1
|
Mikagi A, Manita K, Tsuchido Y, Kanzawa N, Hashimoto T, Hayashita T. Boronic Acid-Based Dendrimers with Various Surface Properties for Bacterial Recognition with Adjustable Selectivity. ACS APPLIED BIO MATERIALS 2022; 5:5255-5263. [PMID: 36318469 DOI: 10.1021/acsabm.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The need for a selective bacterial recognition method is evident to overcome the global problem of antibiotic resistance. Even though researchers have focused on boronic acid-based nanoprobes that immediately form boronate esters with saccharides at room temperature, the mechanism has not been well studied. We have developed boronic acid-modified poly(amidoamine) (PAMAM) dendrimers with various surface properties to investigate the mechanism of bacterial recognition. The boronic acid-based nanoprobes showed selectivity toward strains, species, or a certain group of bacteria by controlling their surface properties. Our nanoprobes showed selectivity toward Gram-positive bacteria or Escherichia coli K12W3110 without having to modify the boronic acid recognition sites. The results were obtained in 20 min and visible to the naked eye. Selectivity toward Gram-positive bacteria was realized through electrostatic interaction between the bacterial surface and the positively charged nanoprobes. In this case, the recognition target was lipoteichoic acid on the bacterial surface. On the other hand, pseudo-zwitterionic nanoprobes showed selectivity for E. coli K12W3110, indicating that phenylboronic acid did not recognize the outermost O-antigen on the lipopolysaccharide layer. Boronic acid-based nanoprobes with optimized surface properties are expected to be a powerful clinical tool to recognize multidrug-resistant strains or highly pathogenic bacteria.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo102-8554, Japan
| | - Koichi Manita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo102-8554, Japan
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo102-8554, Japan.,Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo162-8480, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo102-8554, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo102-8554, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo102-8554, Japan
| |
Collapse
|
2
|
Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng OT, Lakshminarayanan R, Verma NK, Gautam HK. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology 2022; 20:375. [PMID: 35953826 PMCID: PMC9371964 DOI: 10.1186/s12951-022-01573-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of “post-antibiotic era”. It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, New Delhi, 110007, India.,Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India
| | - Diksha Jha
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, New Delhi, India
| | - Shailendra Singh Gaurav
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Oon-Tek Ng
- National Centre for Infectious Diseases (NCID), Singapore, 308442, Singapore.,Tan Tock Seng Hospital (TTSH), 308433, Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Singapore, 169856, Singapore. .,Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore. .,Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore. .,National Skin Centre, Singapore, 308205, Singapore.
| | - Hemant K Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025, India.
| |
Collapse
|
3
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rationales Design von Phe-BODIPY-Aminosäuren als fluorogene Bausteine für den peptidbasierten Nachweis von Candida-Infektionen im Harntrakt. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117218. [PMID: 38505242 PMCID: PMC10946803 DOI: 10.1002/ange.202117218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/08/2022]
Abstract
AbstractPilzinfektionen, die durch Candida‐Arten verursacht werden, gehören zu den häufigsten Infektionen bei Krankenhauspatienten. Die derzeitigen Methoden zum Nachweis von Candida‐Pilzzellen in klinischen Proben beruhen jedoch auf zeitaufwändigen Analysen, die eine schnelle und zuverlässige Diagnose erschweren. In diesem Beitrag beschreiben wir die rationale Entwicklung neuer Phe‐BODIPY‐Aminosäuren als kleine fluorogene Bausteine und ihre Anwendung zur Erzeugung fluoreszierender antimikrobieller Peptide für die schnelle Markierung von Candida‐Zellen im Urin. Mit Hilfe von computergestützten Berechnungen haben wir das fluorogene Verhalten von BODIPY‐substituierten aromatischen Aminosäuren analysiert und Bioaktivitäts‐ und konfokale Mikroskopieexperimente bei verschiedenen Stämmen durchgeführt, um den Nutzen und die Vielseitigkeit von Peptiden mit Phe‐BODIPYs zu bestätigen. Schließlich haben wir einen einfachen und sensitiven fluoreszensbasierten Test zum Nachweis von Candida albicans in menschlichen Urinproben entwickelt.
Collapse
Affiliation(s)
- Lorena Mendive‐Tapia
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - David Mendive‐Tapia
- Abteilung Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergDeutschland
| | - Can Zhao
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Doireann Gordon
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Sam Benson
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| | - Michael J. Bromley
- Manchester Fungal Infection GroupAbteilung für EvolutionInfektion und GenomikM139NTManchesterGroßbritannien
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenDeutschland
| | - Marc Vendrell
- Zentrum für EntzündungsforschungDie Universität von EdinburghEH16 4TJEdinburghGroßbritannien
| |
Collapse
|
4
|
Mendive‐Tapia L, Mendive‐Tapia D, Zhao C, Gordon D, Benson S, Bromley MJ, Wang W, Wu J, Kopp A, Ackermann L, Vendrell M. Rational Design of Phe-BODIPY Amino Acids as Fluorogenic Building Blocks for Peptide-Based Detection of Urinary Tract Candida Infections. Angew Chem Int Ed Engl 2022; 61:e202117218. [PMID: 35075763 PMCID: PMC9305947 DOI: 10.1002/anie.202117218] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Fungal infections caused by Candida species are among the most prevalent in hospitalized patients. However, current methods for the detection of Candida fungal cells in clinical samples rely on time-consuming assays that hamper rapid and reliable diagnosis. Herein, we describe the rational development of new Phe-BODIPY amino acids as small fluorogenic building blocks and their application to generate fluorescent antimicrobial peptides for rapid labelling of Candida cells in urine. We have used computational methods to analyse the fluorogenic behaviour of BODIPY-substituted aromatic amino acids and performed bioactivity and confocal microscopy experiments in different strains to confirm the utility and versatility of peptides incorporating Phe-BODIPYs. Finally, we have designed a simple and sensitive fluorescence-based assay for the detection of Candida albicans in human urine samples.
Collapse
Affiliation(s)
| | - David Mendive‐Tapia
- Department Theoretische ChemiePhysikalisch-Chemisches InstitutUniversität Heidelberg69120HeidelbergGermany
| | - Can Zhao
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Michael J. Bromley
- Manchester Fungal Infection GroupDivision of EvolutionInfection and GenomicsUniversity of ManchesterM139NTManchesterUK
| | - Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität37077GöttingenGermany
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
5
|
Mikagi A, Manita K, Yoyasu A, Tsuchido Y, Kanzawa N, Hashimoto T, Hayashita T. Rapid Bacterial Recognition over a Wide pH Range by Boronic Acid-Based Ditopic Dendrimer Probes for Gram-Positive Bacteria. Molecules 2021; 27:molecules27010256. [PMID: 35011488 PMCID: PMC8746651 DOI: 10.3390/molecules27010256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
We have developed a convenient and selective method for the detection of Gram-positive bacteria using a ditopic poly(amidoamine) (PAMAM) dendrimer probe. The dendrimer that was modified with dipicolylamine (dpa) and phenylboronic acid groups showed selectivity toward Staphylococcus aureus. The ditopic dendrimer system had higher sensitivity and better pH tolerance than the monotopic PAMAM dendrimer probe. We also investigated the mechanisms of various ditopic PAMAM dendrimer probes and found that the selectivity toward Gram-positive bacteria was dependent on a variety of interactions. Supramolecular interactions, such as electrostatic interaction and hydrophobic interaction, per se, did not contribute to the bacterial recognition ability, nor did they improve the selectivity of the ditopic dendrimer system. In contrast, the ditopic PAMAM dendrimer probe that had a phosphate-sensing dpa group and formed a chelate with metal ions showed improved selectivity toward S. aureus. The results suggested that the targeted ditopic PAMAM dendrimer probe showed selectivity toward Gram-positive bacteria. This study is expected to contribute to the elucidation of the interaction between synthetic molecules and bacterial surface. Moreover, our novel method showed potential for the rapid and species-specific recognition of various bacteria.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Koichi Manita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Asuka Yoyasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan; (A.M.); (K.M.); (A.Y.); (Y.T.); (N.K.); (T.H.)
- Correspondence: ; Tel.: +81-3-3238-3372
| |
Collapse
|
6
|
Fast and Sensitive Bacteria Detection by Boronic Acid Modified Fluorescent Dendrimer. SENSORS 2021; 21:s21093115. [PMID: 33946193 PMCID: PMC8124657 DOI: 10.3390/s21093115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
This study reports a novel, fast, easy, and sensitive detection method for bacteria which is urgently needed to diagnose infections in their early stages. Our work presents a complex of poly(amidoamine) dendrimer modified by phenylboronic acid and labeled by a fluorescent dansyl group (Dan-B8.5-PAMAM). Our system detects bacteria in 20 min with a sensitivity of approximately 104 colony-forming units (CFU)·mL−1. Moreover, it does not require any peculiar technical skills or expensive materials. The driving force for bacteria recognition is the binding between terminal phenylboronic acids on the probe and bacteria’s surface glycolipids, rather than electrostatic interactions. The aggregation caused by such binding reduces fluorescence. Even though our recognition method does not distinguish between live or dead bacteria, it shows selective antibacterial activity towards Gram-negative bacteria. This study may potentially contribute a new method for the convenient detection and killing of bacteria.
Collapse
|
7
|
Cheng Y, Ling SD, Geng Y, Wang Y, Xu J. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. NANOSCALE ADVANCES 2021; 3:2180-2195. [PMID: 36133767 PMCID: PMC9417800 DOI: 10.1039/d0na00933d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Bio-sensing and bio-imaging of organisms or molecules can provide key information for the study of physiological processes or the diagnosis of diseases. Quantum dots (QDs) stand out to be promising optical detectors because of their excellent optical properties such as high brightness, stability, and multiplexing ability. Diverse approaches have been developed to generate QDs, while microfluidic technology is one promising path for their industrial production. In fact, microfluidic devices provide a controllable, rapid and effective route to produce high-quality QDs, while serving as an effective in situ platform to understand the synthetic mechanism or optimize reaction parameters for QD production. In this review, the recent research progress in microfluidic synthesis and bio-detection applications of QDs is discussed. The definitions of different QDs are first introduced, and the advances in microfluidic-based fabrication of quantum dots are summarized with a focus on perovskite QDs and carbon QDs. In addition, QD-based bio-sensing and bio-imaging technologies for organisms of different scales are described in detail. Finally, perspectives for future development of microfluidic synthesis and applications of QDs are presented.
Collapse
Affiliation(s)
- Yu Cheng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Si Da Ling
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuhao Geng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yundong Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jianhong Xu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
8
|
Recent Progress in the Molecular Imaging of Tumor-Treating Bacteria. Nucl Med Mol Imaging 2021; 55:7-14. [PMID: 33643484 DOI: 10.1007/s13139-021-00689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial cancer therapy (BCT) approaches have been extensively investigated because bacteria can show unique features of strong tropism for cancer, proliferation inside tumors, and antitumor immunity, while bacteria are also possible agents for drug delivery. Despite the rapidly increasing number of preclinical studies using BCT to overcome the limitations of conventional cancer treatments, very few BCT studies have advanced to clinical trials. In patients undergoing BCT, the precise localization and quantification of bacterial density in different body locations is important; however, most clinical trials have used subjective clinical signs and invasive sampling to confirm bacterial colonization. There is therefore a need to improve the visualization of bacterial densities using noninvasive and repetitive in vivo imaging techniques that can facilitate the clinical translation of BCT. In vivo optical imaging techniques using bioluminescence and fluorescence, which are extensively employed to image the therapeutic process of BCT in small animal research, are hard to apply to the human body because of their low penetrative power. Thus, new imaging techniques need to be developed for clinical trials. In this review, we provide an overview of the various in vivo bacteria-specific imaging techniques available for visualizing tumor-treating bacteria in BCT studies.
Collapse
|
9
|
Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, Koudelkova Z, Mishra PK, Smerkova K, Heger Z, Vaculovicova M, Moulick A, Adam V. Nanoparticle-drug conjugates treating bacterial infections. J Control Release 2019; 307:166-185. [DOI: 10.1016/j.jconrel.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
10
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019; 7:125-138. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
11
|
Tsuchido Y, Horiuchi R, Hashimoto T, Ishihara K, Kanzawa N, Hayashita T. Rapid and Selective Discrimination of Gram-Positive and Gram-Negative Bacteria by Boronic Acid-Modified Poly(amidoamine) Dendrimer. Anal Chem 2019; 91:3929-3935. [PMID: 30652471 DOI: 10.1021/acs.analchem.8b04870] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an urgent need to develop a rapid and selective method for the detection of bacteria because delayed diagnosis and the overuse of antibiotics have triggered drug resistance in bacteria. To this end, we prepared boronic acid-modified poly(amidoamine) generation 4 (B-PAMAM(G4)) dendrimer as cross-linking molecules that form aggregates with bacteria. Within 5 min of adding B-PAMAM(G4) dendrimer solution to a bacterial suspension, large aggregates were observed. Interestingly, the aggregate formation with various bacteria was pH-dependent. In basic pH, both Gram-positive and Gram-negative bacteria formed aggregates, but in neutral pH, only Gram-positive bacteria formed aggregates. We revealed that this bacteria-selective aggregation involved the bacterial surface recognition of the phenylboronic acid moiety of B-PAMAM(G4) dendrimer. In addition, we demonstrated that the spherical structure of B-PAMAM(G4) was one of the important factors for the formation of large aggregates. The aggregation was also observed in the presence of ≤10 mM fructose. B-PAMAM(G4) dendrimer is expected to be a powerful tool for the rapid and selective discrimination between Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology , Sophia University , 7-1 Kioi-cho , Chiyoda-ku , Tokyo 102-8554 , Japan
| | - Ryosuke Horiuchi
- Department of Materials and Life Sciences, Faculty of Science and Technology , Sophia University , 7-1 Kioi-cho , Chiyoda-ku , Tokyo 102-8554 , Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology , Sophia University , 7-1 Kioi-cho , Chiyoda-ku , Tokyo 102-8554 , Japan
| | - Kanako Ishihara
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture , Tokyo University of Agriculture and Technology , 3-5-8 Saiwai-cho , Fuchu-shi , Tokyo 183-8509 , Japan
| | - Nobuyuki Kanzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology , Sophia University , 7-1 Kioi-cho , Chiyoda-ku , Tokyo 102-8554 , Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology , Sophia University , 7-1 Kioi-cho , Chiyoda-ku , Tokyo 102-8554 , Japan
| |
Collapse
|
12
|
|
13
|
Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A Gold/Silver Hybrid Nanoparticle for Treatment and Photoacoustic Imaging of Bacterial Infection. ACS NANO 2018; 12:5615-5625. [PMID: 29746090 PMCID: PMC8045556 DOI: 10.1021/acsnano.8b01362] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ag+ ions are a well-known antibacterial agent, and Ag nanoparticles act as a reservoir of these Ag+ ions for targeted therapy of bacterial infections. However, there are no tools to effectively trigger and monitor the release of Ag+ ions from Ag nanoparticles. Photoacoustic (PA) imaging is an emerging noninvasive imaging tool, and gold nanorods (AuNRs) are an excellent contrast agent for PA imaging. In this work, we developed Au/Ag hybrid nanoparticles by coating AuNRs with silver (Ag), which decreased their photoacoustic signal. The as-prepared, Ag-coated Au nanorods (Au/AgNRs) are stable under ambient conditions, but the addition of ferricyanide solution (1 mM) results in oxidative etching of the silver shell. The PA contrast is simultaneously recovered as the silver is released, and this PA signal offers noninvasive monitoring of localized release of Ag+ ions. The released Ag+ ions exhibit a strong bactericidal efficacy similar to equivalent free Ag+ ions (AgNO3), and the nanoparticles killed >99.99% of both (Gram-positive) methicillin-resistant Staphylococcus aureus (MRSA, 32 μM Ag+ equivalent) and (Gram-negative) Escherichia coli (8 μM Ag+ equivalent). The theranostic potential of these nanoparticles was demonstrated in a pilot in vivo study. Mice were inoculated with MRSA and Au/AgNRs were subcutaneously implanted followed by silver etching. There was a 730% increase in the PA signal ( p < 0.01) pre- and post-etching, and the bacterial counts in infected tissues of the treated group were reduced by 1000-fold (log CFU/g = 4.15 vs 7.75) versus the untreated control; this treatment efficacy was confirmed with histology. We further showed that these hybrid nanoparticles could release Ag+ after stimulation by reactive oxygen species including hydrogen peroxide and peroxynitrite. These hybrid Au/Ag nanoparticles are a useful theranostic agent for the photoacoustic imaging and treatment of bacterial infections.
Collapse
Affiliation(s)
- Taeho Kim
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Qiangzhe Zhang
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jin Li
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| |
Collapse
|
14
|
Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2281-2301. [PMID: 28673854 DOI: 10.1016/j.nano.2017.06.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
With the arrival of antibiotics 70 years ago, meant a paradigm shift in overcoming infectious diseases. For decades, drugs have been used to treat different infections. However, with time bacteria have become resistant to multiple antibiotics, making some diseases difficult to fight. Nanoparticles (NPs) as antibacterial agents appear to have potential to overcome such problems and to revolutionize the diagnosis and treatment of bacterial infections. Therefore, there is significant interest in the use of NPs to treat variety of infections, particularly caused by multidrug-resistant (MDR) strains. This review begins with illustration of types of NPs followed by the literature of current research addressing mechanisms of NPs antibacterial activity, steps involved in NP mediated drug delivery as well as areas where NPs use has potential to improve the treatment, like NP enabled vaccination. Besides, recently emerged innovative NP platforms have been highlighted and their progress made in each area has been reviewed.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Lama Misba
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
15
|
Xin H, Li Y, Xu D, Zhang Y, Chen CH, Li B. Single Upconversion Nanoparticle-Bacterium Cotrapping for Single-Bacterium Labeling and Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603418. [PMID: 28092436 DOI: 10.1002/smll.201603418] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/08/2016] [Indexed: 05/24/2023]
Abstract
Detecting and analyzing pathogenic bacteria in an effective and reliable manner is crucial for the diagnosis of acute bacterial infection and initial antibiotic therapy. However, the precise labeling and analysis of bacteria at the single-bacterium level are a technical challenge but very important to reveal important details about the heterogeneity of cells and responds to environment. This study demonstrates an optical strategy for single-bacterium labeling and analysis by the cotrapping of single upconversion nanoparticles (UCNPs) and bacteria together. A single UCNP with an average size of ≈120 nm is first optically trapped. Both ends of a single bacterium are then trapped and labeled with single UCNPs emitting green light. The labeled bacterium can be flexibly moved to designated locations for further analysis. Signals from bacteria of different sizes are detected in real time for single-bacterium analysis. This cotrapping method provides a new approach for single-pathogenic-bacterium labeling, detection, and real-time analysis at the single-particle and single-bacterium level.
Collapse
Affiliation(s)
- Hongbao Xin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- Biomedical Institute for Global Healthcare Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, 14-01, Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, 04-08, Singapore, 117583, Singapore
| | - Yuchao Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dekang Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chia-Hung Chen
- Biomedical Institute for Global Healthcare Research and Technology (BIGHEART), National University of Singapore, MD6, 14 Medical Drive, 14-01, Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, 04-08, Singapore, 117583, Singapore
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
16
|
|
17
|
Faridi MA, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Russom A. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics. J Nanobiotechnology 2017; 15:3. [PMID: 28052769 PMCID: PMC5210221 DOI: 10.1186/s12951-016-0235-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/03/2016] [Indexed: 01/31/2023] Open
Abstract
Background Bloodstream infections (BSI) remain a major challenge with high mortality rate, with an incidence that is increasing worldwide. Early treatment with appropriate therapy can reduce BSI-related morbidity and mortality. However, despite recent progress in molecular based assays, complex sample preparation steps have become critical roadblock for a greater expansion of molecular assays. Here, we report a size based, label-free, bacteria separation from whole blood using elasto-inertial microfluidics. Results In elasto-inertial microfluidics, the viscoelastic flow enables size based migration of blood cells into a non-Newtonian solution, while smaller bacteria remain in the streamline of the blood sample entrance and can be separated. We first optimized the flow conditions using particles, and show continuous separation of 5 μm particles from 2 μm at a yield of 95% for 5 µm particle and 93% for 2 µm particles at respective outlets. Next, bacteria were continuously separated at an efficiency of 76% from undiluted whole blood sample. Conclusion We demonstrate separation of bacteria from undiluted while blood using elasto-inertial microfluidics. The label-free, passive bacteria preparation method has a great potential for downstream phenotypic and molecular analysis of bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0235-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Asim Faridi
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Harisha Ramachandraiah
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Indradumna Banerjee
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Sahar Ardabili
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Sergey Zelenin
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden
| | - Aman Russom
- Division of Proteomics & Nano-biotechnology, School of Biotechnology, Royal Institute of Technology KTH, SciLifeLab Tomtebodavägen 23, 17165, Solna, Sweden.
| |
Collapse
|
18
|
Rice DR, Clear KJ, Smith BD. Imaging and therapeutic applications of zinc(ii)-dipicolylamine molecular probes for anionic biomembranes. Chem Commun (Camb) 2016; 52:8787-801. [PMID: 27302091 PMCID: PMC4949593 DOI: 10.1039/c6cc03669d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article describes the development of synthetic zinc(ii)-dipicolylamine (ZnDPA) receptors as selective targeting agents for anionic membranes in cell culture and living subjects. There is a strong connection between anionic cell surface charge and disease, and ZnDPA probes have been employed extensively for molecular imaging and targeted therapeutics. Fluorescence and nuclear imaging applications include detection of diseases such as cancer, neurodegeneration, arthritis, and microbial infection, and also quantification of cell death caused by therapy. Therapeutic applications include selective targeting of cytotoxic agents and drug delivery systems, photodynamic inactivation, and modulation of the immune system. The article concludes with a summary of expected future directions.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| |
Collapse
|
19
|
Khan SN, Khan AU. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'. Front Microbiol 2016; 7:174. [PMID: 26925046 PMCID: PMC4757689 DOI: 10.3389/fmicb.2016.00174] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.
Collapse
Affiliation(s)
| | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
20
|
Kong W, Xiong J, Yue H, Fu Z. Sandwich Fluorimetric Method for Specific Detection of Staphylococcus aureus Based on Antibiotic-Affinity Strategy. Anal Chem 2015; 87:9864-8. [DOI: 10.1021/acs.analchem.5b02301] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Weijun Kong
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Ministry of Education), College
of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Jie Xiong
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Ministry of Education), College
of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Huan Yue
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Ministry of Education), College
of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Ministry of Education), College
of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
21
|
van Oosten M, Hahn M, Crane LMA, Pleijhuis RG, Francis KP, van Dijl JM, van Dam GM. Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol Rev 2015; 39:892-916. [PMID: 26109599 DOI: 10.1093/femsre/fuv029] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections represent an increasing problem in modern health care, in particular due to ageing populations and accumulating bacterial resistance to antibiotics. Diagnosis is rarely straightforward and consequently treatment is often delayed or indefinite. Therefore, novel tools that can be clinically implemented are urgently needed to accurately and swiftly diagnose infections. Especially, the direct imaging of infections is an attractive option. The challenge of specifically imaging bacterial infections in vivo can be met by targeting bacteria with an imaging agent. Here we review the current status of targeted imaging of bacterial infections, and we discuss advantages and disadvantages of the different approaches. Indeed, significant progress has been made in this field and the clinical implementation of targeted imaging of bacterial infections seems highly feasible. This was recently highlighted by the use of so-called smart activatable probes and a fluorescently labelled derivative of the antibiotic vancomycin. A major challenge remains the selection of the best imaging probes, and we therefore present a set of target selection criteria for clinical implementation of targeted bacterial imaging. Altogether, we conclude that the spectrum of potential applications for targeted bacterial imaging is enormous, ranging from fundamental research on infectious diseases to diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Marleen van Oosten
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Markus Hahn
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Lucia M A Crane
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Rick G Pleijhuis
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, Division of Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
22
|
Rice DR, Plaunt AJ, Turkyilmaz S, Smith M, Wang Y, Rusckowski M, Smith BD. Evaluation of [¹¹¹In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection. Mol Imaging Biol 2015; 17:204-13. [PMID: 25115869 PMCID: PMC4515950 DOI: 10.1007/s11307-014-0758-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This study prepared three structurally related zinc-dipicolylamine (ZnDPA) tracers with [(111)In] labels and conducted biodistribution and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging studies of a mouse leg infection model. PROCEDURES Two monovalent tracers, ZnDPA-[(111)In]DTPA and ZnDPA-[(111)In]DOTA, each with a single zinc-dipicolylamine targeting unit, and a divalent tracer, Bis(ZnDPA)-[(111)In]DTPA, with two zinc-dipicolylamine units were prepared. Organ biodistribution and SPECT and CT imaging studies were performed on living mice with a leg infection created by injection of clinically relevant Gram positive Streptococcus pyogenes. Fluorescent and luminescent Eu(3+)-labeled versions of these tracers were also prepared and used to measure relative affinity for the exterior membrane surface of bacterial cells and mimics of healthy mammalian cells. RESULTS All three (111)In-labeled radiotracers were prepared with a radiopurity of >90 %. The biodistribution studies showed that the two monovalent tracers were cleared from the body through the liver and kidney, with retained percentage injected dose for all organs of <8 % at 20 h and infected leg target to non-target ratio (T/NT) ratio of ≤3.0. Clearance of the divalent tracer from the bloodstream was slower and primarily through the liver, with a retained percentage injected dose for all organs <37 % at 20 h and T/NT ratio rising to 6.2 after 20 h. The SPECT/CT imaging indicated the same large difference in tracer pharmacokinetics and higher accumulation of the divalent tracer at the site of infection. CONCLUSIONS All three [(111)In]-ZnDPA tracers selectively targeted the site of a clinically relevant mouse infection model that could not be discerned by visual external inspection of the living animal. The highest target selectivity, observed with a divalent tracer equipped with two zinc-dipicolylamine targeting units, compares quite favorably with the imaging selectivities previously reported for other nuclear tracers that target bacterial cell surfaces. The tracer pharmacokinetics depended heavily on tracer molecular structure suggesting that it may be possible to rapidly fine tune the structural properties for optimized in vivo imaging performance and clinical translation.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:532-47. [PMID: 25044325 PMCID: PMC4197093 DOI: 10.1002/wnan.1282] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 12/12/2022]
Abstract
Despite the wide success of antibiotics, the treatment of bacterial infections still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infections. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soracha Thamphiwatana
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Yuan Y, Zhang J, An L, Cao Q, Deng Y, Liang G. Oligomeric nanoparticles functionalized with NIR-emitting CdTe/CdS QDs and folate for tumor-targeted imaging. Biomaterials 2014; 35:7881-6. [DOI: 10.1016/j.biomaterials.2014.05.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
|
25
|
Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate. J Biomed Sci 2014; 21:35. [PMID: 24780003 PMCID: PMC4012715 DOI: 10.1186/1423-0127-21-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this study was to develop the near infrared fluorescence (NIRF)-based imaging agent for the visualization of vascular endothelial growth factor (VEGF) in colon cancer. AlexaFluor 750 conjugating with bevacizumab, and injected intravenously into nude mice bearing VEGF over-expressing HT29 human colorectal cancer. Optical imaging was performed at 15 min, 24 h and 48 h post injection. Immunofluorescences staining of the tumor sections were performed. HT29 colorectal cancer xenografts were clearly visualized with bevacizumab-AlexaFluor 750. Results Ex vivo analysis showed 2.1 ± 0.4%, 37.6 ± 6.3% and 38.5 ± 6.2% injected dose/g accumulated in the tumors at 15 min, 24 h and 48 h respectively. Tumor uptake was significantly decreased in pretreated with excess of bevacizumab (p = 0.002). Immunofluorescence analysis showed strong staining of anti-CD 31 antibody around the blood vessels. Anti-VEGF-A and bevacizumab showed heterogeneous expression throughout the tumor. Conclusions Current study successfully detected the VEGF expression in HT29 colorectal cancer xenografts, signifying as a potential agent for non-invasive imaging of VEGF expression, which may be applied in clinical practice.
Collapse
|
26
|
Ong LC, Ang LY, Alonso S, Zhang Y. Bacterial imaging with photostable upconversion fluorescent nanoparticles. Biomaterials 2014; 35:2987-98. [PMID: 24412082 DOI: 10.1016/j.biomaterials.2013.12.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Autofluorescence, photodamage and photobleaching are often encountered when using downconverting fluorophores and fluorescent proteins for bacteria labeling. These caveats represent a serious limitation when trying to map bacteria dissemination for prolonged periods. Upconversion nanoparticles (UCNs), which are able to convert low energy near-infrared (NIR) excitation light into higher energy visible or NIR light, can address these limitations. These particles' unique optical properties translate into attractive advantages of minimal autofluorescence, reduced photodamage, deeper tissue penetration and prolonged photostability. Here, we report a UCN-based bacteria labeling strategy using Escherichia coli as prototypic bacteria. A comparative analysis highlighted the superior photostability of UCN-labeled bacteria over green fluorescent protein-expressing bacteria. Infection study of UCN-labeled bacteria in dendritic cells indicated co-localization of the UCN signal with bacterial position for up to 6 h post-infection. Furthermore, long-term monitoring of the same infected cells demonstrated the potential to utilize photostable UCN-based imaging for bacterial trafficking purposes.
Collapse
Affiliation(s)
- Li Ching Ong
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456, Singapore
| | - Lei Yin Ang
- Department of Microbiology, Immunology Program, National University of Singapore, Centre for Life Sciences (CeLS), #03-05, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456, Singapore; Department of Microbiology, Immunology Program, National University of Singapore, Centre for Life Sciences (CeLS), #03-05, 28 Medical Drive, Singapore 117456, Singapore.
| | - Yong Zhang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore 117456, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA #03-12, 9 Engineering Drive 1, Singapore 117575, Singapore.
| |
Collapse
|
27
|
Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FWB. Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug Chem 2013; 24:1971-1989. [PMID: 24200346 DOI: 10.1021/bc4003037] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial infections have always been, and still are, a major global healthcare problem. For accurate treatment it is of upmost importance that the location(s), severity, type of bacteria, and therapeutic response can be accurately staged. Similar to the recent successes in oncology, tracers specific for molecular imaging of the disease may help advance patient management. Chemical design and bacterial targeting mechanisms are the basis for the specificity of such tracers. The aim of this review is to provide a comprehensive overview of the molecular imaging tracers developed for optical and nuclear identification of bacteria and bacterial infections. Hereby we envision that such tracers can be used to diagnose infections and aid their clinical management. From these compounds we have set out to identify promising targeting mechanisms and select the most promising candidates for further development.
Collapse
Affiliation(s)
- A Bunschoten
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center , Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Xiao S, Abu-Esba L, Turkyilmaz S, White AG, Smith BD. Multivalent dendritic molecules as broad spectrum bacteria agglutination agents. Theranostics 2013; 3:658-66. [PMID: 24052806 PMCID: PMC3776217 DOI: 10.7150/thno.6811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/26/2013] [Indexed: 01/29/2023] Open
Abstract
This study reports the first set of synthetic molecules that act as broad spectrum agglutination agents and thus are complementary to the specific targeting of antibodies. The molecules have dendritic architecture and contain multiple copies of zinc(II)-dipicolylamine (ZnDPA) units that have selective affinity for the bacterial cell envelope. A series of molecular structures were evaluated, with the number of appended ZnDPA units ranging from four to thirty-two. Agglutination assays showed that the multivalent probes rapidly cross-linked ten different strains of bacteria, regardless of Gram-type and cell morphology. Fluorescence microscopy studies using probes with four ZnDPA units indicated a high selectivity for bacteria agglutination in the presence of mammalian cells and no measurable effect on the health of the cells. The high bacterial selectivity was confirmed by conducting in vivo optical imaging studies of a mouse leg infection model. The results suggest that multivalent ZnDPA molecular probes with dendritic structures have great promise as selective, broad spectrum bacterial agglutination agents for infection imaging and theranostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Xiao S, Turkyilmaz S, Smith BD. Convenient Synthesis of Multivalent Zinc(II)-Dipicolylamine Complexes for Molecular Recognition. Tetrahedron Lett 2013; 54:861-864. [PMID: 23459472 PMCID: PMC3580864 DOI: 10.1016/j.tetlet.2012.11.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A pair of novel dipicolylamine ligands bearing isothiocyanate groups were used as conjugation reagents to prepare multivalent molecules with anionic recognition capability. The isothiocyanates were reacted with two classes of dendritic scaffolds bearing primary amines, squaraine rotaxanes and PAMAM dendrimers, and the products were converted into water soluble zinc(II) coordination complexes. The multivalent squaraine rotaxanes exhibit high fluorescence quantum yields in water and are very well suited for biological imaging applications.
Collapse
Affiliation(s)
- Shuzhang Xiao
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Serhan Turkyilmaz
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
30
|
Cronin M, Stanton RM, Francis KP, Tangney M. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther 2012; 19:731-40. [PMID: 22996740 DOI: 10.1038/cgt.2012.59] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The significant burden of resistance to conventional anticancer treatments in patients with advanced disease has prompted the need to explore alternative therapeutic strategies. The challenge for oncology researchers is to identify a therapy which is selective for tumors with limited toxicity to normal tissue. Engineered bacteria have the unique potential to overcome traditional therapies' limitations by specifically targeting tumors. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally, either external to (non-invasive species) or within tumor cells (pathogens). Pre-clinical and clinical investigations involving bacterial vectors require relevant means of monitoring vector trafficking and levels over time, and development of bacterial-specific real-time imaging modalities are key for successful development of clinical bacterial gene delivery. This review discusses the currently available imaging technologies and the progress to date exploiting these for monitoring of bacterial gene delivery in vivo.
Collapse
Affiliation(s)
- M Cronin
- Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
31
|
Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. NANOSCALE RESEARCH LETTERS 2012; 7:480. [PMID: 22929008 PMCID: PMC3463453 DOI: 10.1186/1556-276x-7-480] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/26/2012] [Indexed: 05/19/2023]
Abstract
This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Haleh Mikaeili
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Nosratalah Zarghami
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Mohammad kouhi
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| |
Collapse
|
32
|
|
33
|
Ngo HT, Liu X, Jolliffe KA. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 2012; 41:4928-65. [PMID: 22688834 DOI: 10.1039/c2cs35087d] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This critical review covers the developments in anion recognition and sensing using Zn(II)-dipicolylamine functionalized receptors over the past decade with emphasis on recent rapid advances in the last five years.
Collapse
Affiliation(s)
- Huy Tien Ngo
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
34
|
Thakur ML, Zhang K, Paudyal B, Devakumar D, Covarrubias MY, Chen CP, Cheng C, Gray BD, Wickstrom E, Pak KY. Targeting apoptosis for optical imaging of infection. Mol Imaging Biol 2012; 14:163-71. [PMID: 21538153 PMCID: PMC5842677 DOI: 10.1007/s11307-011-0490-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Infection is ubiquitous and a major cause of morbidity and mortality. The most reliable method for localizing infection requires radiolabeling autologous white blood cells ex vivo. A compound that can be injected directly into a patient and can selectively image infectious foci will eliminate the drawbacks. The resolution of infection is associated with neutrophil apoptosis and necrosis presenting phosphatidylserine (PS) on the neutrophil outer leaflet. Targeting PS with intravenous administration of a PS-specific, near-infrared (NIR) fluorophore will permit localization of infectious foci by optical imaging. METHODS Bacterial infection and sterile inflammation were induced in separate groups (n = 5) of mice. PS was targeted with a NIR fluorophore, PSVue(®)794 (2.7 pmol). Imaging was performed (ex = 730 nm, em = 830 nm) using Kodak Multispectral FX-Pro system. The contralateral normal thigh served as an individualized control. Confocal microscopy of normal and apoptotic neutrophils and bacteria confirmed PS specificity. RESULTS Lesions, with a 10-s image acquisition, were unequivocally visible at 5 min post-injection. At 3 h post-injection, the lesion to background intensity ratios in the foci of infection (6.6 ± 0.2) were greater than those in inflammation (3.2 ± 0.5). Image fusions confirmed anatomical locations of the lesions. Confocal microscopy determined the fluorophore specificity for PS. CONCLUSIONS Targeting PS presented on the outer leaflet of apoptotic or necrotic neutrophils as well as gram-positive microorganism with PS-specific NIR fluorophore provides a sensitive means of imaging infection. Literature indicates that NIR fluorophores can be detected 7-14 cm deep in tissue. This observation together with the excellent results and the continued development of versatile imaging devices could make optical imaging a simple, specific, and rapid modality for imaging infection.
Collapse
Affiliation(s)
- Mathew L Thakur
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ray PC, Khan SA, Singh AK, Senapati D, Fan Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 2012; 41:3193-209. [DOI: 10.1039/c2cs15340h] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Chen LN, Wang J, Li WT, Han HY. Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem Commun (Camb) 2012; 48:4971-3. [DOI: 10.1039/c2cc31259j] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv 2011; 8:1105-9. [PMID: 21711085 DOI: 10.1517/17425247.2011.597381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The major challenges in the delivery and therapeutic efficacy of nano-delivery systems in chronic obstructive airway conditions are airway defense, severe inflammation and mucous hypersecretion. Chronic airway inflammation and mucous hypersecretion are hallmarks of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Distinct etiologies drive inflammation and mucous hypersecretion in these diseases, which are further induced by infection or components of cigarette smoke. Controlling chronic inflammation is at the root of treatments such as corticosteroids, antibiotics or other available drugs, which pose the challenge of sustained delivery of drugs to target cells or tissues. In spite of the wide application of nano-based drug delivery systems, very few are tested to date. Targeted nanoparticle-mediated sustained drug delivery is required to control inflammatory cell chemotaxis, fibrosis, protease-mediated chronic emphysema and/or chronic lung obstruction in COPD. Moreover, targeted epithelial delivery is indispensable for correcting the underlying defects in CF and targeted inflammatory cell delivery for controlling other chronic inflammatory lung diseases. We propose that the design and development of nano-based targeted theranostic vehicles with therapeutic, imaging and airway-defense penetrating capability, will be invaluable for treating chronic obstructive lung diseases. This paper discusses a novel nano-theranostic strategy that we are currently evaluating to treat the underlying cause of CF and COPD lung disease.
Collapse
|
38
|
On the role of anionic lipids in charged protein interactions with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1673-83. [PMID: 21073855 DOI: 10.1016/j.bbamem.2010.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.
Collapse
|
39
|
Abstract
According to World Health Organization estimates, infectious organisms are responsible for approximately one in four deaths worldwide. Animal models play an essential role in the development of vaccines and therapeutic agents but large numbers of animals are required to obtain quantitative microbiological data by tissue sampling. Biophotonic imaging (BPI) is a highly sensitive, nontoxic technique based on the detection of visible light, produced by luciferase-catalysed reactions (bioluminescence) or by excitation of fluorescent molecules, using sensitive photon detectors. The development of bioluminescent/fluorescent microorganisms therefore allows the real-time noninvasive detection of microorganisms within intact living animals. Multiple imaging of the same animal throughout an experiment allows disease progression to be followed with extreme accuracy, reducing the number of animals required to yield statistically meaningful data. In the study of infectious disease, the use of BPI is becoming widespread due to the novel insights it can provide into established models, as well as the impact of the technique on two of the guiding principles of using animals in research, namely reduction and refinement. Here, we review the technology of BPI, from the instrumentation through to the generation of a photonic signal, and illustrate how the technique is shedding light on infection dynamics in vivo.
Collapse
Affiliation(s)
- Nuria Andreu
- Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
40
|
Signore A, Mather SJ, Piaggio G, Malviya G, Dierckx RA. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem Rev 2010; 110:3112-45. [PMID: 20415479 DOI: 10.1021/cr900351r] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A Signore
- Nuclear Medicine Unit, II Faculty of Medicine and Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
41
|
Xie J, Cao S, Good D, Wei M, Ren X. Combination of a fluorescent dye and a Zn-S cluster and its biological application as a stain for bacteria. Inorg Chem 2010; 49:1319-21. [PMID: 20095563 DOI: 10.1021/ic9023629] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ionic-pair charge-transfer salt [C(15)H(16)N(3)](+)[Zn(8)S(SC(6)H(5))(15).H(2)O](-) (1) featuring a fluorescent dye and a wurtzite-like octanuclear Zn-S cluster shows high stability when staining bacteria Escherichia coli, Salmonella typhimurium, and Clostridium novyi NT.
Collapse
Affiliation(s)
- Jingli Xie
- School of Chemistry & Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
42
|
Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 2010; 62:424-37. [PMID: 19931579 PMCID: PMC7103339 DOI: 10.1016/j.addr.2009.11.014] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/14/2009] [Indexed: 11/28/2022]
Abstract
New methods to identify trace amount of infectious pathogens rapidly, accurately and with high sensitivity are in constant demand to prevent epidemics and loss of lives. Early detection of these pathogens to prevent, treat and contain the spread of infections is crucial. Therefore, there is a need and urgency for sensitive, specific, accurate, easy-to-use diagnostic tests. Versatile biofunctionalized engineered nanomaterials are proving to be promising in meeting these needs in diagnosing the pathogens in food, blood and clinical samples. The unique optical and magnetic properties of the nanoscale materials have been put to use for the diagnostics. In this review, we focus on the developments of the fluorescent nanoparticles, metallic nanostructures and superparamagnetic nanoparticles for bioimaging and detection of infectious microorganisms. The various nanodiagnostic assays developed to image, detect and capture infectious virus and bacteria in solutions, food or biological samples in vitro and in vivo are presented and their relevance to developing countries is discussed.
Collapse
Key Words
- who, world health organization
- elisa, enzyme linked immuno sorbent assay
- pcr, polymerase chain reaction
- nps, nanoparticles
- qdots, quantum dots
- rsv, respiratory syncytial virus
- fitc, fluorescein isothiocyanate
- zn-dpa, zn (ii)-dipicolylamine
- hbv, hepatitis b virus
- hcv, hepatitis c virus
- qdot-b, qdot-barcodes
- hiv, human immunodeficiency virus
- fsnps, fluorescent silica nanoparticles
- fret, förster resonance energy transfer
- fam-se, (5-carboxy-fluorescein succinimidyl ester)
- rox-se, (6-carboxy-x-rhodamine, succinimidyl ester)
- r6g-se, (5-carboxyrhodamine 6g, succinimidyl ester)
- tmr-se, (carboxytetramethylrhodamine, succinimidyl ester)
- osbpy, tris (2, 2′bipyridyl) osmium bis (hexafluorophosphate)
- rubpy, tris(bipyridine) ruthenium (ii) dichloride
- fnp-iifm, fluorescent nanoparticle-based indirect immunofluorescence microscopy
- eu iii, europium
- cadpa, calcium dipicolinate
- lod, limit of detection
- sec1, staphylococcal enterotoxin c1
- ct, cholera toxin
- pa, anthrax protective agent
- ccmv, cow pea chlorotic mottle virus
- mri, magnetic resonance imaging
- spa, protein a
- gd-dota, gadolinium-1,4,7,10-tetraazacyclododecane tetraacetic acid
- icp-ms, inductively coupled plasma mass spectrometry
- spr, surface plasmon resonance
- au np, gold nanoparticle
- hsv-2, herpes simplex virus type 2
- hsv-1, herpes simplex virus type 1
- rls, resonance light scattering
- ss, single stranded
- hrs, hyper-rayleigh scattering
- ds, double stranded
- tem, transmission electron microscopy
- h. pyroli, helicobacter pyroli
- sers, surface enhanced raman scattering
- smcc, succinimidyl-4-(n-maleimidomethyl)cyclohexane-1-carboxylate
- bg, bacillus globigii
- ova, ovalbumin
- cfu, colony forming unit
- atp, adenosine triphosphate
- ir, infra red
- squid, superconducting quantum interference device
- mnp, magnetic nanoparticles
- maldi-ms, matrix-assisted laser desorption/ionization mass spectrometry
- poa, adopted pigeon ovalbumin
- mgnp, magnetic glycol nanoparticles
- spio, superparamagnetic iron oxide
- mrs, magnetic relaxation sensors
- nmr, nuclear magnetic resonance
- fluorescent nanoparticles
- multiplexing
- viral imaging
- bacterial detection
- surface plasmon resonance
- colorimetric assay
- magnetic nanosensors
- immunomagnetic separation
Collapse
Affiliation(s)
- Padmavathy Tallury
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Astha Malhotra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Logan M Byrne
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Biomolecular Science Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
43
|
Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 2010; 62:316-28. [PMID: 19913581 DOI: 10.1016/j.addr.2009.11.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 10/17/2009] [Indexed: 01/19/2023]
Abstract
Nanoparticle based platforms for identification of chemical and biological agents offer substantial benefits to biomedical and environmental science. These platforms benefit from the availability of a wide variety of core materials as well as the unique physical and chemical properties of these nanoscale materials. This review surveys some of the emerging approaches in the field of nanoparticle based detection systems, highlighting the nanoparticle based screening methods for metal ions, proteins, nucleic acids, and biologically relevant small molecules.
Collapse
|
44
|
|
45
|
Ganesh V, Bodewits K, Bartholdson S, Natale D, Campopiano D, Mareque-Rivas J. Effective Binding and Sensing of Lipopolysaccharide: Combining Complementary Pattern Recognition Receptors. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Ganesh V, Bodewits K, Bartholdson S, Natale D, Campopiano D, Mareque-Rivas J. Effective Binding and Sensing of Lipopolysaccharide: Combining Complementary Pattern Recognition Receptors. Angew Chem Int Ed Engl 2009; 48:356-60. [DOI: 10.1002/anie.200804168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Yong KT, Roy I, Swihart MT, Prasad PN. Multifunctional Nanoparticles as Biocompatible Targeted Probes for Human Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2009; 19:4655-4672. [PMID: 20305738 DOI: 10.1039/b817667c] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of nanoparticles in biological application has been rapidly advancing toward practical applications in human cancer diagnosis and therapy. Upon linking the nanoparticles with biomolecules, they can be used to locate cancerous area as well as for traceable drug delivery with high affinity and specificity. In this review, we discuss the engineering of multifunctional nanoparticle probes and their use in bioimaging and nanomedicine.
Collapse
Affiliation(s)
- Ken-Tye Yong
- Institute for Lasers, Photonics and Biophotonics, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200
| | | | | | | |
Collapse
|
48
|
Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A. Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun (Camb) 2008:5764-6. [PMID: 19009074 DOI: 10.1039/b812302k] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gd(3+)-functionalized near-infrared emitting quantum dots were synthesized as a dual modal contrast agent for in vivo fluorescence imaging and magnetic resonance imaging.
Collapse
Affiliation(s)
- Takashi Jin
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|