1
|
Ma R, Zheng W, Guo J, Hou R, Huang H, Xue F, Zhou Y, Wu W, Huang C, Gu J, Feng F, Yu X, Liu J, Li Z, Zhang L, Lan G, Chen C, Bi W, Dai Q, Owens JR, Yang H, Gu X, Yan QG, Qi D. Symbiotic microbiota and odor ensure mating in time for giant pandas. Front Microbiol 2022; 13:1015513. [PMID: 36466630 PMCID: PMC9712809 DOI: 10.3389/fmicb.2022.1015513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 06/29/2024] Open
Abstract
To achieve reproduction, male solitary mammals need to locate females using chemical communication with high levels of precision. In the case of giant pandas, the total estrus period of females was usually 15 days each year, however, successful mating activity is finished within 3 days from respective home range. The mating pattern of giant pandas, where multiple males compete for each female requires females employ efficient systems to communicate their estrus phases. To verifying whether the scent secretions of giant pandas changes by gender and estrus progression, the microbiota and compounds in 29 anogenital gland samples from 14 individuals during estrus were analyzed by 16S rRNA sequencing and GC-MS. We show that the microbiota communities covary by gender with 4 particular compounds of scent secretions. Among 597 genera, 34 were identified as biomarkers that could be used to distinguish between different estrus phases. By bacterial-compounds co-analysis, 3 fatty ester acids and squalene compounds covaried with the development of estrus in the bacterial communities of female giant pandas. This study helps clarify how a large, solitary mammal expresses accurate information to improve the likelihood of successful reproduction by changing the composition of microbiota and odor compounds of anogenital glands during estrus.
Collapse
Affiliation(s)
- Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | | | - Junliang Guo
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - He Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Chong Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Feifei Feng
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Long Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Guanwei Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Chao Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jacob R. Owens
- Los Angeles Zoo & Botanical Gardens, Los Angeles, CA, United States
| | - Hong Yang
- Daxiangling Nature Reserve, Yaan, China
| | - Xiaodong Gu
- Sichuan Forestry and Grassland Bureau, Chengdu, China
| | - Qi-gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| |
Collapse
|
2
|
Schubert N, Nichols HJ, Winternitz JC. How can the MHC mediate social odor via the microbiota community? A deep dive into mechanisms. Behav Ecol 2021. [DOI: 10.1093/beheco/arab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Genes of the major histocompatibility complex (MHC) have long been linked to odor signaling and recently researchers’ attention has focused on MHC structuring of microbial communities and how this may in turn impact odor. However, understanding of the mechanisms through which the MHC could affect the microbiota to produce a chemical signal that is both reliable and strong enough to ensure unambiguous transmission of behaviorally important information remains poor. This is largely because empirical studies are rare, predictions are unclear, and the underlying immunological mechanisms governing MHC–microbiota interactions are often neglected. Here, we review the immunological processes involving MHC class II (MHC-II) that could affect the commensal community. Focusing on immunological and medical research, we provide background knowledge for nonimmunologists by describing key players within the vertebrate immune system relating to MHC-II molecules (which present extracellular-derived peptides, and thus interact with extracellular commensal microbes). We then systematically review the literature investigating MHC–odor–microbiota interactions in animals and identify areas for future research. These insights will help to design studies that are able to explore the role of MHC-II and the microbiota in the behavior of wild populations in their natural environment and consequently propel this research area forward.
Collapse
Affiliation(s)
- Nadine Schubert
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
| | - Hazel J Nichols
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Jamie C Winternitz
- Department of Animal Behavior, Bielefeld University, Konsequenz, Bielefeld, Germany
| |
Collapse
|
3
|
3Rs-based optimization of mice behavioral testing: The habituation/dishabituation olfactory test. J Neurosci Methods 2020; 332:108550. [PMID: 31838181 DOI: 10.1016/j.jneumeth.2019.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is clear evidence that most of the paradigms that are used in the field of behavioral neuroscience suffer from a lack of reliability mainly because of oversimplification of both testing procedures and interpretations. In the present study we show how an already existing behavioral test, the olfactory habituation / dishabituation task, can be optimized in such a way that animal number and animal distress could be minimized, number/confidence of behavioral outcomes and number of explored behavioral dimensions could be increased. NEW METHOD We used ethologically relevant technical and procedural changes associated with videotracking-based automated quantification of sniffing behavior to validate our new setup. Mainly internal and construct validity were challenged through the implementation of a series of simple experiments. RESULTS We show that the new version of the test: 1) has very good within and inter laboratory replicability, 2) is sensitive to some environmental / experimental factors while insensitive to others, 3) allows investigating hedonism, both state and trait anxiety, efficacy of anxiolytic molecules, acute stress, mental retardation-related social impairments and learning and memory. 4) We also show that interest for both nonsocial and social odors is stable over time which makes repetitive testing possible. CONCLUSIONS This work paves the way for future studies showing how behavioral tests / procedures may be improved by using ethologically relevant changes, in order to question laboratory animals more adequately. Refining behavioral tests may considerably increase predictivity of preclinical tests and, ultimately, help reinforcing translational research.
Collapse
|
4
|
Segers FHID, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol 2019; 9:13450-13467. [PMID: 31871657 PMCID: PMC6912891 DOI: 10.1002/ece3.5801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high-throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long-term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.
Collapse
Affiliation(s)
- Francisca H. I. D. Segers
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)FrankfurtGermany
- Behavioural Ecology and Social EvolutionInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
- Present address:
Applied Bioinformatics GroupInstitute of Cell Biology & NeuroscienceGoethe UniversityFrankfurtGermany
| | - Martin Kaltenpoth
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| | - Susanne Foitzik
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
5
|
Grogan KE, Harris RL, Boulet M, Drea CM. Genetic variation at MHC class II loci influences both olfactory signals and scent discrimination in ring-tailed lemurs. BMC Evol Biol 2019; 19:171. [PMID: 31438845 PMCID: PMC6704550 DOI: 10.1186/s12862-019-1486-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/21/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Diversity at the Major Histocompatibility Complex (MHC) is critical to health and fitness, such that MHC genotype may predict an individual's quality or compatibility as a competitor, ally, or mate. Moreover, because MHC products can influence the components of bodily secretions, an individual's body odors may signal its MHC composition and influence partner identification or mate choice. Here, we investigated MHC-based signaling and recipient sensitivity by testing for odor-gene covariance and behavioral discrimination of MHC diversity and pairwise dissimilarity in a strepsirrhine primate, the ring-tailed lemur (Lemur catta). METHODS First, we coupled genotyping of the MHC class II gene, DRB, with gas chromatography-mass spectrometry of genital gland secretions to investigate if functional genetic diversity is signaled by the chemical diversity of lemur scent secretions. We also assessed if the chemical similarity between individuals correlated with their MHC-DRB similarity. Next, we assessed if lemurs discriminated this chemically encoded, genetic information in opposite-sex conspecifics. RESULTS We found that both sexes signaled overall MHC-DRB diversity and pairwise MHC-DRB similarity via genital secretions, but in a sex- and season-dependent manner. Additionally, the sexes discriminated absolute and relative MHC-DRB diversity in the genital odors of opposite-sex conspecifics, suggesting that lemur genital odors function to advertise genetic quality. CONCLUSIONS In summary, genital odors of ring-tailed lemurs provide honest information about an individual's absolute and relative MHC quality. Complementing evidence in humans and Old World monkeys, we suggest that reliance on scent signals to communicate MHC quality may be important across the primate lineage.
Collapse
Affiliation(s)
- Kathleen E Grogan
- University Program in Ecology, Duke University, Durham, NC, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Pennsylvania State University, 516 Carpenter Building, University Park, PA, 16802, USA.
| | - Rachel L Harris
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Marylène Boulet
- Department of Biological Sciences, Bishop's University, Sherbrooke, Canada
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, USA
| |
Collapse
|
6
|
Nielsen BL, Jérôme N, Saint-Albin A, Joly F, Rabot S, Meunier N. Sexual responses of male rats to odours from female rats in oestrus are not affected by female germ-free status. Behav Brain Res 2018; 359:686-693. [PMID: 30261201 DOI: 10.1016/j.bbr.2018.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/26/2022]
Abstract
Rats detect and use odorant molecules as a source of information about their environment. Some of these molecules come from conspecifics, and many arise as by-products from microbial activity. Thus, compared to conventionally housed rats, germ-free rats are raised in an environment with fewer odorants, but this reduction is rarely quantified. Using gas chromatography-mass spectrometry, we found that germ-free rat faeces samples contained half as many volatile molecules than conventional rat faeces (52 vs 109 (±2.4) molecules; P < 0.001) and overall these were only 12% as abundant. We then investigated if odours from female germ-free rats in oestrus would have pro-erectile effects in conventional male rats. For this aim, conventionally housed Brown Norway (BN) rats (n = 16) with sexual experience with either Fischer or BN females, were exposed to four different odour types: faeces from germ-free Fischer rat in oestrus, faeces from conventional rats in oestrus and di-oestrus (either from Fischer or BN), and a control (either 1-hexanol or male rat faeces). The number of penile erections per test as well as the duration of freezing behaviour was significantly higher with the oestrous odours (germ-free and conventional) compared to the control, with intermediate responses to the di-oestrous faeces. The findings indicate that, despite a significantly reduced composition in terms of volatiles compared to conventionally housed rats, the faeces of germ-free rats contain sufficient odorants to evoke sexual responses in conventional male rats. Oestrous odours of rats thus appear not to be of microbial origin.
Collapse
Affiliation(s)
- Birte L Nielsen
- MoSAR, Inra, AgroParisTech, Université Paris Saclay, 75005, Paris, France; NBO, Inra, Université Paris Saclay, 78350, Jouy en Josas, France.
| | - Nathalie Jérôme
- NBO, Inra, Université Paris Saclay, 78350, Jouy en Josas, France.
| | | | - Fatima Joly
- Micalis, Inra, AgroParisTech, Université Paris Saclay, 78350, Jouy en Josas, France.
| | - Sylvie Rabot
- Micalis, Inra, AgroParisTech, Université Paris Saclay, 78350, Jouy en Josas, France.
| | - Nicolas Meunier
- NBO, Inra, Université Paris Saclay, 78350, Jouy en Josas, France; Université de Versailles Saint-Quentin, 78000, Versailles, France; VIM, Inra, Université Paris Saclay, 78350, Jouy en Josas, France.
| |
Collapse
|
7
|
Abstract
The microbiota is increasingly recognized for its ability to influence the development and function of the nervous system and several complex host behaviors. In this review, we discuss emerging roles for the gut microbiota in modulating host social and communicative behavior, stressor-induced behavior, and performance in learning and memory tasks. We summarize effects of the microbiota on host neurophysiology, including brain microstructure, gene expression, and neurochemical metabolism across regions of the amygdala, hippocampus, frontal cortex, and hypothalamus. We further assess evidence linking dysbiosis of the gut microbiota to neurobehavioral diseases, such as autism spectrum disorder and major depression, drawing upon findings from animal models and human trials. Finally, based on increasing associations between the microbiota, neurophysiology, and behavior, we consider whether investigating mechanisms underlying the microbiota-gut-brain axis could lead to novel approaches for treating particular neurological conditions.
Collapse
Affiliation(s)
- Helen E Vuong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| | - Jessica M Yano
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| | - Thomas C Fung
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California 90095;
| |
Collapse
|
8
|
Eisthen HL, Theis KR. Animal-microbe interactions and the evolution of nervous systems. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150052. [PMID: 26598731 DOI: 10.1098/rstb.2015.0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animals ubiquitously interact with environmental and symbiotic microbes, and the effects of these interactions on animal physiology are currently the subject of intense interest. Nevertheless, the influence of microbes on nervous system evolution has been largely ignored. We illustrate here how taking microbes into account might enrich our ideas about the evolution of nervous systems. For example, microbes are involved in animals' communicative, defensive, predatory and dispersal behaviours, and have likely influenced the evolution of chemo- and photosensory systems. In addition, we speculate that the need to regulate interactions with microbes at the epithelial surface may have contributed to the evolutionary internalization of the nervous system.
Collapse
Affiliation(s)
- Heather L Eisthen
- Department of Integrative Biology, Michigan State University, 288 Farm Lane Rm 203, East Lansing, MI 48824, USA BEACON Center for the Study of Evolution in Action, 567 Wilson Road Rm 1441, East Lansing, MI 48824, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, 567 Wilson Road Rm 1441, East Lansing, MI 48824, USA Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, MSRB I Rm 1510A, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Whittaker DJ, Gerlach NM, Slowinski SP, Corcoran KP, Winters AD, Soini HA, Novotny MV, Ketterson ED, Theis KR. Social Environment Has a Primary Influence on the Microbial and Odor Profiles of a Chemically Signaling Songbird. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Kean EF, Chadwick EA, Müller CT. Scent signals individual identity and country of origin in otters. Mamm Biol 2015. [DOI: 10.1016/j.mambio.2014.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ezenwa VO, Williams AE. Microbes and animal olfactory communication: Where do we go from here? Bioessays 2014; 36:847-54. [PMID: 24986361 DOI: 10.1002/bies.201400016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We know that microbes contribute to the production of odors that some animals use to communicate, but how common is this phenomenon? Recent studies capitalizing on new molecular technologies are uncovering fascinating associations between microbes and odors of wild animals, but causality is difficult to ascertain. Fundamental questions about the nature of these unique host-microbe interactions also remain unanswered. For instance, do microbes benefit from signaling associations with hosts? How does microbial community structure influence signal production? How do hosts regulate microbes in order to generate appropriate signals? Here, we review the current state of knowledge on microbially produced signals in animals and discuss key research foci that can advance our understanding of microbial-based signaling in the animal world.
Collapse
Affiliation(s)
- Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
12
|
Leclaire S, Nielsen JF, Drea CM. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol 2014. [DOI: 10.1093/beheco/aru074] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Trojan Genes or Transparent Genomes? Sexual Selection and Potential Impacts of Genetically Modified Animals in Natural Ecosystems. Evol Biol 2013. [DOI: 10.1007/s11692-013-9268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Abstract
All animals harbor beneficial microbes. One way these microbes can benefit their animal hosts is by increasing the diversity and efficacy of communication signals available to the hosts. The fermentation hypothesis for mammalian chemical communication posits that bacteria in the scent glands of mammals generate odorous metabolites used by their hosts for communication and that variation in host chemical signals is a product of underlying variation in the bacterial communities inhabiting the scent glands. An effective test of this hypothesis would require accurate surveys of the bacterial communities in mammals' scent glands and complementary data on the odorant profiles of scent secretions--both of which have been historically lacking. Here we use next-generation sequencing to survey deeply the bacterial communities in the scent glands of wild spotted and striped hyenas. We show that these communities are dominated by fermentative bacteria and that the structures of these communities covary with the volatile fatty acid profiles of scent secretions in both hyena species. The bacterial and volatile fatty acid profiles of secretions differ between spotted and striped hyenas, and both profiles vary with sex and reproductive state among spotted hyenas within a single social group. Our results strongly support the fermentation hypothesis for chemical communication, suggesting that symbiotic bacteria underlie species-specific odors in both spotted and striped hyenas and further underlie sex and reproductive state-specific odors among spotted hyenas. We anticipate that the fermentation hypothesis for chemical communication will prove broadly applicable among scent-marking mammals as others use the technical and analytical approaches used here.
Collapse
|
15
|
The genetic architecture of chemosensory cues involved in species recognition: a behavioral approach in the house mouse. Behav Genet 2013; 44:56-67. [PMID: 24158628 DOI: 10.1007/s10519-013-9621-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
The genetics of chemical signals is poorly understood. We addressed this issue in two subspecies of mice, Mus musculus musculus and M. m. domesticus, comparing their odor phenotypes with that of their hybrids. Earlier studies indicated that these subspecies could be discriminated on the basis of their urinary odor. We assessed male odor phenotypes from perception of musculus mice acting as olfactometers. Our results point to a complex genetic determinism. Reciprocal F1 hybrids produced a distinct odor phenotype, with shared characteristics distinguishing them from their parents, and stronger similarity to domesticus than to musculus. These results are consistent with implications of genes with partial dominance and a parent of origin effect. Further, similarities between reciprocal F2 allowed us to reject a direct role of the Y-chromosome in shaping the odor phenotype. However we show that the X-chromosome could be involved in explaining domesticus phenotype, while epistasis between genes on the sex chromosomes and the autosomes might influence musculus phenotype.
Collapse
|
16
|
Drea CM, Boulet M, Delbarco-Trillo J, Greene LK, Sacha CR, Goodwin TE, Dubay GR. The "secret" in secretions: methodological considerations in deciphering primate olfactory communication. Am J Primatol 2013; 75:621-42. [PMID: 23526595 DOI: 10.1002/ajp.22143] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/06/2013] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
Olfactory communication in primates is gaining recognition; however, studies on the production and perception of primate scent signals are still scant. In general, there are five tasks to be accomplished when deciphering the chemical signals contained in excretions and secretions: (1) obtaining the appropriate samples; (2) extracting the target organic compounds from the biological matrix; (3) separating the extracted compounds from one another (by gas chromatography, GC or liquid chromatography, LC); (4) identifying the compounds (by mass spectrometry, MS and associated procedures); and (5) revealing biologically meaningful patterns in the data. Ultimately, because some of the compounds identified in odorants may not be relevant, associated steps in understanding signal function involve verifying the perception or biological activity of putative semiochemicals via (6) behavioral bioassays or (7) receptor response studies. This review will focus on the chemical analyses and behavioral bioassays of volatile, primate scent signals. Throughout, we highlight the potential pitfalls of working with highly complex, chemical matrices and suggest ways for minimizing problems. A recurring theme in this review is that multiple approaches and instrumentation are required to characterize the full range of information contained in the complex mixtures that typify primate or, indeed, many vertebrate olfactory cues. Only by integrating studies of signal production with those verifying signal perception will we better understand the function of olfactory communication.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina 27708-0383, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Li Q, Korzan WJ, Ferrero DM, Chang RB, Roy DS, Buchi M, Lemon JK, Kaur AW, Stowers L, Fendt M, Liberles SD. Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 2012. [PMID: 23177478 DOI: 10.1016/j.cub.2012.10.047] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Rodents use olfactory cues for species-specific behaviors. For example, mice emit odors to attract mates of the same species, but not competitors of closely related species. This implies rapid evolution of olfactory signaling, although odors and chemosensory receptors involved are unknown. RESULTS Here, we identify a mouse chemosignal, trimethylamine, and its olfactory receptor, trace amine-associated receptor 5 (TAAR5), to be involved in species-specific social communication. Abundant (>1,000-fold increased) and sex-dependent trimethylamine production arose de novo along the Mus lineage after divergence from Mus caroli. The two-step trimethylamine biosynthesis pathway involves synergy between commensal microflora and a sex-dependent liver enzyme, flavin-containing monooxygenase 3 (FMO3), which oxidizes trimethylamine. One key evolutionary alteration in this pathway is the recent acquisition in Mus of male-specific Fmo3 gene repression. Coincident with its evolving biosynthesis, trimethylamine evokes species-specific behaviors, attracting mice, but repelling rats. Attraction to trimethylamine is abolished in TAAR5 knockout mice, and furthermore, attraction to mouse scent is impaired by enzymatic depletion of trimethylamine or TAAR5 knockout. CONCLUSIONS TAAR5 is an evolutionarily conserved olfactory receptor required for a species-specific behavior. Synchronized changes in odor biosynthesis pathways and odor-evoked behaviors could ensure species-appropriate social interactions.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Villinger J, Waldman B. Social discrimination by quantitative assessment of immunogenetic similarity. Proc Biol Sci 2012; 279:4368-74. [PMID: 22951741 PMCID: PMC3479794 DOI: 10.1098/rspb.2012.1279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/10/2012] [Indexed: 01/04/2023] Open
Abstract
Genes of the major histocompatibility complex (MHC) that underlie the adaptive immune system may allow vertebrates to recognize their kin. True kin-recognition genes should produce signalling products to which organisms can respond. Allelic variation in the peptide-binding region (PBR) of MHC molecules determines the pool of peptides that can be presented to trigger an immune response. To examine whether these MHC peptides also might underlie assessments of genetic similarity, we tested whether Xenopus laevis tadpoles socially discriminate between pairs of siblings with which they differed in PBR amino acid sequences. We found that tadpoles (four sibships, n = 854) associated preferentially with siblings with which they were more similar in PBR amino acid sequence. Moreover, the strength of their preference for a conspecific was directly proportional to the sequence similarity between them. Discrimination was graded, and correlated more closely with functional sequence differences encoded by MHC class I and class II alleles than with numbers of shared haplotypes. Our results thus suggest that haplotype analyses may fail to reveal fine-scale behavioural responses to divergence in functionally expressed sequences. We conclude that MHC-PBR gene products mediate quantitative social assessment of immunogenetic similarity that may facilitate kin recognition in vertebrates.
Collapse
Affiliation(s)
- Jandouwe Villinger
- Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, PO Box 30772-00100, Nairobi, Kenya
| | - Bruce Waldman
- Department of Ecology, PO Box 84, Lincoln University, Canterbury 7647, New Zealand
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, South Korea
| |
Collapse
|
19
|
Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep 2012; 2:615. [PMID: 22937224 PMCID: PMC3431069 DOI: 10.1038/srep00615] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 02/01/2023] Open
Abstract
Symbiotic microbes can benefit their animal hosts by enhancing the diversity of communication signals available to them. The fermentation hypothesis for chemical recognition posits that 1) fermentative bacteria in specialized mammalian scent glands generate odorants that mammals co-opt to communicate with one another, and 2) that variation in scent gland odors is due to underlying variation in the structure of bacterial communities within scent glands. For example, group-specific social odors are suggested to be due to members of the same social group harboring more similar bacterial communities in their scent glands than do members of different social groups. We used 16S rRNA gene surveys to show that 1) the scent secretions of spotted hyenas are densely populated by fermentative bacteria whose closest relatives are well-documented odor producers, and that 2) these bacterial communities are more similar among hyenas from the same social group than among those from different groups.
Collapse
Affiliation(s)
- Kevin R Theis
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| | | | | |
Collapse
|
20
|
Sin YW, Buesching CD, Burke T, Macdonald DW. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 2012; 81:648-59. [PMID: 22530962 DOI: 10.1111/j.1574-6941.2012.01396.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022] Open
Abstract
Many mammals possess specialized scent glands, which convey information about the marking individual. As the chemical profile of scent marks is likely to be affected by bacteria metabolizing the primary gland products, the variation in bacterial communities between different individuals has been proposed to underpin olfactory communication. However, few studies have investigated the dependency of microbiota residing in the scent organs on the host's individual-specific parameters. Here, we used terminal restriction fragment length polymorphism analysis of the PCR-amplified 16S rRNA gene and clone library construction to investigate the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). As the secretion has been shown to encode individual-specific information, we investigated the correlation of the microbiota with different individual-specific parameters (age, sex, body condition, reproductive status, and season). We discovered a high number of bacterial species (56 operational taxonomic units from four phyla: Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes), dominated by Actinobacteria (76.0%). The bacterial communities of cubs and adults differed significantly. Cubs possessed considerably more diverse communities dominated by Firmicutes, while in adults the communities were less diverse and dominated by Actinobacteria, suggesting that the acquisition of a 'mature bacterial community' is an ontogenetic process related to physiological changes during maturation.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of Oxford, Tubney, Abingdon, Oxfordshire, UK.
| | | | | | | |
Collapse
|
21
|
Aksenov AA, Gojova A, Zhao W, Morgan JT, Sankaran S, Sandrock CE, Davis CE. Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: a cell's "chemical odor fingerprint". Chembiochem 2012; 13:1053-9. [PMID: 22488873 DOI: 10.1002/cbic.201200011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Indexed: 11/07/2022]
Abstract
The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) gene-coding region in humans, plays a significant role in infectious disease response, autoimmunity, and cellular recognition. This super locus is essential in mate selection and kin recognition because of the organism-specific odor which can be perceived by other individuals. However, how the unique MHC genetic combination of an organism correlates with generation of the organism-specific odor is not well understood. In the present work, we have shown that human B-cells produce a set of volatile organic compounds (VOCs) that can be measured by GC-MS. More importantly, our results show that specific HLA alleles are related to production of selected VOCs, and that this leads to a cell-specific odor "fingerprint". We used a C1R HLA class I A and B locus negative cell line, along with C1R cell lines that were stably transfected with specific A and B alleles. Our work demonstrates for the first time that HLA alleles can directly influence production of specific odor compounds at the cellular level. Given that the resulting odor fingerprint depends on expression of specific HLA sequences, it may yield information on unique human scent profiles, composition of exhaled breath, as well as immune response states in future studies.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils. Talanta 2012; 88:537-43. [DOI: 10.1016/j.talanta.2011.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 11/22/2022]
|
23
|
|
24
|
Balabin RM, Lomakina EI. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011; 136:1703-12. [PMID: 21350755 DOI: 10.1039/c0an00387e] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
Collapse
Affiliation(s)
- Roman M Balabin
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | | |
Collapse
|
25
|
Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male's odour. BMC Biol 2010; 8:75. [PMID: 20525243 PMCID: PMC2890510 DOI: 10.1186/1741-7007-8-75] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Background Among invertebrates, specific pheromones elicit inherent (fixed) behavioural responses to coordinate social behaviours such as sexual recognition and attraction. By contrast, the much more complex social odours of mammals provide a broad range of information about the individual owner and stimulate individual-specific responses that are modulated by learning. How do mammals use such odours to coordinate important social interactions such as sexual attraction while allowing for individual-specific choice? We hypothesized that male mouse urine contains a specific pheromonal component that invokes inherent sexual attraction to the scent and which also stimulates female memory and conditions sexual attraction to the airborne odours of an individual scent owner associated with this pheromone. Results Using wild-stock house mice to ensure natural responses that generalize across individual genomes, we identify a single atypical male-specific major urinary protein (MUP) of mass 18893Da that invokes a female's inherent sexual attraction to male compared to female urinary scent. Attraction to this protein pheromone, which we named darcin, was as strong as the attraction to intact male urine. Importantly, contact with darcin also stimulated a strong learned attraction to the associated airborne urinary odour of an individual male, such that, subsequently, females were attracted to the airborne scent of that specific individual but not to that of other males. Conclusions This involatile protein is a mammalian male sex pheromone that stimulates a flexible response to individual-specific odours through associative learning and memory, allowing female sexual attraction to be inherent but selective towards particular males. This 'darcin effect' offers a new system to investigate the neural basis of individual-specific memories in the brain and give new insights into the regulation of behaviour in complex social mammals. See associated Commentary http://www.biomedcentral.com/1741-7007/8/71
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour & Evolution Group, University of Liverpool, Neston CH64 7TE, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kwak J, Willse A, Preti G, Yamazaki K, Beauchamp GK. In search of the chemical basis for MHC odourtypes. Proc Biol Sci 2010; 277:2417-25. [PMID: 20356897 DOI: 10.1098/rspb.2010.0162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mice can discriminate between chemosignals of individuals based solely on genetic differences confined to the major histocompatibility complex (MHC). Two different sets of compounds have been suggested: volatile compounds and non-volatile peptides. Here, we focus on volatiles and review a number of publications that have identified MHC-regulated compounds in inbred laboratory mice. Surprisingly, there is little agreement among different studies as to the identity of these compounds. One recent approach to specifying MHC-regulated compounds is to study volatile urinary profiles in mouse strains with varying MHC types, genetic backgrounds and different diets. An unexpected finding from these studies is that the concentrations of numerous compounds are influenced by interactions among these variables. As a result, only a few compounds can be identified that are consistently regulated by MHC variation alone. Nevertheless, since trained animals are readily able to discriminate the MHC differences, it is apparent that chemical studies are somehow missing important information underlying mouse recognition of MHC odourtypes. To make progress in this area, we propose a focus on the search for behaviourally relevant odourants rather than a random search for volatiles that are regulated by MHC variation. Furthermore, there is a need to consider a 'combinatorial odour recognition' code whereby patterns of volatile metabolites (the basis for odours) specify MHC odourtypes.
Collapse
Affiliation(s)
- Jae Kwak
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
27
|
Abstract
A recent study in BMC Evolutionary Biology has shown that genetically similar individual ring-tailed lemurs are also more similar in their scent composition, suggesting a possible mechanism of kin recognition. Theoretical and experimental studies reveal challenges ahead in achieving a true systems-level understanding of this process and its outcomes.
Collapse
Affiliation(s)
- Jane L Hurst
- Mammalian Behaviour and Evolution Group, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston CH647TE, UK.
| | | |
Collapse
|