1
|
Seo GM, Lee H, Kang YJ, Kim D, Sung JH. Development of in vitro model of exosome transport in microfluidic gut-brain axis-on-a-chip. LAB ON A CHIP 2024; 24:4581-4593. [PMID: 39230477 DOI: 10.1039/d4lc00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The gut communicates with the brain in a variety of ways known as the gut-brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood-brain-barrier (BBB) have received attention as a mediator of gut-brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time. Here, we developed a microfluidic-based GBA chip for co-culturing gut epithelial cells and neuronal cells and simultaneously observing exosome transport. The GBA-chip is aimed to mimic the in vivo situation of convective flow in blood vessels and convective and diffusive transport in the tissue interstitium. Here, fluorescence-labeled exosome was produced by transfection of HEK-293T cells with CD63-GFP plasmid. We observed in real time the secretion of CD63-GFP-exosomes by the transfected HEK-293T cells in the chip, and transport of the exosomes to neuronal cells and analyzed the dynamics of GFP-exosome movement. Our model is expected to enhance understanding of the roles of exosome in GBA.
Collapse
Affiliation(s)
- Gwang Myeong Seo
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| | - Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Yeon Jae Kang
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea.
| |
Collapse
|
2
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
3
|
Li M, Hu H, Zhang M, Ding H, Wen J, Xie L, Du P. Droplet Transportation on Liquid-Infused Asymmetrically Structured Surfaces by Mechanical Oscillation and Viscosity Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16315-16327. [PMID: 37881899 DOI: 10.1021/acs.langmuir.3c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The transportation of droplets on solid surfaces has received significant attention owing to its importance in biochemical analysis and microfluidics. In this study, we propose a novel strategy for controlling droplet motion by combining an asymmetric structure and infused lubricating oil on a vibrating substrate. The transportation of droplets with volumes ranging from 10 to 90 μL was realized, and the movement speed could be adjusted from 1.45 to 10.87 mm/s. Typical droplet manipulations, including droplet transportation along a long trajectory and selective movement of multiple droplets, were successfully demonstrated. Through experimental exploration and theoretical analysis, we showed that the adjustment of droplet transport velocity involves an intricate interaction among the Ohnesorge number, droplet volume, and input amplitude. It can potentially be used for the more complex manipulation of liquid droplets in microfluidic and biochemical analysis systems.
Collapse
Affiliation(s)
- Mingsheng Li
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haibao Hu
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen; Sanhang Science & Technology Buliding, No. 45th, Gaoxin South ninth Road, Nanshan District, Shenzhen City, 518063, China
| | - Mengzhuo Zhang
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haiyan Ding
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jun Wen
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luo Xie
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Du
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Zeng Y, Khor JW, van Neel TL, Tu WC, Berthier J, Thongpang S, Berthier E, Theberge AB. Miniaturizing chemistry and biology using droplets in open systems. Nat Rev Chem 2023; 7:439-455. [PMID: 37117816 PMCID: PMC10107581 DOI: 10.1038/s41570-023-00483-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/30/2023]
Abstract
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wan-Chen Tu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Gao H, Wan X, Yang Y, Lu J, Zhu Q, Xu L, Wang S. Leaf-Inspired Patterned Organohydrogel Surface for Ultrawide Time-Range Open Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207702. [PMID: 36775866 PMCID: PMC10104639 DOI: 10.1002/advs.202207702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Droplet arrays show great significance in biosensing and biodetection because of low sample consumption and easy operation. However, inevitable water evaporation in open environment severely limits their applications in time-consuming reactions. Herein, inspired by the unique water retention features of leaves, it is demonstrated that an open droplet array on patterned organohydrogel surface with water evaporating replenishment (POWER) for ultrawide time-range biosensing, which integrated hydrophilic hydrogel domains and hydrophobic organogel background. The hydrogel domains on the surface can supply water to the pinned droplets through capillary channels formed in the nether organohydrogel bulk. The organogel background can inhibit water evaporation like the wax coating of leaves. Such a unique bioinspired design enables ultrawide time-range biosensing in open environment from a few minutes to more than five hours involving a variety of analytes such as ions, small molecules, and macromolecules. The POWER provides a feasible and open biosensing platform for ultrawide time-range reactions.
Collapse
Affiliation(s)
- Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Li‐Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
6
|
Rocha DS, de Campos RP, Silva-Neto HA, Duarte-Junior GF, Bedioui F, Coltro WK. Digital microfluidic platform assembled into a home-made studio for sample preparation and colorimetric sensing of S-nitrosocysteine. Anal Chim Acta 2023; 1254:341077. [PMID: 37005016 DOI: 10.1016/j.aca.2023.341077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Digital microfluidics (DMF) is a versatile lab-on-a-chip platform that allows integration with several types of sensors and detection techniques, including colorimetric sensors. Here, we propose, for the first time, the integration of DMF chips into a mini studio containing a 3D-printed holder with previously fixed UV-LEDs to promote sample degradation on the chip surface before a complete analytical procedure involving reagent mixture, colorimetric reaction, and detection through a webcam integrated on the equipment. As a proof-of-concept, the feasibility of the integrated system was successfully through the indirect analysis of S-nitrosocysteine (CySNO) in biological samples. For this purpose, UV-LEDs were explored to perform the photolytic cleavage of CySNO, thus generating nitrite and subproducts directly on DMF chip. Nitrite was then colorimetrically detected based on a modified Griess reaction, in which reagents were prepared through a programable movement of droplets on DMF devices. The assembling and the experimental parameters were optimized, and the proposed integration exhibited a satisfactory correlation with the results acquired using a desktop scanner. Under the optimal experimental conditions, the obtained CySNO degradation to nitrite was 96%. Considering the analytical parameters, the proposed approach revealed linear behavior in the CySNO concentration range between 12.5 and 400 μmol L-1 and a limit of detection equal to 2.8 μmol L-1. Synthetic serum and human plasma samples were successfully analyzed, and the achieved results did not statistically differ from the data recorded by spectrophotometry at the confidence level of 95%, thus indicating the huge potential of the integration between DMF and mini studio to promote complete analysis of lowmolecular weight compounds.
Collapse
|
7
|
|
8
|
Chen H, Li X, Li D. Superhydrophilic–superhydrophobic patterned surfaces: From simplified fabrication to emerging applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0013222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Superhydrophilic–superhydrophobic patterned surfaces constitute a branch of surface chemistry involving the two extreme states of superhydrophilicity and superhydrophobicity combined on the same surface in precise patterns. Such surfaces have many advantages, including controllable wettability, enrichment ability, accessibility, and the ability to manipulate and pattern water droplets, and they offer new functionalities and possibilities for a wide variety of emerging applications, such as microarrays, biomedical assays, microfluidics, and environmental protection. This review presents the basic theory, simplified fabrication, and emerging applications of superhydrophilic–superhydrophobic patterned surfaces. First, the fundamental theories of wettability that explain the spreading of a droplet on a solid surface are described. Then, the fabrication methods for preparing superhydrophilic–superhydrophobic patterned surfaces are introduced, and the emerging applications of such surfaces that are currently being explored are highlighted. Finally, the remaining challenges of constructing such surfaces and future applications that would benefit from their use are discussed.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiaoping Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
10
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
11
|
The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing. Anal Bioanal Chem 2021; 414:969-991. [PMID: 34668998 PMCID: PMC8724084 DOI: 10.1007/s00216-021-03727-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Biopharmaceuticals have revolutionized the field of medicine in the types of active ingredient molecules and treatable indications. Adoption of Quality by Design and Process Analytical Technology (PAT) frameworks has helped the biopharmaceutical field to realize consistent product quality, process intensification, and real-time control. As part of the PAT strategy, Raman spectroscopy offers many benefits and is used successfully in bioprocessing from single-cell analysis to cGMP process control. Since first introduced in 2011 for industrial bioprocessing applications, Raman has become a first-choice PAT for monitoring and controlling upstream bioprocesses because it facilitates advanced process control and enables consistent process quality. This paper will discuss new frontiers in extending these successes in upstream from scale-down to commercial manufacturing. New reports concerning the use of Raman spectroscopy in the basic science of single cells and downstream process monitoring illustrate industrial recognition of Raman’s value throughout a biopharmaceutical product’s lifecycle. Finally, we draw upon a nearly 90-year history in biological Raman spectroscopy to provide the basis for laboratory and in-line measurements of protein quality, including higher-order structure and composition modifications, to support formulation development.
Collapse
|
12
|
Thomas RP, Heap RE, Zappacosta F, Grant EK, Pogány P, Besley S, Fallon DJ, Hann MM, House D, Tomkinson NCO, Bush JT. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem Sci 2021; 12:12098-12106. [PMID: 34667575 PMCID: PMC8457371 DOI: 10.1039/d1sc03551g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines 'direct-to-biology' high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design-make-test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.
Collapse
Affiliation(s)
- Ross P Thomas
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Rachel E Heap
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Emma K Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Pogány
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Stephen Besley
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David J Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Michael M Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Jacob T Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
13
|
Schneider L, Fraser M, Tripathi A. Integrated magneto-electrophoresis microfluidic chip purification on library preparation device for preimplantation genetic testing for aneuploidy detection. RSC Adv 2021; 11:14459-14474. [PMID: 35423999 PMCID: PMC8697746 DOI: 10.1039/d1ra01732b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Next generation sequencing (NGS) technology has revolutionized the field of personalized medicine through providing patient specific diagnostic information on a nucleic acid level. A key bottleneck in the NGS workflow is the preparation of nucleic acids for sequencing, or library preparation. One approach to overcoming this bottleneck on time and resources is through automating library preparation as much as possible from the stage of DNA extraction to a sequence-ready sample. Here, we have integrated microscale purification and macroscale PCR amplification to create an automated platform to replace manual DNA library preparation and magnetic bead-based cleanup steps. This microfluidic chip integrates magnetic bead transport and electrokinetic flow to remove unbound adapter dimers and other impurities from samples. We incorporate this method to develop an automated NGS DNA library preparation device that also includes macro- and microfluidic reagent movement and mixing and a thermoelectric cooler for controlled capillary heating and cooling. We greatly reduce the hands-on time, amount of pipetting required, and volumes of reagents needed as we test the feasibility of the platform on the clinically important diagnostic field of preimplantation genetic testing for aneuploidy (PGT-A). We prepared euploid and aneuploid five cell samples for sequencing and found our results were accurate for the cell samples with a sequencing quality equivalent to the standard of the DNA libraries prepared manually. Our device platform utilizes concepts such as: magneto-electrophoresis, integrated capillary PCR, and automated sample loading and unloading onto a microfluidic chip.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University 182 Hope Street Providence RI 02912 USA
| | - Michelle Fraser
- PerkinElmer Health Sciences (Australia) Thebarton South Australia 5031 Australia
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University 182 Hope Street Providence RI 02912 USA
| |
Collapse
|
14
|
Paoli R, Di Giuseppe D, Badiola-Mateos M, Martinelli E, Lopez-Martinez MJ, Samitier J. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications. SENSORS 2021; 21:s21041382. [PMID: 33669434 PMCID: PMC7920479 DOI: 10.3390/s21041382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Microfabrication and Polydimethylsiloxane (PDMS) soft-lithography techniques became popular for microfluidic prototyping at the lab, but even after protocol optimization, fabrication is yet a long, laborious process and partly user-dependent. Furthermore, the time and money required for the master fabrication process, necessary at any design upgrade, is still elevated. Digital Manufacturing (DM) and Rapid-Prototyping (RP) for microfluidics applications arise as a solution to this and other limitations of photo and soft-lithography fabrication techniques. Particularly for this paper, we will focus on the use of subtractive DM techniques for Organ-on-a-Chip (OoC) applications. Main available thermoplastics for microfluidics are suggested as material choices for device fabrication. The aim of this review is to explore DM and RP technologies for fabrication of an OoC with an embedded membrane after the evaluation of the main limitations of PDMS soft-lithography strategy. Different material options are also reviewed, as well as various bonding strategies. Finally, a new functional OoC device is showed, defining protocols for its fabrication in Cyclic Olefin Polymer (COP) using two different RP technologies. Different cells are seeded in both sides of the membrane as a proof of concept to test the optical and fluidic properties of the device.
Collapse
Affiliation(s)
- Roberto Paoli
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15–21, 08028 Barcelona, Spain; (R.P.); (M.B.-M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3–5, Pabellón 11, 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (D.D.G.); (E.M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maider Badiola-Mateos
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15–21, 08028 Barcelona, Spain; (R.P.); (M.B.-M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3–5, Pabellón 11, 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy; (D.D.G.); (E.M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Jose Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15–21, 08028 Barcelona, Spain; (R.P.); (M.B.-M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3–5, Pabellón 11, 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Correspondence: (M.J.L.-M.); (J.S.)
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15–21, 08028 Barcelona, Spain; (R.P.); (M.B.-M.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3–5, Pabellón 11, 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Correspondence: (M.J.L.-M.); (J.S.)
| |
Collapse
|
15
|
Chi J, Zhang X, Wang Y, Shao C, Shang L, Zhao Y. Bio-inspired wettability patterns for biomedical applications. MATERIALS HORIZONS 2021; 8:124-144. [PMID: 34821293 DOI: 10.1039/d0mh01293a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the remarkable wettability heterogeneity, bio-inspired wettability patterns present a progressive and versatile platform for manipulating and patterning liquids, which provides an emerging strategy for operating liquid samples with crucial values in biomedical applications. In this review, we present a general summary of bio-inspired wettability patterns. After a compendious introduction of natural wettability phenomena and their underlying mechanisms, we summarize the general design principles and fabrication methods for preparing artificial wettability materials. Next, we shift to patterned surface wettability with an emphasis on the fabrication approaches. Then, we discuss in detail the various practical applications of wettability patterns in the biomedical field, including cell culture, drug screening and biosensors. Critical thinking about the current challenges and future outlook is also provided. We believe that this review would propel the prosperous development of bio-inspired wettability patterns to flourish in the field of biomedical engineering.
Collapse
Affiliation(s)
- Junjie Chi
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | | | | | | | | | | |
Collapse
|
16
|
Developments in the integration and application of terahertz spectroscopy with microfluidics. Biosens Bioelectron 2020; 165:112393. [DOI: 10.1016/j.bios.2020.112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/17/2022]
|
17
|
Day JH, Nicholson TM, Su X, van Neel TL, Clinton I, Kothandapani A, Lee J, Greenberg MH, Amory JK, Walsh TJ, Muller CH, Franco OE, Jefcoate CR, Crawford SE, Jorgensen JS, Theberge AB. Injection molded open microfluidic well plate inserts for user-friendly coculture and microscopy. LAB ON A CHIP 2020; 20:107-119. [PMID: 31712791 PMCID: PMC6917835 DOI: 10.1039/c9lc00706g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Open microfluidic cell culture systems are powerful tools for interrogating biological mechanisms. We have previously presented a microscale cell culture system, based on spontaneous capillary flow of biocompatible hydrogels, that is integrated into a standard cell culture well plate, with flexible cell compartment geometries and easy pipet access. Here, we present two new injection molded open microfluidic devices that also easily insert into standard cell culture well plates and standard culture workflows, allowing seamless adoption by biomedical researchers. These platforms allow culture and study of soluble factor communication among multiple cell types, and the microscale dimensions are well-suited for rare primary cells. Unique advances include optimized evaporation control within the well, manufacture with reproducible and cost-effective rapid injection molding, and compatibility with sample preparation workflows for high resolution microscopy (following well-established coverslip mounting procedures). In this work, we present several use cases that highlight the usability and widespread utility of our platform including culture of limited primary testis cells from surgical patients, microscopy readouts including immunocytochemistry and single molecule fluorescence in situ hybridization (smFISH), and coculture to study interactions between adipocytes and prostate cancer cells.
Collapse
Affiliation(s)
- John H Day
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | - Tristan M Nicholson
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA. and Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Xiaojing Su
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | - Ivor Clinton
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | - Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinwoo Lee
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA and Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Max H Greenberg
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, USA
| | - John K Amory
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thomas J Walsh
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Charles H Muller
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA and Male Fertility Laboratory, Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA. and Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Abstract
Open microfluidic capillary systems are a rapidly evolving branch of microfluidics where fluids are manipulated by capillary forces in channels lacking physical walls on all sides. Typical channel geometries include grooves, rails, or beams and complex systems with multiple air-liquid interfaces. Removing channel walls allows access for retrieval (fluid sampling) and addition (pipetting reagents or adding objects like tissue scaffolds) at any point in the channel; the entire channel becomes a "device-to-world" interface, whereas such interfaces are limited to device inlets and outlets in traditional closed-channel microfluidics. Open microfluidic capillary systems are simple to fabricate and reliable to operate. Prototyping methods (e.g., 3D printing) and manufacturing methods (e.g., injection molding) can be used seamlessly, accelerating development. This Perspective highlights fundamentals of open microfluidic capillary systems including unique advantages, design considerations, fabrication methods, and analytical considerations for flow; device features that can be combined to create a "toolbox" for fluid manipulation; and applications in biology, diagnostics, chemistry, sensing, and biphasic applications.
Collapse
Affiliation(s)
- Erwin Berthier
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ashley M. Dostie
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ulri N. Lee
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Jean Berthier
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ashleigh B. Theberge
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
- University of Washington School of Medicine, Department of Urology, Seattle, Washington 98105, USA
| |
Collapse
|
19
|
Characterization and Neutral Atom Beam Surface Modification of a Clear Castable Polyurethane for Biomicrofluidic Applications. SURFACES 2019. [DOI: 10.3390/surfaces2010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polyurethanes (PU) are a broad class of polymers that offer good solvent compatibility and a wide range of properties that can be used to generate microfluidic layers. Here, we report the first characterization of a commercially available Shore 80D polyurethane (Ultraclear™ 480N) for biomicrofluidic applications. Studies included comparing optical clarity with Polydimethylsiloxane (PDMS) and using high-fidelity replica molding to produce solid PU structures from the millimeter to nanometer scales. Additionally, we report the first use of NanoAccel™ treatment in Accelerated Neutral Atom Beam (ANAB) mode to permanently roughen the surface of PU and improve the adhesion of breast cancer cells (MDA-MB-231) on PU. Surface energy measurements using Owens-Wendt equations indicate an increase in polar and total surface energy due to ANAB treatment. Fourier-transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode was used to demonstrate that the treatment does not introduce any new types of functional groups on the surface of Ultraclear™ PU. Finally, applicability in rapid prototyping for biomicrofluidics was demonstrated by utilizing a 3D-printing-based replica molding strategy to create PU microfluidic layers. These layers were sealed to polystyrene (PS) bases to produce PU-PS microfluidic chips. Ultraclear™ PU can serve as a clear and castable alternative to PDMS in biomicrofluidic studies.
Collapse
|
20
|
Prado RC, Borges ER. MICROBIOREACTORS AS ENGINEERING TOOLS FOR BIOPROCESS DEVELOPMENT. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180354s20170433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- R. C. Prado
- Federal University of Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Álvarez-García YR, Ramos-Cruz KP, Agostini-Infanzón RJ, Stallcop LE, Beebe DJ, Warrick JW, Domenech M. Open multi-culture platform for simple and flexible study of multi-cell type interactions. LAB ON A CHIP 2018; 18:3184-3195. [PMID: 30204194 PMCID: PMC8815088 DOI: 10.1039/c8lc00560e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of multi-cell-type (MCT) interactions has the potential to significantly impact our understanding of tissue and disease biology. Such studies require innovative culture tools for unraveling the contributions of each cell type. Micro- and macro-scale platforms for MCT culture each have different advantages and disadvantages owing to their widely different capabilities, availability, and ease-of-use. However, as evidenced in the literature, there are very few examples of MCT studies and culture platforms, suggesting both biological and technical barriers. We have developed an open multi-culture platform to promote more rapid progress by integrating advantages of both micro- and macro-scale culture devices. The proposed open multi-culture platform addresses technical barriers by allowing easy customization, independent control of basic physical culture parameters, and incorporation of multiple culture modalities (e.g., 2D, 3D, transwell, and spheroid). The design also permits the user to obtain independent endpoints for each culture region. We demonstrate use of the platform in two example studies where we evaluated how cell ratio and cell types influence the response of triple negative breast cancer cells to heat damage and Hedgehog signaling. We also show that the platform can improve soluble factor transport between cell types compared to compartmentalized macro- and micro-scale alternatives. Last, we examine current and future challenges of the platform. We envision simple, yet flexible and customizable, platforms such as this will be important for advancing in vitro study of tissue and tumor biology.
Collapse
|
22
|
Ko YJ, Maeng JH, Hwang SY, Ahn Y. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm. SLAS Technol 2018; 23:507-515. [PMID: 29949396 DOI: 10.1177/2472630318783948] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infertile couples needing assisted reproduction are increasing, so a fundamental understanding of motile sperm migration is required. This paper presents an advanced microfluidic device for sperm motion analysis utilizing chemotaxis and thermotaxis simultaneously for the first time. The proposed device is a transparent polydimethylsiloxane- and glass-based microfluidic chip system providing a low-cost, useful, and disposable platform for sperm analysis. The concentration gradient of the chemoattractant (acetylcholine) and the temperature difference are formed along the microchannel. The temperature gradient is generated and controlled by a microheater and microsensor. Thermotactic and chemotactic responses of mouse sperm were examined using the proposed device. Experimental results show that motile mouse sperm are attracted more sensitively under integrated conditions of chemotaxis and thermotaxis rather than individual conditions of chemotaxis and thermotaxis. This sperm analysis device is expected to be a useful tool for the study of mammalian sperm migration and the improvement of artificial insemination techniques.
Collapse
Affiliation(s)
- Yong-Jun Ko
- 1 Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Joon-Ho Maeng
- 2 Department of Bionano Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Seung Yong Hwang
- 2 Department of Bionano Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Yoomin Ahn
- 1 Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Li X, Soler M, Szydzik C, Khoshmanesh K, Schmidt J, Coukos G, Mitchell A, Altug H. Label-Free Optofluidic Nanobiosensor Enables Real-Time Analysis of Single-Cell Cytokine Secretion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800698. [PMID: 29806234 DOI: 10.1002/smll.201800698] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/06/2018] [Indexed: 05/23/2023]
Abstract
Single-cell analysis of cytokine secretion is essential to understand the heterogeneity of cellular functionalities and develop novel therapies for multiple diseases. Unraveling the dynamic secretion process at single-cell resolution reveals the real-time functional status of individual cells. Fluorescent and colorimetric-based methodologies require tedious molecular labeling that brings inevitable interferences with cell integrity and compromises the temporal resolution. An innovative label-free optofluidic nanoplasmonic biosensor is introduced for single-cell analysis in real time. The nanobiosensor incorporates a novel design of a multifunctional microfluidic system with small volume microchamber and regulation channels for reliable monitoring of cytokine secretion from individual cells for hours. Different interleukin-2 secretion profiles are detected and distinguished from single lymphoma cells. The sensor configuration combined with optical spectroscopic imaging further allows us to determine the spatial single-cell secretion fingerprints in real time. This new biosensor system is anticipated to be a powerful tool to characterize single-cell signaling for basic and clinical research.
Collapse
Affiliation(s)
- Xiaokang Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Maria Soler
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | | | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University of Lausanne, CH-1007, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University of Lausanne, CH-1007, Lausanne, Switzerland
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
24
|
Feng W, Ueda E, Levkin PA. Droplet Microarrays: From Surface Patterning to High-Throughput Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706111. [PMID: 29572971 DOI: 10.1002/adma.201706111] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Indexed: 05/09/2023]
Abstract
High-throughput screening of live cells and chemical reactions in isolated droplets is an important and growing method in areas ranging from studies of gene functions and the search for new drug candidates, to performing combinatorial chemical reactions. Compared with microfluidics and well plates, the facile fabrication, high density, and open structure endow droplet microarrays on planar surfaces with great potential in the development of next-generation miniaturized platforms for high-throughput applications. Surfaces with special wettability have served as substrates to generate and/or address droplets microarrays. Here, the formation of droplet microarrays with designed geometry on chemically prepatterned surfaces is briefly described and some of the newer and emerging applications of these microarrays that are currently being explored are highlighted. Next, some of the available technologies used to add (bio-)chemical libraries to each droplet in parallel are introduced. Current challenges and future prospects that would benefit from using such droplet microarrays are also discussed.
Collapse
Affiliation(s)
- Wenqian Feng
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Erica Ueda
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| |
Collapse
|
25
|
Transport velocity of droplets on ratchet conveyors. Adv Colloid Interface Sci 2018; 255:18-25. [PMID: 28927830 DOI: 10.1016/j.cis.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 02/05/2023]
Abstract
Anisotropic ratchet conveyors (ARC) are a type of digital microfluidic system. Unlike electrowetting based systems, ARCs transport droplets through a passive, micro-patterned surface and applied orthogonal vibrations. The mechanics of droplet transport on ARC devices has yet to be as well characterized and understood as on electrowetting systems. In this work, we investigate how the design of the ARC substrate affects the droplet response to vibrations and perform the first characterization of transport velocity on ARC devices. We discovered that the design of the ARC device has a significant effect on both the transport efficiency and velocity of actuated droplets, and that the amplitude of the applied vibration can modulate the velocity of transported droplets. Finally, we show that the movement of droplet edges is not continuous but rather the sum of quantized steps between features of the ARC device. These results provide new insights into the behavior of droplets vibrated on asymmetric surface patterns and will serve as the foundation for the design and development of future lab-on-a-chip systems.
Collapse
|
26
|
Lopes LFDP, Agostini VO, Muxagata E. Could some procedures commonly used in bioassays with the copepod Acartia tonsa Dana 1849 distort results? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:353-365. [PMID: 29246582 DOI: 10.1016/j.ecoenv.2017.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Many organizations have suggested the use of the Calanoid copepod Acartia tonsa in protocols for acute toxicity tests. Nevertheless, these protocols present some problems, such as using 60-180µm meshes to separate specific stages of A. tonsa or carrying out the tests using small volumes that reflect high densities of A. tonsa that do not occur in nature, which could lead to distorted results. In addition, ecotoxicological studies may use statistical approaches that are inadequate for the type of data being analysed. For these reasons, some methodological approaches for bioassays using A. tonsa need to be clarified and revised. In this study, we present information about (i) the retention of copepodite stages of A. tonsa on 180, 330 and 500µm net meshes; (ii) tested storage volumes of 1 organism per 5, 10 or 20mL in each test container (TC); and (iii) considerations about the statistics employed. The results demonstrated that a net mesh of 180µm is capable of retaining all copepodite stages (CI to CVI), contrasting with the recommendation of using a 180µm mesh to separate out adults only. Coarser meshes (330 and 500µm) can also retain different proportions of all copepodite stages, but cannot separate out one developmental stage only. Twenty-five millilitres of medium in an open TC, commonly employed in bioassays simulating densities of 1 organism 5mL-1, completely evaporated, and the results showed that the TCs need to be covered (e.g., PVC film) and filled with a minimum of 100mL of culture medium (simulating densities of 1 organism 20mL-1) to avoid evaporation and increases in salinity. The current use of ANOVA in ecotoxicological studies with proportions of surviving organisms should also be reconsidered since the data are discrete and have a binomial distribution; general linear models (GLMs) are considered more adequate. The information presented here suggests some adjustments that hopefully will enable the improvement of the procedures and methods employed in studies of acute toxicity using the copepod A. tonsa.
Collapse
Affiliation(s)
- Laís Fernanda de Palma Lopes
- Laboratório de Zooplâncton - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, s/n km 8, campus Carreiros, Caixa Postal 474, 96203-900 Rio Grande, RS, Brazil; Bolsistas do CNPq vinculadas ao Programa de Pós-graduação em Oceanografia Biológica (PPGOB) da FURG, Brazil.
| | - Vanessa Ochi Agostini
- Laboratório de Zooplâncton - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, s/n km 8, campus Carreiros, Caixa Postal 474, 96203-900 Rio Grande, RS, Brazil; Bolsistas do CNPq vinculadas ao Programa de Pós-graduação em Oceanografia Biológica (PPGOB) da FURG, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, s/n km 8, campus Carreiros, Caixa Postal 474, 96203-900 Rio Grande, RS, Brazil
| |
Collapse
|
27
|
Das V, Fürst T, Gurská S, Džubák P, Hajdúch M. Evaporation-reducing Culture Condition Increases the Reproducibility of Multicellular Spheroid Formation in Microtiter Plates. J Vis Exp 2017. [PMID: 28362402 DOI: 10.3791/55403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tumor models that closely imitate in vivo conditions are becoming increasingly popular in drug discovery and development for the screening of potential anti-cancer drugs. Multicellular tumor spheroids (MCTSes) effectively mimic the physiological conditions of solid tumors, making them excellent in vitro models for lead optimization and target validation. Out of the various techniques available for MCTS culture, the liquid-overlay method on agarose is one of the most inexpensive methods for MCTS generation. However, the reliable transfer of MCTS cultures using liquid-overlay for high-throughput screening may be compromised by a number of limitations, including the coating of microtiter plates (MPs) with agarose and the irreproducibility of uniform MCTS formation across wells. MPs are significantly prone to edge effects that result from excessive evaporation of medium from the exterior of the plate, preventing the use of the entire plate for drug tests. This manuscript provides detailed technical improvements to the liquid-overlay technique to increase the scalability and reproducibility of uniform MCTS formation. Additionally, details on a simple, semi-automatic, and universally applicable software tool for the evaluation of MCTS features after drug treatment is presented.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Tomáš Fürst
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc;
| |
Collapse
|
28
|
Haider M, Ji B, Haselgrübler T, Sonnleitner A, Aberger F, Hesse J. A microfluidic multiwell chip for enzyme-free detection of mRNA from few cells. Biosens Bioelectron 2016; 86:20-26. [DOI: 10.1016/j.bios.2016.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022]
|
29
|
Liu EY, Jung S, Yi H. Improved Protein Conjugation with Uniform, Macroporous Poly(acrylamide-co-acrylic acid) Hydrogel Microspheres via EDC/NHS Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11043-11054. [PMID: 27690459 DOI: 10.1021/acs.langmuir.6b02591] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We demonstrate a robust and tunable micromolding method to fabricate chemically functional poly(acrylamide-co-acrylic acid) (p(AAm-co-AA)) hydrogel microspheres with uniform dimensions and controlled porous network structures for rapid biomacromolecular conjugation. Specifically, p(AAm-co-AA) microspheres with abundant carboxylate functional groups are fabricated via surface-tension-induced droplet formation in patterned poly(dimethylsiloxane) molds and photoinduced radical polymerization. To demonstrate the chemical functionality, we enlisted rapid EDC/NHS (1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)) chemistry for fluorescent labeling of the microspheres with small-molecule dye fluorescein glycine amide. Epifluorescence imaging results illustrate the uniform incorporation of carboxylate groups within the microspheres and rapid conjugation kinetics. Furthermore, protein conjugation results using red fluorescent protein R-phycoerythrin demonstrate the highly porous nature of the microspheres as well as the utility of the microspheres and the EDC/NHS scheme for facile biomacromolecular conjugation. Combined, these results illustrate the significant potential for our fabrication-conjugation strategy in the development of biofunctionalized polymeric hydrogel microparticles toward rapid biosensing, bioprocess monitoring, and biodiagnostics.
Collapse
Affiliation(s)
- Eric Y Liu
- Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Sukwon Jung
- Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Reproducibility of Uniform Spheroid Formation in 384-Well Plates. ACTA ACUST UNITED AC 2016; 21:923-30. [DOI: 10.1177/1087057116651867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
Spheroid cultures of cancer cells reproduce the spatial dimension–induced in vivo tumor traits more effectively than the conventional two-dimensional cell cultures. With growing interest in spheroids for high-throughput screening (HTS) assays, there is an increasing demand for cost-effective miniaturization of reproducible spheroids in microtiter plates (MPs). However, well-to-well variability in spheroid size, shape, and growth is a frequently encountered problem with almost every culture method that has prevented the transfer of spheroids to the HTS platform. This variability partly arises due to increased susceptibility of MPs to edge effects and evaporation-induced changes in the growth of spheroids. In this study, we examined the effect of evaporation on the reproducibility of spheroids of tumor and nontumor cell lines in 384-well plates, and show that culture conditions that prevent evaporation-induced medium loss result in the formation of uniform spheroids across the plate. Additionally, we also present a few technical improvements to increase the scalability of the liquid-overlay spheroid culturing technique in MPs, together with a simple software routine for the quantification of spheroid size. We believe that these cost-effective improvements will aid in further improvement of spheroid cultures for HTS drug discovery.
Collapse
|
31
|
Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. LAB ON A CHIP 2015; 15:4542-54. [PMID: 26524977 DOI: 10.1039/c5lc01028d] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this study we have investigated a photosensitive thermoset (OSTEMER 322-40) as a complementary material to readily fabricate complex multi-layered microdevices for applications in life science. Simple, versatile and robust fabrication of multifunctional microfluidics is becoming increasingly important for the development of customized tissue-, organ- and body-on-a-chip systems capable of mimicking tissue interfaces and biological barriers. In the present work key material properties including optical properties, vapor permeability, hydrophilicity and biocompatibility are evaluated for cell-based assays using fibroblasts, endothelial cells and mesenchymal stem cells. The excellent bonding strength of the OSTEMER thermoset to flexible fluoropolymer (FEP) sheets and poly(dimethylsiloxane) (PDMS) membranes further allows for the fabrication of integrated microfluidic components such as membrane-based microdegassers, microvalves and micropumps. We demonstrate the application of multi-layered, membrane-integrated microdevices that consist of up to seven layers and three membranes that specially confine and separate vascular cells from the epithelial barrier and 3D tissue structures.
Collapse
Affiliation(s)
- Drago Sticker
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|
32
|
Zhang H, Tiggelaar RM, Schlautmann S, Bart J, Gardeniers H. In-line sample concentration by evaporation through porous hollow fibers and micromachined membranes embedded in microfluidic devices. Electrophoresis 2015; 37:463-71. [DOI: 10.1002/elps.201500285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Hainan Zhang
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology; University of Twente, Enschede; The Netherlands
| | - Roald M. Tiggelaar
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology; University of Twente, Enschede; The Netherlands
| | - Stefan Schlautmann
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology; University of Twente, Enschede; The Netherlands
| | - Jacob Bart
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology; University of Twente, Enschede; The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology; University of Twente, Enschede; The Netherlands
| |
Collapse
|
33
|
Ma WY, Hsiung LC, Wang CH, Chiang CL, Lin CH, Huang CS, Wo AM. A novel 96well-formatted micro-gap plate enabling drug response profiling on primary tumour samples. Sci Rep 2015; 5:9656. [PMID: 25866290 PMCID: PMC4394194 DOI: 10.1038/srep09656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/03/2015] [Indexed: 12/04/2022] Open
Abstract
Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.
Collapse
Affiliation(s)
- Wei-Yuan Ma
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Lo-Chang Hsiung
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chen-Ho Wang
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chi-Ling Chiang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Andrew M Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
34
|
Guckenberger DJ, Berthier E, Beebe DJ. High-density self-contained microfluidic KOALA kits for use by everyone. ACTA ACUST UNITED AC 2014; 20:146-53. [PMID: 25424385 DOI: 10.1177/2211068214560609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-based assays are essential tools used by research labs in a wide range of fields, including cell biology, toxicology, and natural product discovery labs. However, in some situations, the need for cell-based assays does not justify the costs of maintaining cell culture facilities and retaining skilled staff. The kit-on-a-lid assay (KOALA) technology enables accessible low-cost and prepackageable microfluidic platforms that can be operated with minimal infrastructure or training. Here, we demonstrate and characterize high-density KOALA methods for high-throughput applications, achieving an assay density comparable to that of a 384-well plate and usability by hand with no liquid-handling equipment. We show the potential for high-content screening and complex assays such as quantitative immunochemistry assays requiring multiple steps and reagents.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Erwin Berthier
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA Department of Medical Microbiology, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
35
|
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. LAB ON A CHIP 2014; 14:3241-7. [PMID: 25008971 PMCID: PMC4134926 DOI: 10.1039/c4lc00448e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microscale platforms are enabling for cell-based studies as they allow the recapitulation of physiological conditions such as extracellular matrix (ECM) configurations and soluble factors interactions. Gradient generation platforms have been one of the few applications of microfluidics that have begun to be translated to biological laboratories and may become a new "gold standard". Though gradient generation platforms are now established, their full potential has not yet been realized. Here, we will provide our perspective on milestones achieved in the development of gradient generation and cell migration platforms, as well as emerging directions such as using cell migration as a diagnostic readout and attaining mechanistic information from cell migration models.
Collapse
Affiliation(s)
- E Berthier
- Microtechnology Medicine and Biology Lab (MMB), Department of Biomedical Engineering, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
36
|
Salehi-Reyhani A, Burgin E, Ces O, Willison KR, Klug DR. Addressable droplet microarrays for single cell protein analysis. Analyst 2014; 139:5367-74. [DOI: 10.1039/c4an01208a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Characterizing asthma from a drop of blood using neutrophil chemotaxis. Proc Natl Acad Sci U S A 2014; 111:5813-8. [PMID: 24711384 DOI: 10.1073/pnas.1324043111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Asthma is a chronic inflammatory disorder that affects more than 300 million people worldwide. Asthma management would benefit from additional tools that establish biomarkers to identify phenotypes of asthma. We present a microfluidic solution that discriminates asthma from allergic rhinitis based on a patient's neutrophil chemotactic function. The handheld diagnostic device sorts neutrophils from whole blood within 5 min, and generates a gradient of chemoattractant in the microchannels by placing a lid with chemoattractant onto the base of the device. This technology was used in a clinical setting to assay 34 asthmatic (n = 23) and nonasthmatic, allergic rhinitis (n = 11) patients to establish domains for asthma diagnosis based on neutrophil chemotaxis. We determined that neutrophils from asthmatic patients migrate significantly more slowly toward the chemoattractant compared with nonasthmatic patients (P = 0.002). Analysis of the receiver operator characteristics of the patient data revealed that using a chemotaxis velocity of 1.55 μm/min for asthma yields a diagnostic sensitivity and specificity of 96% and 73%, respectively. This study identifies neutrophil chemotaxis velocity as a potential biomarker for asthma, and we demonstrate a microfluidic technology that was used in a clinical setting to perform these measurements.
Collapse
|
38
|
Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014; 507:181-9. [DOI: 10.1038/nature13118] [Citation(s) in RCA: 1876] [Impact Index Per Article: 187.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/31/2014] [Indexed: 02/06/2023]
|
39
|
The present and future role of microfluidics in biomedical research. Nature 2014. [DOI: 10.1038/nature13118 order by 1--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Wong CC, Liu Y, Wang KY, Rahman ARA. Size based sorting and patterning of microbeads by evaporation driven flow in a 3D micro-traps array. LAB ON A CHIP 2013; 13:3663-7. [PMID: 23900461 DOI: 10.1039/c3lc50274k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a three-dimensional (3D) micro-traps array for size selective sorting and patterning of microbeads via evaporation-driven capillary flow. The interconnected micro-traps array was manufactured by silicon micromachining. Microliters of aqueous solution containing particle mixtures of different sized (0.2 to 20 μm diameter) beads were dispensed onto the micro-traps substrate. The smaller particles spontaneously wicked towards the periphery of the chip, while the larger beads were orderly docked within the micro-traps array.
Collapse
Affiliation(s)
- Chee Chung Wong
- Institute of Microelectronics, Agency for Science Technology and Research, 11 Science Park Road, Singapore Science Park 2, Singapore 117685, Singapore.
| | | | | | | |
Collapse
|
41
|
Kim SJ, Paczesny S, Takayama S, Kurabayashi K. Preprogrammed, parallel on-chip immunoassay using system-level capillarity control. Anal Chem 2013; 85:6902-7. [PMID: 23789820 DOI: 10.1021/ac401292d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fully manual use of conventional multiwell plates makes enzyme-linked immunosorbent assay (ELISA)-based immunoassays highly time-consuming and labor-intensive. Here, we present a capillarity-driven on-chip immunoassay that greatly saves time and labor with an inexpensive setup. Our immunoassay process starts with pipetting multiple solutions into multiwells constructed on a microfluidic device chip. Subsequently, capillarity spontaneously transports multiple sample solutions and common reagent solutions into assigned detection channels on the chip in a purely passive and preprogrammed manner. Our device implements capillarity-driven immunoassays involving four sample and six reagent solutions within 30 min by orchestrating the functions of on-chip passive components. Notably, our immunoassay technique reduces the total number of pipetting processes by ~5 times, as compared to assays on multiwell plates (48 vs 10). This assay technique allows us to quantify the concentrations of C-reactive protein and suppressor of tumorigenicity 2 with a detection limit of 8 and 90 pM, respectively. This device should be useful for sophisticated, parallel biochemical microfluidic processing in point-of-care settings under limited resources.
Collapse
Affiliation(s)
- Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Bischel LL, Mader BR, Green JM, Huttenlocher A, Beebe DJ. Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. LAB ON A CHIP 2013; 13:1732-6. [PMID: 23503983 PMCID: PMC4446983 DOI: 10.1039/c3lc50099c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The zebrafish has emerged as a useful model system for a variety of studies, including the investigation of inflammation and immunity. However, current zebrafish imaging techniques, such as agraose mounting, can be time-consuming and detrimental for long-term imaging. Alternatively, automated sorting and imaging systems can be costly and/or complicated to assemble. Here we describe the Zebrafish Entrapment by Restriction Array (ZEBRA) device, a microfluidic device that can be used to quickly and repeatably position zebrafish embryos in a predictable array using only a pipette. This technique is well suited for use with automated microscope stages leading to decreased imaging time and increased throughput compared to traditional methods. The addition of access ports above the embryo can be used to administer treatments, and potentially wounding or injections. We demonstrate the effectiveness of this device for a neutrophil migration screening application using larvae 3 days post fertilization (dpf) Tg(mpx:dendra2). Larvae were loaded into ZEBRA devices and treated with a neutrophil attractant (LTB4) or LTB4 with and without a PI3K inhibitor, LY294002. Treatment with LY294002 impaired neutrophil motility into the fin induced by LTB4 treatment. The findings report the development of ZEBRA a device that can be used to screen for small molecules that affect leukocyte motility and inflammation using live zebrafish.
Collapse
Affiliation(s)
- Lauren L. Bischel
- Department of Biomedical Engineering, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, USA. Tel: +1-608-262-2260
| | - Brianah R. Mader
- Department of Biomedical Engineering, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, USA. Tel: +1-608-262-2260
| | - Julie M. Green
- Department of Paediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Paediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Beebe
- Department of Biomedical Engineering, Wisconsin Institute for Medical Research, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, USA. Tel: +1-608-262-2260
| |
Collapse
|
43
|
Zhang JY, Mahalanabis M, Liu L, Chang J, Pollock NR, Klapperich CM. A Disposable Microfluidic Virus Concentration Device Based on Evaporation and Interfacial Tension. Diagnostics (Basel) 2013; 3:155-169. [PMID: 26617991 PMCID: PMC4662409 DOI: 10.3390/diagnostics3010155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 12/04/2022] Open
Abstract
We report a disposable and highly effective polymeric microfluidic viral sample concentration device capable of increasing the concentration of virus in a human nasopharyngeal specimen more than one order of magnitude in less than 30 min without the use of a centrifuge. The device is fabricated using 3D maskless xurography method using commercially available polymeric materials, which require no cleanroom operations. The disposable components can be fabricated and assembled in five minutes. The device can concentrate a few milliliters (mL) of influenza virus in solution from tissue culture or clinical nasopharyngeal swab specimens, via reduction of the fluid volume, to tens of microliters μL). The performance of the device was evaluated by nucleic acid extraction from the concentrated samples, followed by a real-time quantitative polymerase chain reaction (qRT-PCR). The viral RNA concentration in each sample was increased on average over 10-fold for both cultured and patient specimens compared to the starting samples, with recovery efficiencies above 60% for all input concentrations. Highly concentrated samples in small fluid volumes can increase the downstream process speed of on-chip nucleic acid extraction, and result in improvements in the sensitivity of many diagnostic platforms that interrogate small sample volumes.
Collapse
Affiliation(s)
- Jane Yuqian Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Madhumita Mahalanabis
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Lena Liu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Jessie Chang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Nira R. Pollock
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center and Department of Lab Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; E-Mail:
| | - Catherine M. Klapperich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-358-0253; Fax: +1-617-353-6766
| |
Collapse
|
44
|
Berthier E, Guckenberger DJ, Cavnar P, Huttenlocher A, Keller NP, Beebe DJ. Kit-On-A-Lid-Assays for accessible self-contained cell assays. LAB ON A CHIP 2013; 13:424-31. [PMID: 23229806 PMCID: PMC3562598 DOI: 10.1039/c2lc41019b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microscale methods for cell-based assays typically rely on macroscopic reagent handling and fluidic loading protocols that are technically challenging and do not scale with the number of assays favorably. Here, we demonstrate a microfluidic platform technology called "Kit-On-A-Lid-Assay" (KOALA), that enables the creation of self-contained microfluidic cell-based assays, integrating all the steps required to perform cell-based assays. The KOALA platform allows the pre-packaging of reagents, cryopreservation of cell suspensions, thawing of cell suspensions, culture of cells, and operation of whole cell-based assays. The operation of the KOALA platform is user-friendly and consists of bringing together a lid containing the microchannels, and a base containing the pre-packaged reagents, thereby causing fluidic exchange in all the channels simultaneously. We demonstrate that the KOALA cell-based assays can be simply operated from start to finish without any external laboratory equipment.
Collapse
Affiliation(s)
- Erwin Berthier
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
45
|
Su X, Theberge AB, January CT, Beebe DJ. Effect of microculture on cell metabolism and biochemistry: do cells get stressed in microchannels? Anal Chem 2013; 85:1562-70. [PMID: 23327437 DOI: 10.1021/ac3027228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microfluidics is emerging as a promising platform for cell culture, enabling increased microenvironment control and potential for integrated analysis compared to conventional macroculture systems such as well plates and Petri dishes. To advance the use of microfluidic devices for cell culture, it is necessary to better understand how miniaturization affects cell behavior. In particular, microfluidic devices have significantly higher surface-area-to-volume ratios than conventional platforms, resulting in lower volumes of media per cell, which can lead to cell stress. We investigated cell stress under a variety of culture conditions using three cell lines: parental HEK (human embryonic kidney) cells and transfected HEK cells that stably express wild-type (WT) and mutant (G601S) human ether-a-go-go related gene (hERG) potassium channel protein. These three cell lines provide a unique model system through which to study cell-type-specific responses in microculture because mutant hERG is known to be sensitive to environmental conditions, making its expression a particularly sensitive readout through which to compare macro- and microculture. While expression of WT-hERG was similar in microchannel and well culture, the expression of mutant G601S-hERG was reduced in microchannels. Expression of the endoplasmic reticulum (ER) stress marker immunoglobulin binding protein (BiP) was upregulated in all three cell lines in microculture. Using BiP expression, glucose consumption, and lactate accumulation as readouts we developed methods for reducing ER stress including properly increasing the frequency of media replacement, reducing cell seeding density, and adjusting the serum concentration and buffering capacity of culture medium. Indeed, increasing the buffering capacity of culture medium or frequency of media replacement partially restored the expression of the G601S-hERG in microculture. This work illuminates how biochemical properties of cells differ in macro- and microculture and suggests strategies that can be used to modify cell culture protocols for future studies involving miniaturized culture platforms.
Collapse
Affiliation(s)
- Xiaojing Su
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | | | | | | |
Collapse
|
46
|
Sackmann EK, Berthier E, Young EWK, Shelef MA, Wernimont SA, Huttenlocher A, Beebe DJ. Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood 2012; 120:e45-53. [PMID: 22915642 PMCID: PMC3466974 DOI: 10.1182/blood-2012-03-416453] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/05/2012] [Indexed: 12/31/2022] Open
Abstract
Improvements in neutrophil chemotaxis assays have advanced our understanding of the mechanisms of neutrophil recruitment; however, traditional methods limit biologic inquiry in important areas. We report a microfluidic technology that enables neutrophil purification and chemotaxis on-chip within minutes, using nanoliters of whole blood, and only requires a micropipette to operate. The low sample volume requirements and novel lid-based method for initiating the gradient of chemoattractant enabled the measurement of human neutrophil migration on a cell monolayer to probe the adherent and migratory states of neutrophils under inflammatory conditions; mouse neutrophil chemotaxis without sacrificing the animal; and both 2D and 3D neutrophil chemotaxis. First, the neutrophil chemotaxis on endothelial cells revealed 2 distinct neutrophil phenotypes, showing that endothelial cell-neutrophil interactions influence neutrophil chemotactic behavior. Second, we validated the mouse neutrophil chemotaxis assay by comparing the adhesion and chemotaxis of neutrophils from chronically inflamed and wild-type mice; we observed significantly higher neutrophil adhesion in blood obtained from chronically inflamed mice. Third, we show that 2D and 3D neutrophil chemotaxis can be directly compared using our technique. These methods allow for new avenues of research while reducing the complexity, time, and sample volume requirements to perform neutrophil chemotaxis assays.
Collapse
Affiliation(s)
- Eric K Sackmann
- Materials Science Program, Wisconsin Institute for Medical Research, Madison, WI 53705, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Resto PJ, Berthier E, Beebe DJ, Williams JC. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices. LAB ON A CHIP 2012; 12:2221-2228. [PMID: 22441561 DOI: 10.1039/c2lc20858j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe and characterize a pumping mechanism that leverages the momentum present in small droplets ejected from a micro-nozzle to drive flow in an open microfluidic device. This approach allows driving flow in a microfluidic device in a regime that offers unique features different to those achievable with typical passive pumping or syringe-pump driven flow. Two flow regimes with specific flow characteristics are described: inertia enhanced passive pumping, in which fluid exchange times in the channel are significantly reduced, and inertia actuated flow, in which it is possible to initiate flow in an empty channel or against natural pressure gradients. Momentum is leveraged to create rapid fluid exchanges, instantaneous flow reversal, filling and mixing inside the microfluidic device.
Collapse
Affiliation(s)
- Pedro J Resto
- Materials Science Program, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
48
|
Yunker PJ, Gratale M, Lohr MA, Still T, Lubensky TC, Yodh AG. Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries. PHYSICAL REVIEW LETTERS 2012; 108:228303. [PMID: 23003662 DOI: 10.1103/physrevlett.108.228303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Indexed: 06/01/2023]
Abstract
We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry during drying. Interestingly, interfacial buckling events occur during evaporation. Extension of the description of buckled elastic membranes to our quasi-2D geometry enables the determination of the ratio of CMM bending rigidity to its Young's modulus. Bending rigidity increases with increasing particle anisotropy, and particle deposition during evaporation is strongly affected by membrane elastic properties. During drying, spheres are deposited heterogeneously, but ellipsoids are not. Apparently, increased bending rigidity reduces contact line bending and pinning and induces uniform deposition of ellipsoids. Surprisingly, suspensions of spheres doped with a small number of ellipsoids are also deposited uniformly.
Collapse
Affiliation(s)
- Peter J Yunker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Berthier E, Young EWK, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. LAB ON A CHIP 2012; 12:1224-37. [PMID: 22318426 DOI: 10.1039/c2lc20982a] [Citation(s) in RCA: 453] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As the integration of microfluidics into cell biology research proceeds at an ever-increasing pace, a critical question for those working at the interface of both disciplines is which device material to use for a given application. While PDMS and soft lithography methods offer the engineer rapid prototyping capabilities, PDMS as a material has characteristics that have known adverse effects on cell-based experiments. In contrast, while polystyrene (PS), the most commonly used thermoplastic for laboratory cultureware, has provided decades of grounded and validated research conclusions in cell behavior and function, PS as a material has posed significant challenges in microfabrication. These competing issues have forced microfluidics engineers and biologists to make compromises in how they approach specific research questions, and furthermore, have attenuated the impact of microfluidics on biological research. In this review, we provide a comparison of the attributes of PDMS and PS, and discuss reasons for their popularity in their respective fields. We provide a critical evaluation of the strengths and limitations of PDMS and PS in relation to the advancement and future impact on microfluidic cell-based studies and applications. We believe that engineers have a responsibility to overcome any challenges associated with microfabrication, whether with PS or other materials, and that engineers should provide options and solutions that assist biologists in their experimental design. Our goal is not to advocate for any specific material, but provide guidelines for researchers who desire to choose the most suitable material for their application, and suggest important research directions for engineers working at the interface between microfabrication technology and biological application.
Collapse
Affiliation(s)
- Erwin Berthier
- Department of Medical Microbiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
50
|
Zhou Y, Pang Y, Huang Y. Openly Accessible Microfluidic Liquid Handlers for Automated High-Throughput Nanoliter Cell Culture. Anal Chem 2012; 84:2576-84. [DOI: 10.1021/ac203469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ying Zhou
- College of
Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yuhong Pang
- College of
Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yanyi Huang
- College of
Engineering, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|