1
|
Lebruška V, Dobrovolná T, Gemperle T, Kubíček V, Kossatz S, Hermann P. A UV-Vis method for investigation of gallium(III) complexation kinetics with NOTA and TRAP chelators: advantages, limitations and comparison with radiolabelling. Dalton Trans 2024. [PMID: 39392056 DOI: 10.1039/d4dt02383h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An easy and cheap method for measurement of GaIII complexation kinetics was developed. The method is based on UV-Vis quantification of non-complexed chelators after the addition of CuII ions at individual time points. The method was evaluated using established ligands, H3nota and H6notPPr, and was utilized to study the kinetics of GaIII complexation with four new symmetric derivatives of 1,4,7-triazacyclononane bearing methylphosphonate/phosphinate pendant arms - TRAP ligands. Chelators bearing ethoxy groups (H3L1) or 2,2,2-trifluoroethyl groups (H3L2) on the phosphorus atoms showed fast formation (t99% = 21 and 10 min, respectively, at pH 2.0) and efficient radiolabelling which were comparable to the previously reported chelators bearing the 2-carboxyethyl group (H6notPPr). Chelators bearing (N,N-dibenzyl-amino)methyl (H3L3) and aminomethyl (H3L4) substituents showed a significantly slower complexation (t99% = 4.4 and 3.6 h, respectively, at pH 2.0) and inefficient radiolabelling, mainly at room temperature or low pH. This was caused by protonation of the amino groups of the pendant arms leading to coulombic repulsion between the GaIII ion and the positively charged protonated amines. The trends in complexation rates determined by the UV-Vis method correlated well with the results of the 68Ga radiolabelling study.
Collapse
Affiliation(s)
- Viktor Lebruška
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Tereza Dobrovolná
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Tereza Gemperle
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM University Hospital and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich (TUM), Einsteinstrasse 25, 81675, Munich, Germany
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic.
| |
Collapse
|
2
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Rational Design of a Hetero-multinuclear Gadolinium(III)-Copper(II) Complex: Integrating Magnetic Resonance Imaging, Photoacoustic Imaging, Mild Photothermal Therapy, Chemotherapy and Immunotherapy of Cancer. J Med Chem 2024; 67:15606-15619. [PMID: 39143701 DOI: 10.1021/acs.jmedchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
For more accurate diagnosis and effective treatment of cancer, we proposed to develop a hetero-multinuclear metal complex based on the property of apoferritin (AFt) for targeting tumor theranostics by integrating dual-modality imaging diagnosis and multimodality therapy. To this end, we rational designed and synthesized a trinuclear Gd(III)-Cu(II) thiosemicarbazone complex (Gd-2Cu) and then constructed a Gd-2Cu@AFt nanoparticle (NP) delivery system. Gd-2Cu/Gd-2Cu@AFt NPs not only had significant T1-weighted magnetic resonance imaging and photoacoustic imaging of the tumor but also effectively inhibited tumor growth through a combination of mild photothermal therapy, chemotherapy, and immunotherapy. Gd-2Cu@AFt NPs optimized the behavior of imaging diagnosis and therapy of Gd-2Cu, improved its targeting ability, and reduced the side effects in vivo. Besides, we revealed and clarified the anticancer mechanism of Gd-2Cu: interrupting energy metabolism of the tumor cell, inducing apoptosis of the tumor cell, and activating a systemic immune response by inducing immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
3
|
Svítok A, Blahut J, Urbanovský P, Hermann P. Dynamics of Coordinated Phosphonate Group Directly Observed by 17O-NMR in Lanthanide(iii) Complexes of a Mono(ethyl phosphonate) DOTA Analogue. Chemistry 2024; 30:e202400970. [PMID: 38624256 DOI: 10.1002/chem.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Biological phosphates can coordinate metal ions and their complexes are common in living systems. Dynamics of mutual oxygen atom exchange in the tetrahedral group in complexes has not been investigated. Here, we present a direct experimental proof of exchange ("phosphonate rotation") in model Ln(III) complexes of monophosphonate H4dota analogue which alters phosphorus atom chirality of coordinated phosphonate monoester. Combination of macrocycle-based isomerism with P-based chirality leads to several diastereoisomers. (Non)-coordinated oxygen atoms were distinguished through 17O-labelled phosphonate group and their mutual exchange was followed by various NMR techniques and DFT calculations. The process is sterically demanding and occurs through bulky bidentate (κ2-PO2)- coordination and was observed only in twisted-square antiprism (TSA) diastereoisomer of large Ln(III) ions. Its energy demands increase for smaller Ln(III) ions (298ΔG≠(exp./DFT)=51.8/52.1 and 61.0/71.5 kJ mol-1 for La(III) and Eu(III), respectively). These results are helpful in design of such complexes as MRI CA and for protein paramagnetic NMR probes. It demonstrates usefulness of 17O NMR to study solution dynamics in complexes involving phosphorus acid derivatives and it may inspire use of this method to study dynamics of phosphoric acid derivatives (as e. g. phosphorus acid-based inhibitors of metalloenzymes) in different areas of chemistry.
Collapse
Affiliation(s)
- Adam Svítok
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo náměstí 2, 16000, Prague 6, Czech Republic
| | - Peter Urbanovský
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Petr Hermann
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| |
Collapse
|
4
|
Kaster MA, Caldwell MA, Meade TJ. Development of Ln(III) Derivatives as 19F Parashift Probes. Inorg Chem 2024; 63:9877-9887. [PMID: 38748735 DOI: 10.1021/acs.inorgchem.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
19F parashift probes with paramagnetically shifted reporter nuclei provide attractive platforms to develop molecular imaging probes. These probes enable ratiometric detection of molecular disease markers using a direct detection technique. Here, we describe a series of trivalent lanthanide (Ln(III)) complexes that are structural analogues of the clinically approved MR contrast agent (CA) ProHance to obtain LnL 19F parashift probes. We evaluated trans-gadolinium paramagnetic lanthanides compared to diamagnetic YL for 19F chemical shift and relaxation rate enhancement. The paramagnetic contribution to chemical shift (δPCS) for paramagnetic LnL exhibited either shifts to lower frequency (δPCS < 0 for TbL, DyL, and HoL) or shifts to higher frequency (δPCS > 0 for ErL, TmL, and YbL) compared to YL 19F spectroscopic signal. Zero-echo time pulse sequences achieved 56-fold sensitivity enhancement for DyL over YL, while developing probe-specific pulse sequences with fast delay times and acquisition times achieved 0.6-fold enhancement in limit of detection for DyL. DyL provides an attractive platform to develop 19F parashift probes for ratiometric detection of enzymatic activity.
Collapse
Affiliation(s)
- Megan A Kaster
- Departments of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael A Caldwell
- Departments of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Carpenter SH, Mengell J, Chen J, Jones MR, Kirk ML, Tondreau AM. Determining the Effects of Zero-Field Splitting and Magnetic Exchange in Dimeric Europium(II) Complexes. Inorg Chem 2024; 63:8516-8520. [PMID: 38667056 DOI: 10.1021/acs.inorgchem.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Related BAP [BAP = bis(acyl)phosphide] and Acac (Acac = β-diketonate) molecules perform as robust supports for both lanthanide and actinide metals. Here, a molecular bimetallic Eu2+ complex was successfully targeted and isolated by employing sodium bis(mesitoyl)phosphide [Na(mesBAP)] in a salt metathesis with EuI2, producing [Eu(mesBAP)2(et2o)]2 (et2o = metal-coordinated diethyl ether). The corresponding Acac-Eu2+ complex was targeted using mesAcac- (1,3-dimesityl-1,3-propanedione), generating [Eu(mesAcac)2(et2o)]2. Both complexes were characterized by single-crystal X-ray diffraction, UV-vis, IR, and NMR spectroscopies, and variable-temperature magnetic susceptibility. [Eu(mesBAP)2(et2o)]2 was persistent under anaerobic, anhydrous conditions, whereas the analogous [Eu(mesAcac)2(et2o)]2 showed evidence of decomposition under identical conditions. Variable-temperature magnetic susceptibility and magnetization studies of [Eu(mesBAP)2(et2o)]2 and [Eu(mesAcac)2(et2o)]2 were performed, resulting in similar magnetic exchange coupling values of Jex = -0.018 and -0.023 cm-1 and axial zero-field-splitting D values of -0.38 and -0.51 cm-1, respectively.
Collapse
Affiliation(s)
- Stephanie H Carpenter
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joshua Mengell
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Margaret R Jones
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States
- The Center for Quantum Information and Control, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
6
|
Kaur J, Sridharr M. Key Insights on the Classification and Theranostic Applications of Magnetic Resonance Imaging Contrast Agents. ChemMedChem 2024; 19:e202300521. [PMID: 38246874 DOI: 10.1002/cmdc.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive molecular imaging tool being extensively employed in clinical and biomedical research for the detection of a broad spectrum of diseases. This technique offers remarkable spatial resolution, good tissue penetration and a high soft tissue contrast. Contrast agents (CAs) have been regularly used in MRI tests to enhance the resolution of MR images and to visualize the diseased sites in the body. In the past years, considerable efforts have been devoted towards developing new theranostic MRI agents that can be tailored to integrate the targeting and therapeutic functions in a single agent. In this review, we have underlined the role of the MRI CAs in the developing field of 'theranostics' and their recent applications in the combined imaging and therapy of different types of tumors. In addition, this review also outlines the different categories of MRI CAs and their comprehensive classification based on different criteria such as chemical composition, relaxation mechanism and biodistribution with clinically relevant examples.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Sector-125, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Manasvini Sridharr
- LMU Biocenter, Martinsreid, Ludwig-Maximilians-Universität München, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, München, Germany
| |
Collapse
|
7
|
Huang Z, Wang Y, Su C, Li W, Wu M, Li W, Wu J, Xia Q, He H. Mn-Anti-CTLA4-CREKA-Sericin Nanotheragnostics for Enhanced Magnetic Resonance Imaging and Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306912. [PMID: 38009480 DOI: 10.1002/smll.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The integration of magnetic resonance imaging (MRI), cGAS-STING, and anti-CTLA-4 (aCTLA-4) based immunotherapy offers new opportunities for tumor precision therapy. However, the precise delivery of aCTLA-4 and manganese (Mn), an activator of cGAS, to tumors remains a major challenge for enhanced MRI and active immunotherapy. Herein, a theragnostic nanosphere Mn-CREKA-aCTLA-4-SS (MCCS) is prepared by covalently assembling Mn2+, silk sericin (SS), pentapeptide CREKA, and aCTLA-4. MCCS are stable with an average size of 160 nm and is almost negatively charged or neutral at pH 5.5/7.4. T1-weighted images showed MCCS actively targeted tumors to improve the relaxation rate r1 and contrast time of MRI. This studies demonstrated MCCS raises reactive oxygen species levels, activates the cGAS-STING pathway, stimulates effectors CD8+ and CD80+ T cells, reduces regulatory T cell numbers, and increases IFN-γ and granzyme secretion, thereby inducing tumor cells autophagy and apoptosis in vitro and in vivo. Also, MCCS are biocompatible and biosafe. These studies show the great potential of Mn-/SS-based integrative material MCCS for precision and personalized tumor nanotheragnostics.
Collapse
Affiliation(s)
- Zixuan Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yejing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Can Su
- School of medical imaging, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Wanting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wuling Li
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jun Wu
- School of medical imaging, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Huawei He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
8
|
Pierri G, Schettini R. Advances in MRI: Peptide and peptidomimetic-based contrast agents. J Pept Sci 2024; 30:e3544. [PMID: 37726947 DOI: 10.1002/psc.3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Magnetic resonance imaging (MRI) is a common medical imaging technique that provides three-dimensional body images. MRI contrast agents improve image contrast by raising the rate of water proton relaxation in specific tissues. Peptides and peptidomimetics act as scaffolds for MRI imaging agents because of their increased size and offer the possibility to engine a higher hydration value within the design. The design of a new Gd-based contrast agent must take into account high stability constants to avoid free Gd(III), with the subsequent nephrotoxicity, and high relaxivity values. This review analyzes various synthetic approaches, reports studies of relaxometric parameters, and focuses on the description and application of Gd(III)-chelates based on peptide and peptidomimetic scaffolds. In addition, the X-ray molecular structures of three DOTA complexes will be reported to emphasize the necessity of using the X-ray diffraction analysis to identify the coordination sphere of the metals and the mechanism of action of the compounds.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| | - Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| |
Collapse
|
9
|
Travagin F, Macchia ML, Grell T, Bodnár J, Baranyai Z, Artizzu F, Botta M, Giovenzana GB. EHDTA: a green approach to efficient Ln 3+-chelators. Dalton Trans 2024; 53:1779-1793. [PMID: 38170858 DOI: 10.1039/d3dt03292b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rich coordination chemistry of lanthanoid ions (Ln3+) is currently exploited in a vast and continuously expanding array of applications. Chelating agents are central in the development of Ln3+-complexes and in tuning their physical and chemical properties. Most chelators for Ln3+-complexation are derived from the macrocyclic DOTA or from linear DTPA platforms, both of which arise from fossil-based starting materials. Herein, we report a green and efficient approach to a chelating agent (EHDTA), derived from cheap and largely available furfurylamine. The oxygenated heterocycle of the latter is converted to a stereochemically defined and rigid heptadentate chelator, which shows good affinity towards Ln3+ ions. A combination of NMR, relaxometric, potentiometric and spectrophotometric techniques allows us to shed light on the interesting coordination chemistry of Ln3+-EHDTA complexes, unveiling a promising ligand for the chelation of this important family of metal ions.
Collapse
Affiliation(s)
- Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| | - Maria Ludovica Macchia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Judit Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., H-4010, Debrecen, Hungary
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, ed. Q - S.S. 14 Km, 163.5 - 34149 Basovizza, TS, Italy.
| | - Flavia Artizzu
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.zza S. Eusebio 5, 13100 Vercelli, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy.
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| |
Collapse
|
10
|
Xi Z, Zhang R, Kiessling F, Lammers T, Pallares RM. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater Sci Eng 2024; 10:38-50. [PMID: 37249042 DOI: 10.1021/acsbiomaterials.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.
Collapse
Affiliation(s)
- Zhongqian Xi
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Rui Zhang
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
11
|
Jalilehvand F, Homayonia S, Zhang P, Ling CC. Gadolinium(III) complex formation with a β-cyclodextrin ligand: an XAS study of a potential MRI contrast agent. J Biol Inorg Chem 2023; 28:805-811. [PMID: 37981582 DOI: 10.1007/s00775-023-02027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023]
Abstract
In the search for improved and safer gadolinium-based magnetic resonance imaging (MRI) contrast agents, macrocyclic cyclodextrins (CDs) attract great interest. Our group previously synthesized a cyclodextrin-based ligand with 1,2,3-triazolmethyl residues conjugated to β-CD, called β-CD(A), which efficiently chelates Gd(III) ions. To probe the local structure around the Gd(III) ion in the 1:1 Gd(III): β-CD(A) complex in aqueous solution (pH 5.5), we used extended X-ray absorption fine structure (EXAFS) spectroscopy. Least-squares curve fitting of the Gd L3-edge EXAFS spectrum revealed 5 Gd-O (4 COO- and 1 H2O) and 4 Gd-N (from two imino and two 1,2,3-triazole groups) bonds around the Gd(III) ion with average distances 2.36 and 2.56 ± 0.02 Å, respectively. A similar EXAFS spectrum was obtained from an aqueous solution of the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)], also 9-coordinated in its first shell. Careful analysis revealed that the mean Gd-N distance is shorter in the Gd(III): β-CD(A) (1:1) complex, indicating stronger Gd-N bonding and stronger Gd(III) complex formation than with the DOTA4- ligand. This is consistent with the lower free Gd3+ concentration found previously for the Gd(III): β-CD(A) (1:1) complex than for the [Gd(DOTA)(H2O)]- complex, and shows its potential as an MRI probe. EXAFS spectroscopy revealed a similar Gd(III) 9-coordination although slightly stronger for a modified β-cyclodextrin: Gd(III) 1:1 complex, [Gd(LH4)]7-, in aqueous solution than for the clinically used MRI contrast agent Na[Gd(DOTA)(H2O)].
Collapse
Affiliation(s)
- Farideh Jalilehvand
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Saba Homayonia
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ping Zhang
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
12
|
Cao X, Hu S, Zheng H, Mukhtar A, Wu K, Gu L. Preparation, Characterization, and Magnetic Resonance Imaging of Mn@SiO 2 Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16812-16824. [PMID: 37965918 DOI: 10.1021/acs.langmuir.3c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The deposition time was controlled to prepare Mn nanowires of different lengths and diameters on templates of anodic aluminum oxide (AAO) with different pore sizes. The surface of as-prepared Mn nanowires was modified with SiO2 using the sol-gel method to improve their dispersion in aqueous solution. The effects of the diameter and length of the as-prepared Mn nanowires coated with SiO2 on the relaxivity were investigated. It was found that the Mn@SiO2 nanowires have smaller diameters and a higher longitudinal relaxivity (r1) with an increased length. Mn3@SiO2 nanowires had the highest r1 value of 5.8 mM-1 s-1 among the Mn@SiO2 nanowires (Mn3 nanowires have a diameter of about 30 nm and a length of about 0.5 μm length). Additionally, the biocompatibility and in vivo imaging ability of the Mn3@SiO2 nanowires were evaluated. The Mn3@SiO2 nanowires had good cytotoxicity and biocompatibility, and the kidney of SD rats showed a positive enhancement effect during small animal imaging at 1.5 T. This study showed that the Mn3@SiO2 nanowires could potentially become contrast agents (CAs) of longitudinal relaxation time (T1).
Collapse
Affiliation(s)
- Xiaoming Cao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430000, P. R. China
| | - Shike Hu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, P. R. China
| | - Hua Zheng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, P. R. China
| | - Aiman Mukhtar
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430000, P. R. China
| | - KaiMing Wu
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430000, P. R. China
| | - Liyuan Gu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, P. R. China
| |
Collapse
|
13
|
Rizzo R, Capozza M, Carrera C, Terreno E. Bi-HPDO3A as a novel contrast agent for X-ray computed tomography. Sci Rep 2023; 13:16747. [PMID: 37798332 PMCID: PMC10556142 DOI: 10.1038/s41598-023-43031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
A new bismuth-based CT agent was synthesized through a facile synthesis strategy. The in vitro stability, toxicity and CT performance were evaluated. The in vivo imaging performance was investigated using three different doses (0.5, 1.2 and 5 mmol/kg) and the result obtained at 1.2 mmol/kg was compared with the clinically approved CT agent iopamidol at the same dosage.
Collapse
Affiliation(s)
- Rebecca Rizzo
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, 10126, Turin, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
14
|
Jiang Y, Cai Z, Fu S, Gu H, Fu X, Zhu J, Ke Y, Jiang H, Cao W, Wu C, Xia C, Lui S, Song B, Gong Q, Ai H. Relaxivity Enhancement of Hybrid Micelles via Modulation of Water Coordination Numbers for Magnetic Resonance Lymphography. NANO LETTERS 2023; 23:8505-8514. [PMID: 37695636 DOI: 10.1021/acs.nanolett.3c02214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Considerable efforts have been made to develop nanoparticle-based magnetic resonance contrast agents (CAs) with high relaxivity. The prolonged rotational correlation time (τR) induced relaxivity enhancement is commonly recognized, while the effect of the water coordination numbers (q) on the relaxivity of nanoparticle-based CAs gets less attention. Herein, we first investigated the relationship between T1 relaxivity (r1) and q in manganese-based hybrid micellar CAs and proposed a strategy to enhance the relaxivity by increasing q. Hybrid micelles with different ratios of amphiphilic manganese complex (MnL) and DSPE-PEG2000 were prepared, whose q values were evaluated by Oxygen-17-NMR spectroscopy. Micelles with lower manganese doping density exhibit increased q and enhanced relaxivity, corroborating the conception. In vivo sentinel lymph node (SLN) imaging demonstrates that DSPE-PEG/MnL micelles could differentiate metastatic SLN from inflammatory LN. Our strategy makes it feasible for relaxivity enhancement by modulating q, providing new approaches for the structural design of high-performance hybrid micellar CAs.
Collapse
Affiliation(s)
- Yuting Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Weidong Cao
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
16
|
Mulder FAA, Tenori L, Licari C, Luchinat C. Practical considerations for rapid and quantitative NMR-based metabolomics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107462. [PMID: 37141802 DOI: 10.1016/j.jmr.2023.107462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
NMR is a key technology for metabolomics because of its robustness and reproducibility. Herein we discuss practical considerations that extend the utility of NMR spectroscopy. First, the long T1 spin relaxation times of small molecules limits high-throughput data acquisition because most experimental time is lost while waiting for signal recovery. In principle, the addition of a small amount of commercially-available paramagnetic gadolinium chelate allows cost-effective and efficient high-throughput mixture analysis with correct concentration determination. However, idle time caused by slow temperature regulation during sample exchanges, poses a next constraint. We show how, with proper care, NMR sample scanning times can be reduced additionally by a factor of two. Lastly, we describe how equidistant bucketing is a simple and fast procedure for metabolomic fingerprinting. The combination of these advancements help to make NMR metabolomics more versatile than it is today.
Collapse
Affiliation(s)
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Florence, Italy
| | - Cristina Licari
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Florence, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Florence, Italy; GiottoBiotech s.r.l., Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
17
|
Cao J, Pickup S, Rosen M, Zhou R. Impact of Arterial Input Function and Pharmacokinetic Models on DCE-MRI Biomarkers for Detection of Vascular Effect Induced by Stroma-Directed Drug in an Orthotopic Mouse Model of Pancreatic Cancer. Mol Imaging Biol 2023:10.1007/s11307-023-01824-7. [PMID: 37166575 DOI: 10.1007/s11307-023-01824-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE We demonstrated earlier in mouse models of pancreatic ductal adenocarcinoma (PDA) that Ktrans derived from dynamic contrast-enhanced (DCE) MRI detected microvascular effect induced by PEGPH20, a hyaluronidase which removes stromal hyaluronan, leading to reduced interstitial fluid pressure in the tumor (Clinical Cancer Res (2019) 25: 2314-2322). How the choice of pharmacokinetic (PK) model and arterial input function (AIF) may impact DCE-derived markers for detecting such an effect is not known. PROCEDURES Retrospective analyses of the DCE-MRI of the orthotopic PDA model are performed to examine the impact of individual versus group AIF combined with Tofts model (TM), extended-Tofts model (ETM), or shutter-speed model (SSM) on the ability to detect the microvascular changes induced by PEGPH20 treatment. RESULTS Individual AIF exhibit a marked difference in peak gadolinium concentration. However, across all three PK models, kep values show a significant correlation between individual versus group-AIF (p < 0.01). Regardless individual or group AIF, when kep is obtained from fitting the DCE-MRI data using the SSM, kep shows a significant increase after PEGPH20 treatment (p < 0.05 compared to the baseline); %change of kep from baseline to post-treatment is also significantly different between PEGPH20 versus vehicle group (p < 0.05). In comparison, when kep is derived from the TM, only the use of individual AIF leads to a significant increase of kep after PEGPH20 treatment, whereas the %change of kep is not different between PEGPH20 versus vehicle group. Group AIF but not individual AIF allows detection of a significant increase of Vp (derived from the ETM) in PEGPH20 versus vehicle group (p < 0.05). Increase of Vp is consistent with a large increase of mean capillary lumen area estimated from immunostaining. CONCLUSION Our results suggest that kep derived from SSM and Vp from ETM, both using group AIF, are optimal for the detection of microvascular changes induced by stroma-directed drug PEGPH20. These analyses provide insights in the choice of PK model and AIF for optimal DCE protocol design in mouse pancreatic cancer models.
Collapse
Affiliation(s)
- Jianbo Cao
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Current address: Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pancreatic Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Pancreatic Cancer Research Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Zhou T, Zhang S, Zhang L, Jiang T, Wang H, Huang L, Wu H, Fan Z, Jing S. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Acta Biomater 2023; 164:496-510. [PMID: 37054962 DOI: 10.1016/j.actbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Developing a feasible way to feature longitudinal (T1) and transverse (T2) relaxation performance of contrast agents for magnetic resonance imaging (MRI) is important in cancer diagnosis and therapy. Improved accessibility to water molecule is essential for accelerating the relaxation rate of water protons around the contrast agents. Ferrocenyl compounds have reversible redox property for modulating the hydrophobicity/hydrophilicity of assemblies. Thus, they could be the candidates that can change water accessibility to the contrast agent surface. Herein, we incorporated ferrocenylseleno compound (FcSe) with Gd3+-based paramagnetic UCNPs, to obtain FNPs-Gd nanocomposites using T1-T2 MR/UCL trimodal imaging and simultaneous photo-Fenton therapy. When the surface of NaGdF4:Yb,Tm UNCPs was ligated by FcSe, the hydrogen bonding between hydrophilic selenium and surrounding water molecules accelerated their proton exchange to initially endow FNPs-Gd with high r1 relaxivity. Then, hydrogen nuclei from FcSe disrupted the homogeneity of the magnetic field around the water molecules. This facilitated T2 relaxation and resulted in enhanced r2 relaxivity. Notably, upon the near-infrared light-promoted Fenton-like reaction in the tumor microenvironment, hydrophobic ferrocene(II) of FcSe was oxidized into hydrophilic ferrocenium(III), which further increased the relaxation rate of water protons to obtain r1 = 1.90±0.12 mM-1 s-1 and r2 = 12.80±0.60 mM-1 s-1. With an ideal relaxivity ratio (r2/r1) of 6.74, FNPs-Gd exhibited high contrast potential of T1-T2 dual-mode MRI in vitro and in vivo. This work confirms that ferrocene and selenium are effective boosters that enhance the T1-T2 relaxivities of MRI contrast agents, which could provide a new strategy for multimodal imaging-guided photo-Fenton therapy of tumors. STATEMENT OF SIGNIFICANCE: T1-T2 dual-mode MRI nanoplatform with tumor-microenvironment-responsive features has been an attractive prospect. Herein, we designed redox ferrocenylseleno compound (FcSe) modified paramagnetic Gd3+-based UCNPs, to modulate T1-T2 relaxation time for multimodal imaging and H2O2-responsive photo-Fenton therapy. Selenium-hydrogen bond of FcSe with surrounding water molecules facilitated water accessibility for fast T1 relaxation. Hydrogen nucleus in FcSe perturbed the phase coherence of water molecules in an inhomogeneous magnetic field and thus accelerated T2 relaxation. In tumor microenvironment, FcSe was oxidized into hydrophilic ferrocenium via NIR light-promoted Fenton-like reaction which further increased both T1 and T2 relaxation rates; Meanwhile, the released toxic •OH performed on-demand cancer therapy. This work confirms that FcSe is an effective redox mediate for multimodal imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuyan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Hongshuai Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhining Fan
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
19
|
Kotková Z, Koucký F, Kotek J, Císařová I, Parker D, Hermann P. Copper(II) complexes of cyclams with N-(2,2,2-trifluoroethyl)-aminoalkyl pendant arms as potential probes for 19F magnetic resonance imaging. Dalton Trans 2023; 52:1861-1875. [PMID: 36448539 DOI: 10.1039/d2dt03360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of Cu(II) complexes with cyclam-based ligands containing two N-(2,2,2-trifluoroethyl)-aminoalkyl pendant arms in 1,8-positions (L1: 1,2-ethylene spacer, L2: 1,3-propylene spacer; L3: 1,4-butylene spacer) was studied in respect to potential use as contrast agents for 19F magnetic resonance imaging (MRI). A number of structures of the complexes as well as of several organic precursors were determined by single-crystal X-ray diffraction analysis. Geometric parameters (especially distances between fluorine atoms and the central metal ion) were determined for each complex and the identity of isomeric complex species present in solution was established. The NMR longitudinal relaxation times (T1) of 19F nuclei in the ligands at clinically relevant fields and temperatures (1-2 s) were significantly shortened upon Cu(II) binding to 7-10 ms for [Cu(L1)]2+, 20-30 ms for [Cu(L2)]2+ and 20-50 ms for [Cu(L3)]2+. The trend of the relaxation time shortening is in accordance with the distance and number of chemical bonds between fluorine atoms and the Cu(II) ion. The signals show promising T2*/T1 ratios in the range 0.25-0.55, assuring their good applicability to 19F NMR/MRI. The results show that even the Cu(II) ion, with a small magnetic moment, causes significant relaxation enhancement with a long-range effect and can be considered as a highly suitable metal ion for efficient 19F MRI contrast agents.
Collapse
Affiliation(s)
- Zuzana Kotková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| | - David Parker
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 42 Prague 2, Czech Republic.
| |
Collapse
|
20
|
Heavily Gd-Doped Non-Toxic Cerium Oxide Nanoparticles for MRI Labelling of Stem Cells. Molecules 2023; 28:molecules28031165. [PMID: 36770832 PMCID: PMC9920480 DOI: 10.3390/molecules28031165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.
Collapse
|
21
|
Keot N, Sarma M. Computational insight into a mechanistic overview of water exchange kinetics and thermodynamic stabilities of bis and tris-aquated complexes of lanthanides. RSC Adv 2023; 13:1516-1529. [PMID: 36688060 PMCID: PMC9816859 DOI: 10.1039/d2ra05810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4- ligand than the cbda3- ligand towards Ln3+ ions due to the higher charge density of the peada4- ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal-water bond. The strength of the metal-water bond follows the trend Gd-O47 (w) > Gd-O39 (w) > Gd-O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd-O43 (w) > Gd-O40 (w) for the bis-aquated [Gd(peada)(H2O)2]- complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence k ex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas-Kroll-Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal-ligand (M-L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(iii)-based high relaxivity MRI contrast agents for medical applications.
Collapse
Affiliation(s)
- Niharika Keot
- Department of Chemistry, Indian Institute of Technology GuwahatiAssam781039India+91 361 2582318
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology GuwahatiAssam781039India+91 361 2582318
| |
Collapse
|
22
|
Amedlous A, Hélaine C, Guillet-Nicolas R, Lebedev O, Valable S, Mintova S. Gadolinium-loaded LTL nanosized zeolite for efficient oxygen delivery and magnetic resonance imaging. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The search for efficient gas carriers for biomedical applications presents a challenging task due to the kinetics of gas adsorption/desorption. This article presents a novel approach utilizing Gd-LTL zeolite crystals for oxygen delivery combined with an MRI study.
Collapse
Affiliation(s)
- Abdallah Amedlous
- Normandie Université, ENSICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France
| | - Charly Hélaine
- Normandie Université, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Rémy Guillet-Nicolas
- Normandie Université, ENSICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France
| | - Oleg Lebedev
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire de Cristallographie et Science des Matériaux (CRISMAT), 14050 Caen, France
| | - Samuel Valable
- Normandie Université, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Svetlana Mintova
- Normandie Université, ENSICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS), 14050 Caen, France
| |
Collapse
|
23
|
Albadi Y, Ivanova MS, Grunin LY, Makarin RA, Komlev AS, Chebanenko MI, Nevedomskyi VN, Popkov VI. Ultrasound-assisted co-precipitation synthesis of GdFeO 3 nanoparticles: structure, magnetic and MRI contrast properties. Phys Chem Chem Phys 2022; 24:29014-29023. [PMID: 36426648 DOI: 10.1039/d2cp03688f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Superparamagnetic nanocrystals of gadolinium orthoferrite (GdFeO3) with close to isometric morphology were successfully synthesized by heat treatment of gadolinium and iron(III) hydroxides obtained by direct co-precipitation with and without ultrasonic irradiation. The obtained samples were investigated by PXRD, low-temperature nitrogen adsorption-desorption isotherm measurements, HRTEM and VSM. It was established that ultrasonication during co-precipitation led to a decrease in the average size of GdFeO3 crystallites obtained after heat treatment by approximately 19%, an increase in their BET specific surface area by more than two times, a decrease in the degree of their aggregation by about five times and an improvement in their magnetic properties due to the increase in phase homogeneity. The colloidal solutions of the GdFeO3 nanoparticles synthesized using ultrasound were investigated by 1H NMR to measure the T1 and T2 relaxation times of water protons at 0.47 T. The resulting relaxivities r1 and r2 were approximately recalculated at 1.5, 3 and 4.7 T on the basis of a semi-statistical ad hoc method by analyzing the literature data for a number of structurally similar compounds with reported relaxivity values at different NMR frequencies. According to the experimental and predicted values of the r2/r1 ratio, the investigated GdFeO3 sample may be classified as a T1-contrast agent for MRI at 0.47 and 1.5 T, as a T1-T2 dual-modal contrast agent at 3 T and as a T2-contrast agent at 4.7 T.
Collapse
Affiliation(s)
- Yamen Albadi
- Saint Petersburg State Institute of Technology, 190013 Saint Petersburg, Russian Federation. .,Al-Baath University, 77 Homs, Syrian Arab Republic
| | - Maria S Ivanova
- Volga State University of Technology, 424000 Yoshkar-Ola, the Republic of Mari El, Russian Federation.,Resonance Systems GmbH, D-73230 Kirchheim unter Teck, Germany
| | - Leonid Y Grunin
- Volga State University of Technology, 424000 Yoshkar-Ola, the Republic of Mari El, Russian Federation.,Resonance Systems GmbH, D-73230 Kirchheim unter Teck, Germany
| | - Rodion A Makarin
- M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Aleksei S Komlev
- M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.,National Research Center "Kurchatov Institute", 123182 Moscow, Russian Federation
| | | | | | - Vadim I Popkov
- Ioffe Institute, 194021 Saint Petersburg, Russian Federation
| |
Collapse
|
24
|
Le TT, Nguyen TNL, Nguyen HD, Phan THT, Pham HN, Le DG, Hoang TP, Nguyen TQH, Le TL, Tran LD. Multimodal Imaging Contrast Property of Nano Hybrid Fe
3
O
4
@Ag Fabricated by Seed‐Growth for Medicinal Diagnosis. ChemistrySelect 2022. [DOI: 10.1002/slct.202201374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- The Tam Le
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Thi Ngoc Linh Nguyen
- Thai Nguyen University of Sciences Tan Thinh Ward Thai Nguyen City 250000 Vietnam
| | - Hoa Du Nguyen
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | | | - Hong Nam Pham
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Duc Giang Le
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Thanh Phong Hoang
- Department of Education and Training in Nghe An 67 Nguyen Thi Minh Khai Vinh City 460000 Vietnam
| | | | - Trong Lu Le
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Lam Dai Tran
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| |
Collapse
|
25
|
Geng Y, Wu T, Han Q, Yang Y, Chen Z, Li X, Yin B, Zhou Y, Ling Y. Gadolinium-based contrast agents built of DO3A-pyridine scaffold: Precisely tuning carboxylate group for enhanced magnetic resonance imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Torabi M, Yaghoobi F, Shervedani RK, Kefayat A, Ghahremani F, Harsini PR. Mn(II) & Gd(III) Deferrioxamine Complex Contrast Agents & Temozolomide Cancer Prodrug Immobilized on Folic Acid Targeted Graphene/Polyacrylic Acid Nanocarrier: MRI Efficiency, Drug Stability & Interactions with Cancer Cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Meng Q, Wu M, Shang Z, Zhang Z, Zhang R. Responsive gadolinium(III) complex-based small molecule magnetic resonance imaging probes: Design, mechanism and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
De Tommaso G, Salvatore MM, Siciliano A, Staropoli A, Vinale F, Nicoletti R, DellaGreca M, Guida M, Salvatore F, Iuliano M, Andolfi A. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La 3+, Nd 3+, Sm 3+, Gd 3+). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061959. [PMID: 35335320 PMCID: PMC8954165 DOI: 10.3390/molecules27061959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV-Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2-). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| |
Collapse
|
29
|
Lucio-Martínez F, Garda Z, Váradi B, Kálmán FK, Esteban-Gómez D, Tóth É, Tircsó G, Platas-Iglesias C. Rigidified Derivative of the Non-macrocyclic Ligand H 4OCTAPA for Stable Lanthanide(III) Complexation. Inorg Chem 2022; 61:5157-5171. [PMID: 35275621 PMCID: PMC8965877 DOI: 10.1021/acs.inorgchem.2c00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The stability constants
of lanthanide complexes with the potentially
octadentate ligand CHXOCTAPA4–,
which contains a rigid 1,2-diaminocyclohexane scaffold functionalized
with two acetate and two picolinate pendant arms, reveal the formation
of stable complexes [log KLaL = 17.82(1)
and log KYbL = 19.65(1)]. Luminescence
studies on the Eu3+ and Tb3+ analogues evidenced
rather high emission quantum yields of 3.4 and 11%, respectively.
The emission lifetimes recorded in H2O and D2O solutions indicate the presence of a water molecule coordinated
to the metal ion. 1H nuclear magnetic relaxation dispersion
profiles and 17O NMR chemical shift and relaxation measurements
point to a rather low water exchange rate of the coordinated water
molecule (kex298 = 1.58 ×
106 s–1) and relatively high relaxivities
of 5.6 and 4.5 mM–1 s–1 at 20
MHz and 25 and 37 °C, respectively. Density functional theory
calculations and analysis of the paramagnetic shifts induced by Yb3+ indicate that the complexes adopt an unprecedented cis geometry
with the two picolinate groups situated on the same side of the coordination
sphere. Dissociation kinetics experiments were conducted by investigating
the exchange reactions of LuL occurring with Cu2+. The
results confirmed the beneficial effect of the rigid cyclohexyl group
on the inertness of the Lu3+ complex. Complex dissociation
occurs following proton- and metal-assisted pathways. The latter is
relatively efficient at neutral pH, thanks to the formation of a heterodinuclear
hydroxo complex. A
non-macrocyclic ligand containing a rigid cyclohexyl spacer
forms thermodynamically stable complexes with the lanthanide(III)
ions in aqueous solution. The complexes also show remarkable kinetic
inertness, though a structural change facilitates dissociation through
the metal-assisted mechanism for the small lanthanides. The Gd(III)
complex displays a relatively high relaxivity due to the presence
of a water molecule coordinated to the metal ion, while the Eu(III)
and Tb(III) analogues display strong metal-centered luminescence.
Collapse
Affiliation(s)
- Fátima Lucio-Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Zoltán Garda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Balázs Váradi
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary.,Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Ferenc Krisztián Kálmán
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| |
Collapse
|
30
|
Lazzarini A, Colaiezzi R, Galante A, Passacantando M, Capista D, Ferella F, Alecci M, Crucianelli M. Hybrid polyphenolic Network/SPIONs aggregates with potential synergistic effects in MRI applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Mallik R, Saha M, Mukherjee C. Porous Silica Nanospheres with a Confined Mono(aquated) Mn(II)-Complex: A Potential T1- T2 Dual Contrast Agent for Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2021; 4:8356-8367. [PMID: 35005912 DOI: 10.1021/acsabm.1c00937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging has emerged as an indispensable imaging modality for the early-stage diagnosis of many diseases. The imaging in the presence of a contrast agent is always advantageous, as it mitigates the low-sensitivity issue of the measurements and provides excellent contrast in the acquired images even in a short acquisition time. However, the stability and high relaxivity of the contrast agents remained a challenge. Here, molecules of a mononuclear, mono(aquated), thermodynamically stable [log KMnL = 14.80(7) and pMn = 8.97] Mn(II)-complex (1), based on a hexadentate pyridine-picolinate unit-containing ligand (H2PyDPA), were confined within a porous silica nanosphere in a noncovalent fashion to render a stable nanosystem, complex 1@SiO2NP. The entrapped complex 1 (complex 1@SiO2) exhibited r1 = 8.46 mM-1 s-1 and r2 = 33.15 mM-1 s-1 at pH = 7.4, 25 °C, and 1.41 T in N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The values were about 2.9 times higher compared to the free (unentrapped)-complex 1 molecules. The synthesized complex 1@SiO2NP interacted significantly with albumin protein and consequently boosted both the relaxivity values to r1 = 24.76 mM-1 s-1 and r2 = 63.96 mM-1 s-1 at pH = 7.4, 37 °C, and 1.41 T. The kinetic inertness of the entrapped molecules was established by recognizing no appreciable change in the r1 value upon challenging complex 1@SiO2NP with 30 and 40 times excess of Zn(II) ions at pH 6 and 25 °C. The water molecule coordinated to the Mn(II) ion in complex 1@SiO2 was also impervious to the physiologically relevant anions (bicarbonate, biphosphate, and citrate) and pH of the medium. Thus, it ensured the availability of the inner-coordination site of complex 1 for the coordination of water molecules in the biological media. The concentration-dependent changes in image intensities in T1- and T2-weighted phantom images and uptake of the nanoparticles by the HeLa cell put forward the biocompatible complex 1@SiO2NP as a potential dual-mode MRI contrast agent, an alternative to Gd(III)-containing contrast agents.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
32
|
Nagendraraj T, Kumaran SS, Mayilmurugan R. Mn(II) complexes of phenylenediamine based macrocyclic ligands as T 1-MRI contrast agents. J Inorg Biochem 2021; 228:111684. [PMID: 34929541 DOI: 10.1016/j.jinorgbio.2021.111684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023]
Abstract
The Mn(II) complexes are emerging as alternative T1-MRI contrast agents (CAs) to the currently available Gd-based CAs. The complexes [Mn(L1)] 1 and [Mn(L2)] 2 of o-phenylenediamine based macrocyclic ligands are reported as T1-CAs for MRI applications. The high spin state of the Mn(II) complexes (S = 5/2) is confirmed by EPR spectra. The complexes showed an irreversible Mn(II)/Mn(III) redox potential at pH 7.28, which became more and less positive at the acidic and alkaline pHs, respectively. The species [MnL], [Mn(LH-1), and [Mn(LH-2) are persisted in solution. Complex 1 is inert towards Ca(II), Mg(II), and Zn(II), whereas complex 2 is inert for Ca(II) and Mg(II) and labile under Zn(II) and Cu(II) ions. Complex 1 showed an r1-relaxivity of 3.27 and 2.32 mM-1 s-1 at 1.41 T, 25, and 37 °C respectively via inner-sphere water relaxation, which is lower than that of 2 (r1, 5.56, and 4.19 mM-1 s-1) at pH 7.28 and 1.41 T. The Mn(II) complexes showed a 2-8% enhancement of r1-relaxivity while lowering the pH to acidic, which corresponds to the release of free Mn(II) ions. In contrast, the r1-relaxivity is dropped to 52% and 20% for 1 and 2 respectively under alkaline pH due to the deprotonation of inner-sphere water. Phantom images obtained on Bruker 'BIOSPEC' 47/40 animal research MRI/MRS scanner showed concentration-dependent brightness. The interaction of human serum albumin (HSA) with 1 and 2 exhibited five times higher r1-relaxivities (11.3 and 22.0 mM-1 s-1 at 1.41 T, respectively).
Collapse
Affiliation(s)
- Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.
| |
Collapse
|
33
|
Zapolotsky EN, Qu Y, Babailov SP. Lanthanide complexes with polyaminopolycarboxylates as prospective NMR/MRI diagnostic probes: peculiarities of molecular structure, dynamics and paramagnetic properties. J INCL PHENOM MACRO 2021; 102:1-33. [PMID: 34785985 PMCID: PMC8582344 DOI: 10.1007/s10847-021-01112-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
The paramagnetic lanthanide complexes with polyaminopolycarboxylate (PAPC) ligands attract considerable attention from the standpoint of potential applications thereof as relaxation agents used in medical magnetic resonance imaging (MRI) and in luminescent materials, as well as owing to promising use thereof as paramagnetic labels for studying the properties of biopolymers since they exhibit thermodynamic stability, good solubility in aqueous media and moderate toxicity. For the last decades, the NMR methods have been used to determine the physical and chemical properties of paramagnetic Ln compounds. The studies concerning paramagnetic NMR lanthanide-induced shifts (LISs) in dissolved Ln complexes, as well as the analysis of band shape as a function of temperature make it possible to obtain valuable information on the structure, intra- and intermolecular dynamics and paramagnetic properties thereof. This review is devoted solely to the following features: firstly, the processes of intramolecular dynamics of lanthanide complexes with polyamino-polycarboxylate ligands such as DOTA, EDTA and DTPA and their derivatives studied by NMR; secondly, the LISs of lanthanide complexes with EDTA, DOTA, DTPA and some of their derivatives depending on temperature and pH. Moreover, in this review, for the first time, the dependence of the activation energy of molecular dynamics in complexes with polydentate ligands on the atomic number of the lanthanide cation is analyzed and a monotonic change in energy is detected, which is due to the effect of lanthanide contraction. It should be noted that this phenomenon is quite general and may also appear in the future in many other series of lanthanide complexes with both other multidentate ligands and with bidentate and monodentate ligands. In the future, it is possible to predict the dependence of the properties of certain lanthanide complexes on the ionic radius of the lanthanide cation based on the approaches presented in the review. In this review, we have also presented the dynamic NMR as the main research method widely used to analyze the processes of molecular dynamics, and the structural studies based on the NMR relaxation spectroscopy and LIS analysis.
Collapse
Affiliation(s)
- Eugeny N. Zapolotsky
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 3, Novosibirsk, Russia 630090
| | - Yanyang Qu
- Institute of Chemical Materials, CAEP, P. O. Box 919-311, Mianyang, 621900 Sichun China
| | - Sergey P. Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 3, Novosibirsk, Russia 630090
| |
Collapse
|
34
|
Ahmad MY, Yue H, Tegafaw T, Liu S, Ho SL, Lee GH, Nam SW, Chang Y. Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics 2021; 13:1890. [PMID: 34834305 PMCID: PMC8624040 DOI: 10.3390/pharmaceutics13111890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Recent progress in functionalized lanthanide oxide (Ln2O3) nanoparticles for tumor targeting, medical imaging, and therapy is reviewed. Among the medical imaging techniques, magnetic resonance imaging (MRI) is an important noninvasive imaging tool for tumor diagnosis due to its high spatial resolution and excellent imaging contrast, especially when contrast agents are used. However, commercially available low-molecular-weight MRI contrast agents exhibit several shortcomings, such as nonspecificity for the tissue of interest and rapid excretion in vivo. Recently, nanoparticle-based MRI contrast agents have become a hot research topic in biomedical imaging due to their high performance, easy surface functionalization, and low toxicity. Among them, functionalized Ln2O3 nanoparticles are applicable as MRI contrast agents for tumor-targeting and nontumor-targeting imaging and image-guided tumor therapy. Primarily, Gd2O3 nanoparticles have been intensively investigated as tumor-targeting T1 MRI contrast agents. T2 MRI is also possible due to the appreciable paramagnetic moments of Ln2O3 nanoparticles (Ln = Dy, Ho, and Tb) at room temperature arising from the nonzero orbital motion of 4f electrons. In addition, Ln2O3 nanoparticles are eligible as X-ray computed tomography contrast agents because of their high X-ray attenuation power. Since nanoparticle toxicity is of great concern, recent toxicity studies on Ln2O3 nanoparticles are also discussed.
Collapse
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| |
Collapse
|
35
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Schettini R, D'Amato A, Araszczuk AM, Della Sala G, Costabile C, D'Ursi AM, Grimaldi M, Izzo I, De Riccardis F. Structural dynamism of chiral sodium peraza-macrocycle complexes derived from cyclic peptoids. Org Biomol Chem 2021; 19:7420-7431. [PMID: 34397051 DOI: 10.1039/d1ob00733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of cyclen and hexacyclen derivatives decorated with (S)-1-phenylethyl side chains or (S)-pyrrolidine units have been prepared via a reductive approach from the corresponding cyclic peptoids containing N-(S)-(1-phenylethyl)glycine and l-proline residues. Spectroscopic and DFT studies on their Na+ complexes show that point chirality and ring size play a crucial role in controlling the structural dynamism of 1,2-diaminoethylene units and pendant arms. The detection of highly symmetric C4- and C3-symmetric metalated species demonstrates that a full understanding of the relationship between the structure and conformational properties of peraza-macrocyclic metal complexes is possible.
Collapse
Affiliation(s)
- Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy. iizzo@unisa
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Choudhary N, Scheiber H, Zhang J, Patrick BO, de Guadalupe Jaraquemada-Peláez M, Orvig C. H 4HBEDpa: Octadentate Chelate after A. E. Martell. Inorg Chem 2021; 60:12855-12869. [PMID: 34424678 DOI: 10.1021/acs.inorgchem.1c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H4HBEDpa, a new octadentate chelator inspired by the 1960s ligand HBED of Arthur E. Martell, has been investigated for a selection of trivalent metal ions useful in diagnostic and therapeutic applications (Sc3+, Fe3+, Ga3+, In3+, and Lu3+). Complex formation equilibria were thoroughly investigated using combined potentiometric and UV-vis spectrophotometric titrations which revealed effective chelation and high metal-sequestering capacity, in particular for Fe3+, log KFeL = 36.62, [Fe(HBEDpa)]-. X-ray diffraction study of single crystals revealed that the ligand is preorganized and forms hexa-coordinated complexes with Fe3+ and Ga3+ at acidic pH. Density functional theory (DFT) calculations were applied to probe the geometries and energies of all the possible conformers of [M(HBEDpa)]- (M = Sc3+, Fe3+, Ga3+, In3+, and Lu3+). DFT calculations confirmed the experimental findings, indicating that [Fe(HBEDpa)]- is bound tightly in an asymmetric pattern as compared to the symmetrically bound and more open [Ga(HBEDpa)]-, prone to hydrolysis at higher pH. DFT calculations also showed that a large metal ion such as Lu3+ fully coordinates with HBEDpa4-, forming a binary octadentate complex in its lowest-energy form. Smaller metal ions form six or seven coordinate complexes with HBEDpa4-.
Collapse
Affiliation(s)
- Neha Choudhary
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Hayden Scheiber
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiale Zhang
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - María de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
38
|
Sembo-Backonly BS, Estour F, Gouhier G. Cyclodextrins: promising scaffolds for MRI contrast agents. RSC Adv 2021; 11:29762-29785. [PMID: 35479531 PMCID: PMC9040919 DOI: 10.1039/d1ra04084g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful tool for non-invasive, high-resolution three-dimensional medical imaging of anatomical structures such as organs and tissues. The use of contrast agents based on gadolinium chelates started in 1988 to improve the quality of the image, since researchers and industry focused their attention on the development of more efficient and stable structures. This review is about the state of the art of MRI contrast agents based on cyclodextrin scaffolds. Chemical engineering strategies are herein reported including host-guest inclusion complexation and covalent linkages. It also offers descriptions of the MRI properties and in vitro and in vivo biomedical applications of these emerging macrostructures. It highlights that these supramolecular associations can improve the image contrast, the sensitivity, and the efficiency of MRI diagnosis by targeting cancer tumors and other diseases with success proving the great potential of this natural macrocycle.
Collapse
Affiliation(s)
- Berthe Sandra Sembo-Backonly
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - François Estour
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| | - Géraldine Gouhier
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF 1 Rue Tesnière 76821 Mont-Saint-Aignan France
| |
Collapse
|
39
|
Dey L, Rabi S, Palit D, Hazari SK, Begum ZA, Rahman IM, Roy TG. Syntheses, characterization, and antimicrobial studies of Ni(II), Cu(II), and Co(III) complexes with an N-pendant azamacrocyclic chelator. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130579] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Marchesi S, Bisio C, Lalli D, Marchese L, Platas-Iglesias C, Carniato F. Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd 3+ and Eu 3+ Ions in the Saponite Framework. Inorg Chem 2021; 60:10749-10756. [PMID: 34237936 PMCID: PMC8389799 DOI: 10.1021/acs.inorgchem.1c01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/30/2022]
Abstract
A novel bifunctional saponite clay incorporating gadolinium (Gd3+) and europium (Eu3+) in the inorganic framework was prepared by one-pot hydrothermal synthesis. The material exhibited interesting luminescent and paramagnetic features derived from the co-presence of the lanthanide ions in equivalent structural positions. Relaxometry and photoluminescence spectroscopy shed light on the chemical environment surrounding the metal sites, the emission properties of Eu3+, and the dynamics of interactions between Gd3+ and the inner-sphere water placed in the saponite gallery. The optical and paramagnetic properties of this solid make it an attractive nanoplatform for bimodal diagnostic applications.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Chiara Bisio
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
- CNR-SCITEC
Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Leonardo Marchese
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Carlos Platas-Iglesias
- Centro
de Investigacións Científicas Avanzadas (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Fabio Carniato
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
41
|
Dasari S, Singh S, Abbas Z, Sivakumar S, Patra AK. Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119709. [PMID: 33823402 DOI: 10.1016/j.saa.2021.119709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We report here a series of coordinatively-saturated and thermodynamically stable luminescent [Ln(dtntp)(H2O)] [Ln(III) = Eu (1), Tb (2), Gd (3), Sm (4) and Dy (5)] complexes using an aminophenyl-terpyridine appended-DTPA (dtntp) chelating ligand as cell imaging and photocytotoxic agents. The N,N″-bisamide derivative of H5DTPA named as dtntp is based on 4'-(4-aminophenyl)-2,2':6',2″-terpyridine conjugated to diethylenetriamine-N,N',N″-pentaacetic acid. The structure, physicochemical properties, detailed photophysical aspects, interaction with DNA and serum proteins, and photocytotoxicity were studied. The intrinsic luminescence of Eu(III) and Tb(III) complexes due to f → f transitions used to evaluate their cellular uptake and distribution in cancer cells. The solid-state structure of [Eu(dtntp)(DMF)] (1·DMF) shows a discrete mononuclear molecule with nine-coordinated {EuN3O6} distorted tricapped-trigonal prism (TTP) coordination geometry around the Eu(III). The {EuN3O6} core results from three nitrogen atoms and three carboxylate oxygen atoms, and two carbonyl oxygen atoms of the amide groups of dtntp ligand. The ninth coordination site is occupied by an oxygen atom of DMF as a solvent from crystallization. The designed probes have two aromatic pendant phenyl-terpyridine (Ph-tpy) moieties as photo-sensitizing antennae to impart the desirable optical properties for cellular imaging and photocytotoxicity. The photostability, coordinative saturation, and energetically rightly poised triplet states of dtntp ligand allow the efficient energy transfer (ET) from Ph-tpy to the emissive excited states of the Eu(III)/Tb(III), makes them luminescent cellular imaging probes. The Ln(III) complexes show significant binding tendency to DNA (K ~ 104 M-1), and serum proteins (BSA and HSA) (K ~ 105 M-1). The luminescent Eu(III) (1) and Tb(III) (2) complexes were utilized for cellular internalization and cytotoxicity studies due to their optimal photophysical properties. The cellular uptake studies using fluorescence imaging displayed intracellular (cytosolic and nuclear) localization in cancer cells. The complexes 1 and 2 displayed significant photocytotoxicity in HeLa cells. These results offer a modular design strategy with further scope to utilize appended N,N,N-donor tpy moiety for developing light-responsive luminescent Ln(III) bioprobes for theranostic applications.
Collapse
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Swati Singh
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Zafar Abbas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Sri Sivakumar
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
42
|
Travagin F, Lattuada L, Giovenzana GB. AAZTA: The rise of mesocyclic chelating agents for metal coordination in medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Pazderová L, Kubíček V, Kotek J, Hermann P. 1,4,7‐Triazacyclononane (tacn) with
N,N
′‐bridging methylene‐bis(phosphinic acid) group and its complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 128 40 Prague 2 Czech Republic
| |
Collapse
|
44
|
Besenhard MO, Panariello L, Kiefer C, LaGrow AP, Storozhuk L, Perton F, Begin S, Mertz D, Thanh NTK, Gavriilidis A. Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor. NANOSCALE 2021; 13:8795-8805. [PMID: 34014243 DOI: 10.1039/d1nr00877c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Small iron oxide nanoparticles (IONPs) were synthesised in water via co-precipitation by quenching particle growth after the desired magnetic iron oxide phase formed. This was achieved in a millifluidic multistage flow reactor by precisely timed addition of an acidic solution. IONPs (≤5 nm), a suitable size for positive T1 magnetic resonance imaging (MRI) contrast agents, were obtained and stabilised continuously. This novel flow chemistry approach facilitates a reproducible and scalable production, which is a crucial paradigm shift to utilise IONPs as contrast agents and replace currently used Gd complexes. Acid addition had to be timed carefully, as the inverse spinel structure formed within seconds after initiating the co-precipitation. Late quenching allowed IONPs to grow larger than 5 nm, whereas premature acid addition yielded undesired oxide phases. Use of a flow reactor was not only essential for scalability, but also to synthesise monodisperse and non-agglomerated small IONPs as (i) co-precipitation and acid addition occurred at homogenous environment due to accurate temperature control and rapid mixing and (ii) quenching of particle growth was possible at the optimum time, i.e., a few seconds after initiating co-precipitation. In addition to the timing of growth quenching, the effect of temperature and dextran present during co-precipitation on the final particle size was investigated. This approach differs from small IONP syntheses in batch utilising either growth inhibitors (which likely leads to impurities) or high temperature methods in organic solvents. Furthermore, this continuous synthesis enables the low-cost (<£10 per g) and large-scale production of highly stable small IONPs without the use of toxic reagents. The flow-synthesised small IONPs showed high T1 contrast enhancement, with transversal relaxivity (r2) reduced to 20.5 mM-1 s-1 and longitudinal relaxivity (r1) higher than 10 mM-1 s-1, which is among the highest values reported for water-based IONP synthesis.
Collapse
Affiliation(s)
| | - Luca Panariello
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Céline Kiefer
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Liudmyla Storozhuk
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Sylvie Begin
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Nguyen Thi Kim Thanh
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK. and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
45
|
Pazderová L, David T, Kotek J, Kubíček V, Hermann P. Complexes of cyclen side-bridged with a methylene-bis(phosphinate) group. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Fu S, Cai Z, Ai H. Stimulus-Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Adv Healthc Mater 2021; 10:e2001091. [PMID: 32875751 DOI: 10.1002/adhm.202001091] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) has been widely used for disease diagnosis because it can noninvasively obtain anatomical details of various diseases through accurate contrast between soft tissues. Over one-third of MRI examinations are performed with the assistance of contrast agents. Traditional contrast agents typically display an unchanging signal, thus exhibiting relatively low sensitivity and poor specificity. Currently, advances in stimulus-responsive contrast agents which can alter the relaxation signal in response to a specific change in their surrounding environment provide new opportunities to overcome such limitation. The signal changes based on stimulus also reflects the physiological and pathological conditions of the site of interests. In this review, how to design stimulus-responsive nanoparticle MRI contrast agents from the perspective of theory and surface design is comprehensively discussed. Key structural features including size, clusters, shell features, and surface properties are used for tuning the T1 and T2 relaxation properties. The reversible or non-reversible signal changes highlight the contrast agents have undergone structural changes based on certain stimulus, as an indication for disease diagnosis or therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
47
|
Hovey JL, Dardona M, Allen MJ, Dittrich TM. Sorption of rare-earth elements onto a ligand-associated media for pH-dependent extraction and recovery of critical materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Das Gupta SK, Rabi S, Ghosh D, Yasmin F, Dey BK, Dey S, Roy TG. Nickel(II), copper(II) and zinc(II) complexes with an N-pendent dimethyl derivative of an octamethyl macrocyclic ligand: synthesis, characterization and antimicrobial studies. J CHEM SCI 2021. [DOI: 10.1007/s12039-020-01861-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Kwak CH, Chang M. Crystal structure of [3,10-bis-(4-fluoro-pheneth-yl)-1,3,5,8,10,12-hexa-aza-cyclo-tetra-deca-ne]nickel(II) diperchlorate. Acta Crystallogr E Crystallogr Commun 2021; 77:148-152. [PMID: 33614144 PMCID: PMC7869553 DOI: 10.1107/s2056989020016795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022]
Abstract
The square-planar nickel(II) title complex, [Ni(C24H36F2N6)](ClO4)2 or [NiL](ClO4)2 (L = 3,10-bis-(4-fluoro-pheneth-yl)-1,3,5,8,10,12-hexa-aza-cyclo-tetra-deca-ne) was synthesized by a one-pot reaction of template condensation and its X-ray crystal structure was determined. The nickel(II) ion lies close by a twofold axis and the complex displays whole-mol-ecule disorder. Ligand L, a hexa-aza-cyclo-tetra-decane ring having 4-fluoro-phenethyl side chains attached to uncoordinated nitro-gen atoms, adopts a trans III (R,R,S,S) configuration. The average Ni-N bond distance is 1.934 (9) Å, which is quite similar to those of other nickel(II) complexes with similar ligands. The nickel(II) ion is located 0.051 (7) Å above the least-squares plane through the four coordinated N atoms. The average C-N bond distance and C-N-C angle involving uncoordinated nitro-gen atoms are 1.425 (12) Å and 118.0 (9)°, respectively, indicating a significant contribution of sp 2 hybridization for these N atoms. The inter-molecular N-H⋯O, C-H⋯O/F hydrogen bonds of the complex form a network structure, which looks like a seamless floral lace pattern.
Collapse
Affiliation(s)
- Chee-Hun Kwak
- Department of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea
| | - Mee Chang
- Polymerization Manufacturing Technology Research Team, Lotte Chemicals, 334-27 Yeosu Sandan-ro, Yeosu, 59616, South Korea
| |
Collapse
|
50
|
Gd3+ Complexes Conjugated to Cyclodextrins: Hydroxyl Functions Influence the Relaxation Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the search for improvement in the properties of gadolinium-based contrast agents, cyclodextrins (CDs) are interesting hydrophilic scaffolds with high molecular weight. The impact of the hydrophilicity of these systems on the MRI efficacy has been studied using five β-CDs substituted with DOTA or TTHA ligands which, respectively, allow for one (q = 1) or no water molecule (q = 0) in the inner coordination sphere of the Gd3+ ion. Original synthetic pathways were developed to immobilize the ligands at C-6 position of various hydroxylated and permethylated β-CDs via an amide bond. To describe the influence of alcohol and ether oxide functions of the CD macrocycle on the relaxation properties of the Gd3+ complexes, 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles, and 17O transverse relaxation rates have been measured at various temperatures. The differences observed between the hydroxylated and permethylated β-CDs bearing non-hydrated GdTTHA complexes can be rationalized by a second sphere contribution to the relaxivity in the case of the hydroxylated derivatives, induced by hydrogen-bound water molecules around the hydroxyl groups. In contrast, for the DOTA analogs the exchange rate of the water molecule directly coordinated to the Gd3+ is clearly influenced by the number of hydroxyl groups present on the CD, which in turn influences the relaxivity and gives rise to a very complex behavior of these hydrophilic systems.
Collapse
|