandal M, Plamont MA, Aujard I, Niu Y, Nedbal L, Lazár D, Mahou P, Supatto W, Beaurepaire E, Eisenmann I, Desprat N, Croquette V, Jeanneret R, Le Saux T, Jullien L. Fluorescence to measure light intensity. Nat Methods 2023; 20:1930-1938. [PMID: 37996751 PMCID: PMC10703675 DOI: 10.1038/s41592-023-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Despite the need for quantitative measurements of light intensity across many scientific disciplines, existing technologies for measuring light dose at the sample of a fluorescence microscope cannot simultaneously retrieve light intensity along with spatial distribution over a wide range of wavelengths and intensities. To address this limitation, we developed two rapid and straightforward protocols that use organic dyes and fluorescent proteins as actinometers. The first protocol relies on molecular systems whose fluorescence intensity decays and/or rises in a monoexponential fashion when constant light is applied. The second protocol relies on a broad-absorbing photochemically inert fluorophore to back-calculate the light intensity from one wavelength to another. As a demonstration of their use, the protocols are applied to quantitatively characterize the spatial distribution of light of various fluorescence imaging systems, and to calibrate illumination of commercially available instruments and light sources.
Collapse
Affiliation(s)
- Aliénor Lahlou
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
- Sony Computer Science Laboratories, Paris, France.
| | - Hessam Sepasi Tehrani
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Ian Coghill
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Yuriy Shpinov
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Mrinal Mandal
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Marie-Aude Plamont
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Isabelle Aujard
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dusan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Pierre Mahou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau, France
| | - Isabelle Eisenmann
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Nicolas Desprat
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Vincent Croquette
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Raphaël Jeanneret
- Laboratory of Physics of the École Normale Supérieure, University of PSL, CNRS, Sorbonne University, University of Paris City, Paris, France
- Institute of Biology of ENS (IBENS), École Normale Supérieure, CNRS, INSERM, University of PSL, Paris, France
| | - Thomas Le Saux
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
| |
Collapse
|
19
|
Liang JY, Su YW, Zou YQ. Photochemical reductive deamination of alpha-amino aryl alkyl ketones. Chem Commun (Camb) 2023. [PMID: 37997158 DOI: 10.1039/d3cc04837c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Photochemical reductive deamination of alpha-amino aryl alkyl ketones under photosensitizer-free conditions is presented. This protocol features high efficiency and selectivity. A plausible reaction pathway is proposed based on ultraviolet-visible absorption investigation, control experiments and deuterium-labelling studies. Mechanistic study reveals that the alpha-hydrogen atom of the ketone product originated from water.
Collapse
Affiliation(s)
- Ji-Yuan Liang
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Yi-Wen Su
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - You-Quan Zou
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
20
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Nielsen CJ, Laan PCM, Plessius R, Reek JNH, van der Vlugt JI, Pullen S. Probing the influence of substrate binding on photocatalytic dehalogenation with a heteroleptic supramolecular [M 4L a2L b2] square containing PDI photosensitizers as ligands. Faraday Discuss 2023; 244:199-209. [PMID: 37186104 DOI: 10.1039/d2fd00179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Photoredox catalysis is a valuable tool in a large variety of chemical reactions. Main challenges still to be overcome are photodegradation of photocatalysts and substrates, short lifetimes of reactive intermediates, and selectivity issues due to unwanted side reactions. A potential solution to these challenges is the pre-organization of the photosensitizer, substrate and (co)-catalyst in supramolecular self-assembled structures. In such architectures, (organic) dyes can be stabilized, and higher selectivity could potentially be achieved through pre-organizing desired reaction partners via non-covalent interactions. Perylene diimide (PDI) is an organic dye, which can be readily reduced to its mono- and dianion. Excitation of both anions leads to highly reducing excited states, which are able to reduce a variety of substrates via single electron transfer. The incorporation of PDI into a heteroleptic [M4La2Lb2] supramolecular square has been recently demonstrated. Herein we investigate its photophysical properties and demonstrate that incorporated PDI indeed features photocatalytic activity. Initial results suggest that the pre-organisation by binding positively affects the outcome.
Collapse
Affiliation(s)
- C Jasslie Nielsen
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Petrus C M Laan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Raoul Plessius
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
- Bioinspired Coordination Chemistry & Catalysis, Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany
| | - Sonja Pullen
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, Faculty of Natural Sciences, University of Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, The Netherlands.
| |
Collapse
|
22
|
He L, Zahn DRT, Madeira TI. Photocatalytic Performance of Sol-Gel Prepared TiO 2 Thin Films Annealed at Various Temperatures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5494. [PMID: 37570199 PMCID: PMC10419699 DOI: 10.3390/ma16155494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Titanium dioxide (TiO2) in the form of thin films has attracted enormous attention for photocatalysis. It combines the fundamental properties of TiO2 as a large bandgap semiconductor with the advantage of thin films, making it competitive with TiO2 powders for recycling and maintenance in photocatalytic applications. There are many aspects affecting the photocatalytic performance of thin film structures, such as the nanocrystalline size, surface morphology, and phase composition. However, the quantification of each influencing aspect needs to be better studied and correlated. Here, we prepared a series of TiO2 thin films using a sol-gel process and spin-coated on p-type, (100)-oriented silicon substrates with a native oxide layer. The as-deposited TiO2 thin films were then annealed at different temperatures from 400 °C to 800 °C for 3 h in an ambient atmosphere. This sample synthesis provided systemic parameter variation regarding the aspects mentioned above. To characterize thin films, several techniques were used. Spectroscopic ellipsometry (SE) was employed for the investigation of the film thickness and the optical properties. The results revealed that an increasing annealing temperature reduced the film thickness with an increase in the refractive index. Atomic force microscopy (AFM) was utilized to examine the surface morphology, revealing an increased surface roughness and grain sizes. X-ray diffractometry (XRD) and UV-Raman spectroscopy were used to study the phase composition and crystallite size. The annealing process initially led to the formation of pure anatase, followed by a transformation from anatase to rutile as the annealing temperature increased. An overall enhancement in crystallinity was also observed. The photocatalytic properties of the thin films were tested using the photocatalytic decomposition of acetone gas in a home-built solid (photocatalyst)-gas (reactant) reactor. The composition of the gas mixture in the reaction chamber was monitored using in situ Fourier transform infrared spectroscopy. Finally, all of the structural and spectroscopic characteristics of the TiO2 thin films were quantified and correlated with their photocatalytic properties using a correlation matrix. This provided a good overview of which film properties affect the photocatalytic efficiency the most.
Collapse
Affiliation(s)
- Lu He
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (D.R.T.Z.); (T.I.M.)
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Dietrich R. T. Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (D.R.T.Z.); (T.I.M.)
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Teresa I. Madeira
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (D.R.T.Z.); (T.I.M.)
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
23
|
Roostaei T, Rahimpour MR, Zhao H, Eisapour M, Chen Z, Hu J. Recent advances and progress in biotemplate catalysts for electrochemical energy storage and conversion. Adv Colloid Interface Sci 2023; 318:102958. [PMID: 37453344 DOI: 10.1016/j.cis.2023.102958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Complex structures and morphologies in nature endow materials with unexpected properties and extraordinary functions. Biotemplating is an emerging strategy for replicating nature structures to obtain materials with unique morphologies and improved properties. Recently, efforts have been made to use bio-inspired species as a template for producing morphology-controllable catalysts. Fundamental information, along with recent advances in biotemplate metal-based catalysts are presented in this review through discussions of various structures and biotemplates employed for catalyst preparation. This review also outlines the recent progress on preparation routes of biotemplate catalysts and discusses how the properties and structures of these templates play a crucial role in the final performance of metal-based catalysts. Additionally, the application of bio-based metal and metal oxide catalysts is highlighted for various key energy and environmental technologies, including photocatalysis, fuel cells, and lithium batteries. Biotemplate metal-based catalysts display high efficiency in several energy and environmental systems. Note that this review provides guidance for further research in this direction.
Collapse
Affiliation(s)
- Tayebeh Roostaei
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | | | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | - Mehdi Eisapour
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada; Eastern Institute for Advanced Study, Ningbo, Zhengjiang 315200, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1N4, Canada.
| |
Collapse
|
24
|
Moruzzi F, Zhang W, Purushothaman B, Gonzalez-Carrero S, Aitchison CM, Willner B, Ceugniet F, Lin Y, Kosco J, Chen H, Tian J, Alsufyani M, Gibson JS, Rattner E, Baghdadi Y, Eslava S, Neophytou M, Durrant JR, Steier L, McCulloch I. Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction. Nat Commun 2023; 14:3443. [PMID: 37301872 DOI: 10.1038/s41467-023-39161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 μmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 μmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.
Collapse
Affiliation(s)
- Floriana Moruzzi
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Weimin Zhang
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Balaji Purushothaman
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London, W12 7TA, UK
| | - Catherine M Aitchison
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin Willner
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Fabien Ceugniet
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yuanbao Lin
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jan Kosco
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Hu Chen
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Junfu Tian
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Maryam Alsufyani
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Joshua S Gibson
- Henry Royce Institute Oxford Centre for Energy Materials Research, Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Ed Rattner
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yasmine Baghdadi
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Salvador Eslava
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Marios Neophytou
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London, W12 7TA, UK
| | - Ludmilla Steier
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
25
|
Nichinde CB, Patil BR, Chaudhari SS, Mali BP, Gonnade RG, Kinage AK. Organocatalysed one-pot three component synthesis of 3,3'-disubstituted oxindoles featuring an all-carbon quaternary center and spiro[2 H-pyran-3,4'-indoline]. RSC Adv 2023; 13:13206-13212. [PMID: 37123998 PMCID: PMC10140734 DOI: 10.1039/d3ra00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
A simple and efficient methodology for the one-pot synthesis of 3,3'-disubstituted oxindoles featuring an all-carbon quaternary center has been demonstrated through l-proline catalysed three-component reaction based on sequential Knoevenagel condensation/Michael addition and also one-pot synthesis of spiro[2H-pyran-3,4'-indoline] through consecutive Knoevenagel condensation/Michael addition/reduction/cyclization reactions from readily available isatin derivatives, malononitrile, and ketones. The present methodology presents several advantages, including simple reaction set-up, short reaction times, and easy to work-up. Also, this strategy offers broad substrate scope with excellent yields and high atom economy, under mild reaction conditions.
Collapse
Affiliation(s)
- Chandrakant B Nichinde
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| | - Baliram R Patil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| | - Suryakant S Chaudhari
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| | - Bhupendra P Mali
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune India-410 008
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune India-410 008
| | - Anil K Kinage
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| |
Collapse
|
26
|
Jakhrani MA, Bhatti MA, Tahira A, Shah AA, Dawi EA, Vigolo B, Nafady A, Saleem LM, Haj Ismail AAK, Ibupoto ZH. Biogenic Preparation of ZnO Nanostructures Using Leafy Spinach Extract for High-Performance Photodegradation of Methylene Blue under the Illumination of Natural Sunlight. Molecules 2023; 28:molecules28062773. [PMID: 36985746 PMCID: PMC10054875 DOI: 10.3390/molecules28062773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
To cope with environmental pollution caused by toxic emissions into water streams, high-performance photocatalysts based on ZnO semiconductor materials are urgently needed. In this study, ZnO nanostructures are synthesized using leafy spinach extract using a biogenic approach. By using phytochemicals contained in spinach, ZnO nanorods are transformed into large clusters assembled with nanosheets with visible porous structures. Through X-ray diffraction, it has been demonstrated that leafy spinach extract prepared with ZnO is hexagonal in structure. Surface properties of ZnO were altered by using 10 mL, 20 mL, 30 mL, and 40 mL quantities of leafy spinach extract. The size of ZnO crystallites is typically 14 nanometers. In the presence of sunlight, ZnO nanostructures mineralized methylene blue. Studies investigated photocatalyst doses, dye concentrations, pH effects on dye solutions, and scavengers. The ZnO nanostructures prepared with 40 mL of leafy spinach extract outperformed the degradation efficiency of 99.9% for the MB since hydroxyl radicals were primarily responsible for degradation. During degradation, first-order kinetics were observed. Leafy spinach extract could be used to develop novel photocatalysts for the production of solar hydrogen and environmental hydrogen.
Collapse
Affiliation(s)
| | - Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University, Khairpur Mirs 66111, Pakistan
| | - Aqeel Ahmed Shah
- Department of Metallurgy, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Elmuez A. Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (E.A.D.); (Z.H.I.)
| | - Brigitte Vigolo
- Institute Jean Lamour, Université de Lorraine, CNRS, Institut Jean Lamour (IJL), F-54000 Nancy, France
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lama M. Saleem
- Biomolecular Science, Earth and Life Science, Amsterdam University, Kruislaan 404, 1098 SM Amsterdam, The Netherlands
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Zafar Hussain Ibupoto
- Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
- Correspondence: (E.A.D.); (Z.H.I.)
| |
Collapse
|
27
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
28
|
Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. CHEMOSPHERE 2023; 317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BiOCl semiconductors have attracted extensive amounts of attention and have substantial potential in alleviating energy shortages, improving sterilization performance, and solving environmental issues. To improve the optical quantum efficiency of layered BiOCl, the lifetimes of photogenerated electron-hole pairs, and BiOCl reduction capacity. During the past decade, researchers have designed many effective methods to weaken the effects of these limitations, and heterojunction construction is regarded as one of the most promising strategies. In this paper, BiOCl heterojunction photocatalysts designed and synthesized by various research groups in recent years were reviewed, and their photocatalytic properties were tested. Among them, direct Z-scheme and S-scheme photocatalysts have high redox potentials and intense redox capabilities. Hence, they exhibit excellent photocatalytic activity. Furthermore, the applications of BiOCl heterojunctions for pollutant degradation, CO2 reduction, water splitting, N2 fixation, organic synthesis, and tumor ablation are also reviewed. Finally, we summarize research on the BiOCl heterojunctions and put forth new insights on overcoming their present limitations.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, Henan, China; School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China.
| |
Collapse
|
29
|
Franceschi P, Cuadros S, Goti G, Dell'Amico L. Mechanisms and Synthetic Strategies in Visible Light-Driven [2+2]-Heterocycloadditions. Angew Chem Int Ed Engl 2023; 62:e202217210. [PMID: 36576751 DOI: 10.1002/anie.202217210] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
The synthesis of four membered heterocycles usually requires multi-step procedures and prefunctionalized reactants. A straightforward alternative is the photochemical [2+2]-heterocycloaddition between an alkene and a carbonyl derivative, conventionally based on the photoexcitation of this latter. However, this approach is limited by the absorption profile of the carbonyl, requiring in most of the cases the use of high-energy UV-light, that often results in undesired side reactions and/or the degradation of the reaction components. The development of new and milder visible light-driven [2+2]-heterocycloadditions is, therefore, highly desirable. In this Review, we highlight the most relevant achievements in the development of [2+2]-heterocycloadditions promoted by visible light, with a particular emphasis on the involved reaction mechanisms. The open challenges will also be discussed, suggesting new possible evolutions, and stimulating new methodological developments in the field.
Collapse
Affiliation(s)
- Pietro Franceschi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giulio Goti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
30
|
Jevtovic V, Khan AU, Almarhoon ZM, Tahir K, Latif S, Abdulaziz F, Albalawi K, Zaki MEA, Rakic V. Synthesis of MnSe-Based GO Composites as Effective Photocatalyst for Environmental Remediations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:667. [PMID: 36839035 PMCID: PMC9959166 DOI: 10.3390/nano13040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
In this work, a manganese selenide/graphene oxide (MnSe/GO)-based composite was prepared for wet-chemical assisted method against organic dye; herein, methylene blue (MB) dye removal from the water was employed as a metal selenide-based photocatalyst. The synthesized MnSe/GO composite was systematically characterized by X-ray diffraction (XRD), Fourier transform electron microscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and UV-visible diffuse reflectance spectroscopy (UV-vis. DRS). The structural characteristic revealed the adequate synthesis of the sample with good crystallinity and purity of the obtained products. The morphological analysis indicates the formation of MnSe nanoflakes composed of tiny particles on their surface. At the same time, the GO nanosheets with high aggregation were formed, which may be due to the van der Waals forces. The bond interaction and compositional analysis studies confirmed and supported the structural findings with high purity. The optical analysis showed the bandgap energies of MnSe and their composites MnSe (1.7 eV), 7% GO-MnSe (2.42 eV), 14% GO-MnSe (2.6 eV), 21% GO-MnSe (3.02 eV), and 28% GO-MnSe (3.24 eV) respectively, which increase the bandgap energy after GO and MnSe recombination. Among different contents, the optimized 21% GO-MnSe composite displayed enhanced photocatalytic properties. For instance, a short time of 90 min was taken compared with other concentrations due to the narrow bandgap of MnSe and the highly conductive charge carrier's support, making the process to remove MB from water faster. These results show that the selenide-based photocatalyst can be an attractive candidate for future advanced photocatalysis applications.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Afaq Ullah Khan
- State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zainab M. Almarhoon
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Karma Albalawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Violeta Rakic
- Department of Agriculture and Food Technology Prokuplje, Academy of Vocational Studies of South Serbia, 18400 Prokuplje, Serbia
| |
Collapse
|
31
|
Elbashir AA, Shinger MI, Ma X, Lu X, Ahmed AY, Alnajjar AO. Fabrication of a Novel CNT-COO -/Ag 3PO 4@AgIO 4Composite with Enhanced Photocatalytic Activity under Natural Sunlight. Molecules 2023; 28:molecules28041586. [PMID: 36838576 PMCID: PMC9967086 DOI: 10.3390/molecules28041586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, a carboxylated carbon nanotube-grafted Ag3PO4@AgIO4 (CNT-COO-/Ag3PO4@AgIO4) composite was synthesized through an in situ electrostatic deposition method. The synthesized composite was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and energy-dispersive X-ray spectroscopy (EDS). The electron transfer ability of the synthesized composite was studied using electrochemical impedance spectroscopy (EIS). The CNT-COO-/Ag3PO4@AgIO4 composite exhibited higher activity than CNT/Ag3PO4@AgIO4, Ag3PO4@AgIO4, and bare Ag3PO4. The material characterization and the detailed study of the various parameters thataffect the photocatalytic reaction revealed that the enhanced catalytic activity is related to the good interfacial interaction between CNT-COO and Ag3PO4. The energy band structure analysis is further considered as a reason for multi-electron reaction enhancement. The results and discussion in this study provide important information for the use of the functionalized CNT-COOH in the field of photocatalysis. Moreover, providinga new way to functionalize CNT viadifferent functional groups may lead to further development in the field of photocatalysis. This work could provide a new way to use natural sunlight to facilitate the practical application of photocatalysts toenvironmental issues.
Collapse
Affiliation(s)
- Abdalla A. Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al-Hofuf 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Khartoum University, P.O. Box 321, Khartoum 11111, Sudan
- Correspondence: (A.A.E.); (A.Y.A.); Tel.: +966-567254917 (A.A.E.); +966-543478704 (A.Y.A.)
| | - Mahgoub Ibrahim Shinger
- Department of Applied and Industrial Chemistry, Faculty of Pure and Applied Sciences, International University of Africa, Khartoum 11111, Sudan
| | - Xoafang Ma
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Amel Y. Ahmed
- Department of Chemistry, College of Science, King Faisal University, Al-Hofuf 31982, Saudi Arabia
- Chemistry and Nuclear Physics Institute, Sudan Atomic Energy Commission, P.O. Box 3001, Khartoum 11111, Sudan
- Correspondence: (A.A.E.); (A.Y.A.); Tel.: +966-567254917 (A.A.E.); +966-543478704 (A.Y.A.)
| | - Ahmed O. Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al-Hofuf 31982, Saudi Arabia
| |
Collapse
|
32
|
Recent developments in GO/Cellulose based composites: Properties, synthesis, and its applications. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
33
|
Borah P, Borah G, Nath AC, Latif W, Banik BK. Facile Multicomponent Mannich Reaction towards Biologically Active Compounds. ChemistrySelect 2023. [DOI: 10.1002/slct.202203758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Preetismita Borah
- CSIO Analytical facility CAF)(a) CSIR-Central Scientific Instruments Organisation, Sector 30C Chandigarh India
| | - Gongutri Borah
- Department of Chemistry University of Science and Technology Meghalaya India
| | - Arabinda C. Nath
- Department of Chemistry University of Science and Technology Meghalaya India
| | - Wajid Latif
- Research Development & College of Natural Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Research Development & College of Natural Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
35
|
Long CJ, Pu HP, Zhao YN, He YH, Guan Z. Cooperative photocatalysis and l-/ d-proline catalysis enables enantioselective oxidative cross-dehydrogenative coupling of acyclic benzylic secondary amines with ketones. Org Chem Front 2023. [DOI: 10.1039/d2qo01956f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We developed an enantioselective cross-dehydrogenative coupling of acyclic benzylic secondary amines with ketones by combining photocatalysis and l-/d-proline catalysis.
Collapse
|
36
|
Singh SP, Srivastava V, Singh PK, Singh PP. Visible-light induced eosin Y catalysed C(sp2)-H alkylation of carbonyl substrates via direct HAT. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
de Moraes NP, de Siervo A, Silva TO, da Silva Rocha R, Reddy DA, Lianqing Y, de Vasconcelos Lanza MR, Rodrigues LA. Kraft lignin-based carbon xerogel/zinc oxide composite for 4-chlorophenol solar-light photocatalytic degradation: effect of pH, salinity, and simultaneous Cr(VI) reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8280-8296. [PMID: 36050554 DOI: 10.1007/s11356-022-22825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Considering the ever-increasing need for efficient wastewater treatment, this study focused on the development of new kraft lignin-based carbon xerogel/zinc oxide (XCL/ZnO w) photocatalysts. The inclusion of the carbon xerogel is expected to cause an improvement in charge transfer throughout the photoactivation process, consequently enhancing its overall photocatalytic efficiency. Characterization shows that the materials developed are composed of both zinc oxide and carbon xerogel. The addition of the lignin-based carbon xerogel caused a significant morphological modification to the composite materials, resulting in a greater specific surface area. Regarding the photocatalytic efficiency, the optimized composite (XCL/ZnO 1.0) displayed superior efficiency to the pure zinc oxide, especially when calcined at 700 °C, with an increase of 20% in the overall photodegradation capacity for the 4-chlorophenol (4CP) molecule. The XCL/ZnO 1.0 also displayed better performance than its tannin counterpart, previously reported in the literature, obtaining a 60% increase in the apparent reaction rate constant. The XCL/ZnO 1.0 also displayed better performance for the simultaneous hexavalent chrome (Cr (VI)) reduction/4CP oxidation reaction. Salinity and system pH had a significant influence on the efficiency of the 4CP photodegradation, as higher values of salinity and lower pHs caused a decrease in the overall efficiency of the process. At last, chronoamperometry and open-circuit potential tests confirmed the superiority of the XCL/ZnO 1.0 over the pure ZnO, highlighting the beneficial impact of the carbon xerogel on the charge transport dynamics of the composite.
Collapse
Affiliation(s)
- Nicolas Perciani de Moraes
- Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal Do Campinho S/N, CEP, Lorena, São Paulo, 12602-810, Brazil
| | - Abner de Siervo
- Applied Physics Department, Institute of Physics "Gleb Wataghin", State University of Campinas, Campinas, SP, 13083-859, Brazil
| | - Taynara Oliveira Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Robson da Silva Rocha
- Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal Do Campinho S/N, CEP, Lorena, São Paulo, 12602-810, Brazil
| | - D Amaranatha Reddy
- Department of Sciences, Indian Institute of Information Technology Design and Manufacturing, Kurnool, Andhra Pradesh, 518007, India
| | - Yu Lianqing
- School of Materials Science and Engineering, China University of Petroleum, QingDao, 266580, China
| | - Marcos Roberto de Vasconcelos Lanza
- Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Liana Alvares Rodrigues
- Escola de Engenharia de Lorena-EEL/USP, Estrada Municipal Do Campinho S/N, CEP, Lorena, São Paulo, 12602-810, Brazil.
| |
Collapse
|
38
|
Sun X, Wang QN, Wang S, Zhang P, Feng Z, Zhang X, Feng Z, Li C. Inhibiting COx formation on WOx-loaded Au/TiO2 photocatalyst for selective oxidation of p-xylene to p-methyl benzaldehyde. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Both KG, Reinertsen VM, Aarholt TM, Jensen IJ, Neagu D, Prytz Ø, Norby T, Chatzitakis A. Ni-doped A-site excess SrTiO3 thin films modified with Au nanoparticles by a thermodynamically-driven restructuring for plasmonic activity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Liu Q, Ding Y, Gao Y, Yang Y, Gao L, Pan Z, Xia C. Decatungstate Catalyzed Photochemical Acetylation of C(sp 3)–H Bonds. Org Lett 2022; 24:7983-7987. [DOI: 10.1021/acs.orglett.2c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| |
Collapse
|
42
|
Facile fabrication of BiOBrxCl1-x hierarchical microspheres photocatalysts for efficient degradation of diverse pollutants under visible light. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Cui Z, Zhao M, Li S, Wang J, Xu Y, Ghazzal MN, Colbeau-Justin C, Pan D, Wu W. Facile Vacuum Annealing of TiO 2 with Ethanol-Induced Enhancement of Its Photocatalytic Performance under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenpeng Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Min Zhao
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Shuyang Li
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Wang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mohamed Nawfal Ghazzal
- Institue de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Orsay 91405, France
| | | | - Duoqiang Pan
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
44
|
Facile and Novel Route for the Preparation of ZnO Nanoparticles with Different Cr Loadings for Opto-Photocatalysis Applications. Catalysts 2022. [DOI: 10.3390/catal12101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current article deals with the facile yet novel route to prepare zinc oxide (ZnO) nanoparticles with different weight percentages of chromium as a dopant. The impact of such dopant into the ZnO host lattice is explored in terms of the structural, vibrational, optical, and photocatalytic characteristics. The Bragg reflections in the X-ray diffraction displayed a phase pure wurtzite ZnO hexagonal system. The morphology reflects spherical-shaped ZnO particles in all the systems. The optical analysis ensured a good ultraviolet light absorption and a bandgap energy in the range of 3.30–3.24 eV. The principal Raman vibrations ensured the presence of the wurtzite ZnO crystal structure. The decolorization experiment of methyl green dye with pristine and various chromium-doped ZnO nanoparticles was conducted under the illumination of visible light. The obtained results showed that the incorporation of Cr in the framework significantly improved the photocatalytic performance of ZnO.
Collapse
|
45
|
Synthesis of Zinc-Titanium Oxide Nanocomposites by Plasma Jet and Its Application to Photocatalyst. Catalysts 2022. [DOI: 10.3390/catal12091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to synthesize the zinc-titanium (Zn-Ti) oxide nanocomposites using an atmospheric soft plasma jet, in this study mixtures of Zn and Ti precursors such as zinc nitrate and titanium butoxide were first prepared with different molar ratios; the mixed precursors then stirred at 700 rpm for two hours with atmospheric plasma, while maintaining a temperature of 25 °C. All the synthesized Zn-Ti oxide nanocomposites were post-heat-treated at 600 °C for six hours in an electrical furnace. The morphology, particle shape and size, crystal structure, oxidation state, and composition ratio were analyzed using FE-SEM, XRD, SEM-EDS, and Raman spectroscopy. BET was measured to calculate the specific surface area of the Zn-Ti oxide nanocomposites. Photocatalytic activity tests were performed for an application study, with 10 mL of 10 ppm methylene blue dye. UV-visible spectroscopy was performed on five different samples in order to analyze the changes of photocatalytic reactions. When the composition ratio of Zn/Ti was 2/1, maximum photocatalytic efficiency was obtained. We also carried out a theoretical kinetic study.
Collapse
|
46
|
Paul R, Warkad IR, Arulkumar S, Parthiban S, Darji HR, Naushad M, Kadam RG, Gawande MB. Facile synthesis of nanostructured TiO2-SiO2 powder for selective photocatalytic oxidation of alcohols to carbonyl compounds. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Ikariko I, Kim S, Hiroyasu Y, Higashiguchi K, Matsuda K, Hirose T, Sotome H, Miyasaka H, Yokojima S, Irie M, Kurihara S, Fukaminato T. All-Visible (>500 nm)-Light-Induced Diarylethene Photochromism Based on Multiplicity Conversion via Intramolecular Energy Transfer. J Phys Chem Lett 2022; 13:7429-7436. [PMID: 35929722 DOI: 10.1021/acs.jpclett.2c01903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoswitching molecules that reversibly switch upon visible-light irradiation are some of the most attractive targets for biological and imaging applications. In this study, we found a diarylethene (DAE) derivative having a covalently attached perylenebisimide (PBI) unit (DAE-PBI dyad) underwent an unexpected cyclization reaction upon irradiation with green (500-550 nm) light, where the DAE unit has no absorbance. The photoreactivity was enhanced in solvents containing heavy atoms and in the presence of oxygen. As inferred from the solvent dependence and the calculated excited-state energies of DAE and PBI units, it was suggested that the probable mechanism for this unique visible-light-induced cyclization reaction is multiplicity conversion based on intramolecular energy transfer from the excited singlet state of the PBI unit to the triplet state of DAE units (i.e., DAE-1[PBI]* → 3[DAE]*-PBI). Such a unique photoreaction mechanism with the assistance of oxygen will pave the way for new molecular design for the development of visible-light switching molecules.
Collapse
Affiliation(s)
- Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yae Hiroyasu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Higashiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Matsuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Irie
- Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Seiji Kurihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
48
|
Xochihua Juan JL, Solis Maldonado C, Luna Sánchez RA, Enciso Díaz OJ, Rojas Ronquillo MR, Sandoval-Rangel L, Pineda Aguilar N, Ramos Delgado NA, Martínez-Vargas DX. TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Photocatalytic Materials Obtained from E-Waste Recycling: Review, Techniques, Critique, and Update. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2022. [DOI: 10.3390/jmmp6040069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Waste-derived materials obtained from the recovery and recycling of electronic waste (e-waste) such as batteries and printed circuit boards have attracted enormous attention from academia and industry in recent years, especially due to their eco-friendly nature and the massive increment in e-waste due to technological development. Several investigations in the literature have covered the advances achieved so far. Meanwhile, photocatalytic applications are especially of interest since they maintain mutual benefits and can be used for H2 production from solar water splitting based on semiconductor processing as a proper environmentally friendly technique for solar energy conversion. In addition, they can be utilized to degrade a variety of organic and non-organic contaminations. Nonetheless, to the best of the authors’ knowledge, there has not been any comprehensive review that has specifically been focused on e-waste-derived photocatalytic materials. In this regard, the present work is dedicated to thoroughly discussing the related mechanisms, strategies, and methods, as well as the various possible photocatalysts synthesized from e-wastes with some critiques in this field. This brief overview can introduce modern technologies and promising possibilities for e-waste valorization, photocatalytic processes, and new photocatalytic degradation methods of eco-friendly nature. This paper discusses various e-waste-obtained photocatalytic materials, synthesis procedures, and applications, as well as several types of e-waste, derived materials such as TiO2, ZnO, indium tin oxide, and a variety of sulfide- and ferrite-based photocatalytic materials.
Collapse
|
50
|
Direct Utilization of Near-Infrared Light for Photooxidation with a Metal-Free Photocatalyst. Molecules 2022; 27:molecules27134047. [PMID: 35807299 PMCID: PMC9268673 DOI: 10.3390/molecules27134047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Near-infrared (NIR) light-triggered photoredox catalysis is highly desirable because NIR light occupies almost 50% of solar energy and possesses excellent penetrating power in various media. Herein we utilize a metal-free boron dipyrromethene (BODIPY) derivative as the photocatalyst to achieve NIR light (720 nm LED)–driven oxidation of benzylamine derivatives, sulfides, and aryl boronic acids. Compared to blue light–driven photooxidation using Ru(bpy)3Cl2 as a photocatalyst, NIR light–driven photooxidation exhibited solvent independence and superior performance in large-volume (20 mL) reaction, presumably thanks to the neutral structure of a BODIPY photocatalyst and the deeper penetration depth of NIR light. We further demonstrate the application of this metal-free NIR photooxidation to prodrug activation and combination with Cu-catalysis for cross coupling reaction, exhibiting the potential of metal-free NIR photooxidation as a toolbox for organic synthesis and drug development.
Collapse
|