1
|
Saulais M, Salem S, Sillard C, Choisy P, Dufresne A. Green synthesis of sacrificial UV-sensitive core and biobased shell for obtaining optically hollow nanoparticles. J Colloid Interface Sci 2025; 678:971-983. [PMID: 39270397 DOI: 10.1016/j.jcis.2024.08.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Hollow nanoparticles have been extensively studied in recent years. Obtaining such structures with biobased materials, following greener synthetic routes, is still challenging, especially if accurate particle dimensions are required. This work reports the use of an innovative hybrid silica core (Si@azo) containing UV-sensitive molecule, wrapped in biobased multilayer shell composed of polysaccharides. It is a promising strategy for obtaining optically hollow nanoparticles. Indeed, Si@azo cores have the ability to be partially degraded when irradiated with UV light. Combined with a well-controlled and monodisperse diameter, they provide a good basis for layer-by-layer assembly, leading to a multilayer shell with controlled composition and thickness. Finally, UV irradiation of such a core-shell structure is harmless to the polysaccharide shell, but does impact the hybrid silica core, as revealed by turbidity measurements, among other. Each step, i.e. core synthesis, shell addition, and core-shell irradiation, has been carefully characterized at the macro (Fourier-transform infrared spectroscopy - FTIR, Dynamic Light Scattering - DLS, Zeta-potential measurement, Surface Plasmon Resonance - SPR, turbidity) and microscale (Transmission and Scanning Electron Microscopies). Emphasis is put on how turbidity measurements can be related to the core refractive index (ncore), giving information on the state of core degradation and whether the core-shell particle is optically hollow.
Collapse
Affiliation(s)
- Marlène Saulais
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Sara Salem
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France
| | - Cécile Sillard
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| | | | - Alain Dufresne
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Gomez-Maldonado D, Dickson BR, Au G, Bortner MJ, Li M, Espinosa E, Rodriguez A, Higgins B, Peresin MS. Exploring the effects of cellulose sources on silver reduction and the bacterial removal of nanocellulose-based hydrogel beads. Carbohydr Polym 2025; 347:122771. [PMID: 39486997 DOI: 10.1016/j.carbpol.2024.122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/04/2024]
Abstract
With water access challenged, there is a need to develop efficient and sustainable alternatives for water purification. Here, cellulose nanofibrils (CNFs) isolated from three source materials (softwood, soybean hulls and oat straw) were compared for the generation of hydrogels beads, and compared as support and reducing agent for silver nanoparticles formation. The silver-functionalized hydrogel beads (Ag-CNFs) were characterized, and the surface energy and specific surface area were evaluated. Antimicrobial testing was conducted to assess the efficacy of the Ag-CNFs against E. coli. The results showed that the Ag-CNFs had a higher specific surface area and lower surface energy compared with unmodified CNFs. Softwood-based Ag-CNFs exhibited the highest silver content and specific surface area, while the soybean hull based showed the highest hydrophobic character. The silver-functionalized soybean hull beads (Ag-sbCNF) showed the highest efficacy in reducing the growth of bacteria. Overall, this study highlights the potential of silver-functionalized CNFs hydrogel beads as a promising environmentally friendly and sustainable material for water filtration and disinfection. The findings also suggest that lower surface energy of the Ag-CNFs play an important role in their antimicrobial effect on tested water by enabling shorter retention, providing useful insights into the design of future water filtration materials.
Collapse
Affiliation(s)
- Diego Gomez-Maldonado
- Sustainable Bio-based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University. 602 Duncan Dr, Auburn, AL 36849, United States
| | - Brieanne R Dickson
- Sustainable Bio-based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University. 602 Duncan Dr, Auburn, AL 36849, United States
| | - Gabriel Au
- Sustainable Bio-based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University. 602 Duncan Dr, Auburn, AL 36849, United States
| | - Michael J Bortner
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, The University of Tennessee, Knoxville, TN 37996, United States
| | - Eduardo Espinosa
- BioPrEn Group (RNM 940), Área de Ingeniería Química, Instituto Químico para la Energía y el Medioambiente, Facultad de Ciencias, Universidad de Córdoba, Córdoba 14014, Spain
| | - Alejandro Rodriguez
- BioPrEn Group (RNM 940), Área de Ingeniería Química, Instituto Químico para la Energía y el Medioambiente, Facultad de Ciencias, Universidad de Córdoba, Córdoba 14014, Spain
| | - Brendan Higgins
- Biosystems Engineering, College of Engineering, Auburn University, 520 Devall Dr, Auburn, AL 36849, United States
| | - Maria S Peresin
- Sustainable Bio-based Materials Laboratory, Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University. 602 Duncan Dr, Auburn, AL 36849, United States.
| |
Collapse
|
3
|
Sedans KA, Stiegler Jurkevicz C, Silva BCC, Blener Lopes V, Lopes GFM, Schmitt EFP, Portes DB, Fronza M, Endringer DC, Tischer CA, Cabeça LF, Ferreira JMS, Ribeiro-Viana RM. Development of a cationic bacterial cellulose film loaded with anionic liposomes for prolonged release of oxacillin in wound dressing applications. Int J Pharm 2024; 665:124649. [PMID: 39236774 DOI: 10.1016/j.ijpharm.2024.124649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Dressings should protect wounds, promote healing, absorb fluids, and maintain moisture. Bacterial cellulose is a biopolymer that stands out in biomaterials due to its high biocompatibility in several applications. In the area of dressings, it is already marketed as an alternative to traditional dressings. However, it lacks any intrinsic activity; among these, the need for antimicrobial activity in infected wounds stands out. We developed a cationic cellulose film by modifying cellulose with 1-(5-carboxypentyl)pyridin-1-ium bromide, enhancing its wettability (contact angle: 26.6°) and water retention capacity (2714.37 %). This modified film effectively retained oxacillin compared to the unmodified control. Liposomal encapsulation further prolonged oxacillin release up to 11 days. Both oxacillin-loaded films and liposomal formulations demonstrated antimicrobial activity against Staphylococcus aureus. Our findings demonstrate the potential of chemically modified cellulose as a platform for controlled anionic antibiotics and/or their formulations delivery in wound care.
Collapse
Affiliation(s)
- Karina Andressa Sedans
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Carolina Stiegler Jurkevicz
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Bruna Conceição Costa Silva
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Viviany Blener Lopes
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | - Gabriela Francine Martins Lopes
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | | | - Danielle Braga Portes
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Marcio Fronza
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Denise Coutinho Endringer
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha - UVV, CEP 29102-920, Vila Velha, ES, Brazil
| | - Cesar Augusto Tischer
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Luis Fernando Cabeça
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, UFSJ-CCO, CEP 35501-296, Divinópolis, MG, Brazil
| | - Renato Márcio Ribeiro-Viana
- Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
4
|
Nozawa S, Nakajima N, Hamada M, Koyama Y. Orthogonal Agent Comprising a Nitrile N-Oxide and a Phenylcarbamate for Facile Molecular Integration on Styrne-Butadiene Resin. Macromol Rapid Commun 2024:e2400555. [PMID: 39535394 DOI: 10.1002/marc.202400555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The covalent attachment of poly(ethylene glycol) (PEGylation) to materials minimizes non-specific fouling of the material surface with biocomponents. While the PEGylation reaction on polar surfaces is widely used and regarded as a common technique, the PEGylation on less polar polymers and elastomers is extremely difficult due to the absence of reactive points with PEG terminus. Herein, the design and synthesis of an orthogonal agent with a nitrile N-oxide and a phenyl carbamate that can mediate between an alkene and an amine are reported. The ligation capacity of the orthogonal agent is demonstrated through the model reaction to connect between 1-hexene and 4-methoxybenzylamine and the grafting reaction of PEG onto poly(styrene-co-butadiene) (SB) resin. The surface characteristics of PEGylated SB film are evaluated by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Because SB resin is frequently used as a 3D-printing polymer, the present study indicates that the orthogonal agent can be applicable to the surface modification of 3D-printed objects precisely manufactured by using a computer-aided design (CAD) file in the future.
Collapse
Affiliation(s)
- Sota Nozawa
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
5
|
Ouyang S, Wang F, Liu Y, Ma S, Li M, Wu Y, Hu Z, Zhang S, Wang L. Advances in the enhancement of mechanical and hydrophobic properties of nanocellulose-based packaging materials: A review. Int J Biol Macromol 2024; 282:137392. [PMID: 39537054 DOI: 10.1016/j.ijbiomac.2024.137392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As environmental issues are hotly debated worldwide, finding suitable materials to replace petroleum-based materials as the next-generation packaging materials has become a research hotspot. Nanocellulose, as a biomass material widely available in nature, is favored for application in green packaging materials due to its environmentally friendly and bio-friendly characteristics. However, the unstable mechanical properties and strong hydrophilicity of nanocellulose limit its practical application in packaging materials. This paper starts with a discussion of nanocellulose-based packaging materials and focuses on methods to improve their mechanical and hydrophobic properties. The discussion on mechanical properties focuses on the contribution of carbon nanomaterials, which is then combined with hydrophobic modifications (including plant polyphenol modification, esterification, acetylation, in situ polymerization, etc.) to illustrate the impact on the performance of packaging materials in use. The relationship between the hydrophobic characteristics of packaging materials derived from nanocellulose and their comprehensive mechanical properties is meticulously elucidated. Furthermore, a theoretical framework is proposed, positing that enhancing the hydrophobicity of these materials can indirectly augment their mechanical attributes. This insight offers pivotal guidance for the advancement of next-generation, high-performance packaging materials based on nanocellulose.
Collapse
Affiliation(s)
- Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shenzhuo Zhang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Zhao G, Chen Z, Wang S, Chen S, Zhang F, Andrabi SM, Xu Y, Ouyang Q, Rosas MEB, Qian X, Xie J, Yan Z. Sustainable Nanofibril Interfaces for Strain-Resilient and Multimodal Porous Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411587. [PMID: 39340249 PMCID: PMC11567793 DOI: 10.1002/adma.202411587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Porous soft bioelectronics have attracted significant attention due to their high breathability, long-term biocompatibility, and other unique features inaccessible in nonporous counterparts. However, fabricating high-quality multimodal bioelectronic components that operate stably under strain on porous substrates, along with integrating microfluidics for sweat management, remains challenging. In this study, cellulose nanofibrils (CNF) are explored, biomass-derived sustainable biomaterials, as nanofibril interfaces with unprecedented interfacial robustness to enable high-quality printing of strain-resilient bioelectronics on porous substrates by reducing surface roughness and creating mechanical heterogeneity. Also, CNF-based microfluidics can provide continuous sweat collection and refreshment, crucial for accurate biochemical sensing. Building upon these advancements, a multimodal porous wearable bioelectronic system is further developed capable of simultaneously detecting electrocardiograms and glucose and beta-hydroxybutyrate in sweat for monitoring energy metabolism and consumption. This work introduces novel strategies for fabricating high-quality, strain-resilient porous bioelectronics with customizable multimodalities to meet arising personalized healthcare needs.
Collapse
Affiliation(s)
- Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Shaoyun Wang
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Sicheng Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yadong Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qunle Ouyang
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Milton Eric Busquets Rosas
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Choi W, Kim YE, Yoo H. Patterning of Organic Semiconductors Leads to Functional Integration: From Unit Device to Integrated Electronics. Polymers (Basel) 2024; 16:2613. [PMID: 39339077 PMCID: PMC11435555 DOI: 10.3390/polym16182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The use of organic semiconductors in electronic devices, including transistors, sensors, and memories, unlocks innovative possibilities such as streamlined fabrication processes, enhanced mechanical flexibility, and potential new applications. Nevertheless, the increasing technical demand for patterning organic semiconductors requires greater integration and functional implementation. This paper overviews recent efforts to pattern organic semiconductors compatible with electronic devices. The review categorizes the contributions of organic semiconductor patterning approaches, such as surface-grafting polymers, capillary force lithography, wettability, evaporation, and diffusion in organic semiconductor-based transistors and sensors, offering a timely perspective on unconventional approaches to enable the patterning of organic semiconductors with a strong focus on the advantages of organic semiconductor utilization. In addition, this review explores the opportunities and challenges of organic semiconductor-based integration, emphasizing the issues related to patterning and interconnection.
Collapse
Affiliation(s)
- Wangmyung Choi
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Yeo Eun Kim
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
Dutta A, Karamikamkar S, Nofar M, Behzadfar E. Nanoporous air filtering systems made from renewable sources: benefits and challenges. NANOSCALE 2024; 16:15059-15077. [PMID: 39072362 DOI: 10.1039/d4nr01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There is a crucial need for air purification systems due to increasing air contamination, while conventional air-filtering materials face challenges in eliminating gaseous and particulate pollutants. This review examines the development and characteristics of nanoporous polymeric materials developed from renewable resources, which have rapidly advanced in recent years. These materials offer more sustainable alternatives for nanoporous structures made out of conventional polymers and significantly impact the properties of porous polymers. The review explores nanoporous materials' production from renewable sources, filtering mechanisms, physicochemical makeup, and sensing capabilities. The recent advancements in this field aim to enhance production techniques, lower pressure drop, and improve adsorption efficiency. Currently, supporting approaches include using adsorbent layers and binders to immobilize nanoporous materials. Furthermore, the prospects and challenges of nanoporous materials obtained from renewable sources used for air purification are discussed.
Collapse
Affiliation(s)
- Arnab Dutta
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA.
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ehsan Behzadfar
- Sustainable Polymers Research Lab (SPRL), The Creative School, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
- Chemical Engineering Department, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
9
|
Vega-Hernández MÁ, Munguía-Quintero MF, Rosas-Aburto A, Alcaraz-Cienfuegos J, Valdivia-López MDLÁ, Hernández-Luna MG, Vivaldo-Lima E. Effect of teak wood lignocellulose pretreatment on the performance of cellulose-graft-(net-poly(acrylamide-co-acrylic acid)) for water absorption and dye removal. Int J Biol Macromol 2024; 274:133482. [PMID: 38942409 DOI: 10.1016/j.ijbiomac.2024.133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cellulose modified hydrogels can be produced directly from raw biopolymers in novel cellulose solvents such as NaOH/urea aqueous solution. The effect of cellulose characteristics on the synthesis of a cellulose-graft-(net-poly(acrylamide-co-acrylic acid)) and its performance as water absorbent/methylene blue dye removal material is analyzed. Three cellulose samples, one analytical grade and two obtained from teak wood sawdust with different pretreatments (one alkaline and the other, a novel one known as (gas phase) acid pretreatment) were compared. The starting raw celluloses were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscosity in cupri ethylenediamine hydroxide (CED) solution, whereas the chemically modified materials were characterized by SEM, FTIR, and TGA. The pretreatment used influences composition, crystallinity index and degree of polymerization (DP) of the cellulose obtained. The modified material produced with cellulose from alkaline pretreatment showed the highest swelling ratio in water absorption tests at room temperature (12,714 %); in contrast, the one with cellulose from acid pretreatment showed the lowest swelling ratio (7,470 %). However, this difference is not so significative in dye removal tests, where absorption capacity is 139 and 140 mg/g, respectively. The results indicate that cellulose composition, particularly structures with significant hemicellulose and lignin remaining content, has a major effect on the performance of modified materials for water absorption, and degree of polymerization has a major effect on adsorption capacity of methylene blue.
Collapse
Affiliation(s)
- Miguel Ángel Vega-Hernández
- Facultad de Química (FQ), Departamento de Ingeniería Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - María Fernanda Munguía-Quintero
- Facultad de Química (FQ), Departamento de Ingeniería Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Alberto Rosas-Aburto
- Facultad de Química (FQ), Departamento de Ingeniería Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Jorge Alcaraz-Cienfuegos
- Facultad de Química (FQ), Departamento de Ingeniería Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - María de Los Ángeles Valdivia-López
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Martín G Hernández-Luna
- Facultad de Química (FQ), Departamento de Ingeniería Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Eduardo Vivaldo-Lima
- Facultad de Química (FQ), Departamento de Ingeniería Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
10
|
Wu M, Deng ZA, Shen C, Yang Z, Cai Z, Wu D, Chen K. Fabrication of antimicrobial PCL/EC nanofibrous films containing natamycin and trans-cinnamic acid by microfluidic blow spinning for fruit preservation. Food Chem 2024; 442:138436. [PMID: 38244441 DOI: 10.1016/j.foodchem.2024.138436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Fruit is susceptible to various postharvest pathogens; thus, the development of multifunctional preservation materials that can achieve the broad-spectrum inhibition of different pathogens is a current research hotspot. Here, microfluidic blow spinning was used to create a biodegradable polycaprolactone/ethyl cellulose (PCL/EC) nanofibrous film that incorporated two naturally-sourced compounds, natamycin and trans-cinnamic acid, resulting in multi-microbial inhibition. The PCL/EC-based film had a smooth and even morphology, indicating the favorable integration of PCL and EC. After the incorporation of ingredients, the film exhibited good inhibitory activity against Escherichia coli, Staphylococcus aureus, and Botrytis cinerea, and it had finer fiber diameters, higher permeability, and antioxidant properties. We further demonstrated that strawberries that were padded with the film had good resistance to Botrytis cinerea. Also, the film did not interference with the qualities of the strawberries during storage. The study demonstrates a promising application for multi-antimicrobial and bio-friendly packaging materials in postharvest fruit preservation.
Collapse
Affiliation(s)
- Menglu Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Zi-An Deng
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhichao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zihan Cai
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/ Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
11
|
Yu K, Yang L, Zhang N, Wang S, Liu H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int J Biol Macromol 2024; 272:132668. [PMID: 38821305 DOI: 10.1016/j.ijbiomac.2024.132668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China.
| | - Ning Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Institute of Ocean Research, Bohai University, Jinzhou 121013, China
| |
Collapse
|
12
|
Sun J, Dai L, Lv K, Wen Z, Li Y, Yang D, Yan H, Liu X, Liu C, Li MC. Recent advances in nanomaterial-stabilized pickering foam: Mechanism, classification, properties, and applications. Adv Colloid Interface Sci 2024; 328:103177. [PMID: 38759448 DOI: 10.1016/j.cis.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.
Collapse
Affiliation(s)
- Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Zhibo Wen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yecheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Dongqing Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hao Yan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| |
Collapse
|
13
|
Ahmed S, Shahriar A, Rahman N, Alam MZ, Nurnabi M. Synthesis of gamma irradiated acrylic acid-grafted-sawdust (SD-g-AAc) for trivalent chromium adsorption from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2024; 14:None. [PMID: 38933367 PMCID: PMC11200213 DOI: 10.1016/j.hazadv.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 06/28/2024]
Abstract
Water pollution caused by chromium released from tannery is a serious concern to the environment and public health. Chromium removal from tannery effluent is a crying need before discharging to the surface water. In this study, acrylic acid-grafted sawdust was prepared by Tectona grandis sawdust grafting with acrylic acid employing gamma irradiation in the presence of air and Mohr's salt. It was treated with NaOH and the characterization of surface morphology and functional groups of modified sawdust was studied by SEM and FTIR.. The effects of solution pH, adsorbent dosage, adsorption time, and initial Cr(III) ion concentration were investigated by batch sorption studies. The process was found to be pH, temperature and concentration dependent. Langmuir and Freundlich isotherms were applied to realize the adsorption process in depth, and it was found that the Langmuir isotherm model fitted well with experimental data (R2 value of 0.983). The maximum monolayer adsorption capacity of acrylic acid-grafted sawdust for Cr(III) from aquous solution was found to be 21.55 mg g-1 at 25 °C. Pseudo-first-order and pseudo-second-order kinetic models were employed to analyze the kinetics of the process, and it was found that the experimental process followed the pseudo-second-order kinetic model, i.e. chemisorption. This study revealed that acrylic acid-grafted sawdust has a decent potential for the removal of Cr(III) from tannery effluents.
Collapse
Affiliation(s)
- Sobur Ahmed
- Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka, 1209, Bangladesh
| | - Abrar Shahriar
- Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka, 1209, Bangladesh
| | - Nazia Rahman
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka, 3787, Bangladesh
| | - Md. Zahangir Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
14
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
15
|
Lima PHCD, Ribeiro-Viana RM, Plath AMS, Grillo R. Lignocellulosic-biomolecules conjugated systems: green-engineered complexes modified by covalent linkers. J Mater Chem B 2024; 12:2471-2480. [PMID: 38345783 DOI: 10.1039/d3tb02581k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignocellulosic biomass represents an abundant and eco-friendly material widely explored in recent years. The main lignocellulosic fractions include cellulose, hemicellulose, and lignin. Nonetheless, the heterogeneity and complexity of these components pose challenges in achieving the desired properties. Conversely, their attractive functional groups can covalently link with other biomolecules, facilitating the creation and enhancement of material properties. Lignocellulosic molecules can form different linkages with other biomolecules through classic and modern methods. Bioconjugation has emerged as a suitable alternative to create new nuances, empowering the linkage between lignocellulosic materials and biomolecules through linkers. These conjugates (lignocellulosic-linkers-biomolecules) attract attention from stakeholders in medicine, chemistry, biology, and agriculture. The plural formations of these biocomplexes highlight the significance of these arrangements. Therefore, this review provides an overview of the progress of lignocellulosic-biomolecule complexes and discusses different types of covalent bioconjugated systems, considering the formation of linkers, applicability, toxicity, and future challenges.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| | - Renato Márcio Ribeiro-Viana
- Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | | | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil.
| |
Collapse
|
16
|
Lee K, Sim YL, Jeong H, Kim A, Lee Y, Shim SE, Qian Y. Mechanochemically functionalized and fibrillated microcrystalline cellulose as a filler in silicone foam: An integrated experimental and simulation investigation. Carbohydr Polym 2024; 327:121660. [PMID: 38171679 DOI: 10.1016/j.carbpol.2023.121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Fibrillated celluloses have gained significant attention due to their exceptional mechanical properties and eco-friendly characteristics, which make them suitable for various applications. In this study, we designed a precise approach for producing highly fibrillated microcrystalline cellulose (MCC) via ball-milling treatment using four typical silane coupling agents. The empirical data demonstrate that the fibrillization of MCC and the properties of fibrillated MCC are largely affected by the size and geometry of the functional groups of the silanes. After ball-milling, most MCC displayed enhanced e-beam tolerance and thermal stability, whereas the silane loading amount, surface area, and morphology of fibrillated MCC appeared to be random, which was exemplified by the proportional and non-proportional relationship between the loading amount and surface area of methyl silane- and phenyl silane-treated MCC, respectively. Density functional theory calculations and molecular dynamics simulations were employed to obtain the intricate details. The simulation results were in agreement with the experimental results. Finally, fibrillated MCC was incorporated into silicone foams as an additive. The thermal stability of fibrillated MCC with added silicone was greatly improved, and the tensile strength of fibrillated MCC-containing silicone foam was 44.1 and 5.4 times higher than that of the neat and MCC-containing silicone foams, respectively.
Collapse
Affiliation(s)
- Kyoungwon Lee
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea.
| | - Yoo Lim Sim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea
| | - Hyeonwoo Jeong
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea.
| | - Asell Kim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea.
| | - Yongjin Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea.
| | - Sang Eun Shim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea.
| | - Yingjie Qian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, South Korea.
| |
Collapse
|
17
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
18
|
El-Khouly AS, Takahashi Y. Synthesis, Characterization, and Evaluation of the Adsorption Behavior of Cellulose-Graft-Poly(Acrylonitrile-co-Acrylic Acid) and Cellulose-Graft-Poly(Acrylonitrile-co-Styrene) towards Ni(II) and Cu(II) Heavy Metals. Polymers (Basel) 2024; 16:445. [PMID: 38337334 DOI: 10.3390/polym16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the synthesis and characterization of grafted cellulose fiber with binary monomers mixture obtained using a KMnO4/citric acid redox initiator were investigated. Acrylonitrile (AN) was graft copolymerized with acrylic acid (AA) and styrene (Sty) at different monomer ratios with evaluating percent graft yield (GY%). Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were characterized by SEM, FT-IR, 13C CP MAS NMR, TGA, and XRD. An AN monomer was used as principle-acceptor monomer, and GY% increases with AN ratio up to 60% of total monomers mixture volume. The adsorption behaviors of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were studied for the adsorption of Ni(II) and Cu(II) metal ions from aqueous solution. Optimal adsorption conditions were determined, including 8 h contact time, temperature of 30 °C, and pH 5.5. Cell-g-P(AN-co-AA) showed maximum adsorption capacity of 435.07 mg/g and 375.48 mg/g for Ni(II) and Cu(II), respectively, whereas Cell-g-P(AN-co-Sty) showed a maximum adsorption capacity of 379.2 mg/g and 349.68 mg/g for Ni(II) and Cu(II), respectively. Additionally, adsorption equilibrium isotherms were studied, and the results were consistent with the Langmuir model. The Langmuir model's high determinant coefficient (R2) predicted monolayer sorption of metal ions. Consequently, Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) prepared by a KMnO4/citric acid initiator were found to be efficient adsorbents for heavy metals from wastewater as an affordable and adequate alternative.
Collapse
Affiliation(s)
- Amany S El-Khouly
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yoshiaki Takahashi
- Division of Advanced Device Materials, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan
| |
Collapse
|
19
|
Benalaya I, Alves G, Lopes J, Silva LR. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int J Mol Sci 2024; 25:1322. [PMID: 38279323 PMCID: PMC10816883 DOI: 10.3390/ijms25021322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Natural polysaccharides, which are described in this study, are some of the most extensively used biopolymers in food, pharmaceutical, and medical applications, because they are renewable and have a high level of biocompatibility and biodegradability. The fundamental understanding required to properly exploit polysaccharides potential in the biocomposite, nanoconjugate, and pharmaceutical industries depends on detailed research of these molecules. Polysaccharides are preferred over other polymers because of their biocompatibility, bioactivity, homogeneity, and bioadhesive properties. Natural polysaccharides have also been discovered to have excellent rheological and biomucoadhesive properties, which may be used to design and create a variety of useful and cost-effective drug delivery systems. Polysaccharide-based composites derived from natural sources have been widely exploited due to their multifunctional properties, particularly in drug delivery systems and biomedical applications. These materials have achieved global attention and are in great demand because to their biochemical properties, which mimic both human and animal cells. Although synthetic polymers account for a substantial amount of organic chemistry, natural polymers play a vital role in a range of industries, including biomedical, pharmaceutical, and construction. As a consequence, the current study will provide information on natural polymers, their biological uses, and food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ikbel Benalaya
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
20
|
Almakimi A, Ben Ali A, Hussein IA, Bai B. Evaluation of Novel Preformed Particle Gel System for Conformance Control in Mature Oil Reservoirs. Gels 2024; 10:70. [PMID: 38247792 PMCID: PMC10815741 DOI: 10.3390/gels10010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
To address challenges associated with excessive water production in mature oil reservoirs, this study introduces a carboxymethyl cellulose (CMC)-based material as a novel preformed particle gel (PPG) designed to plug excessive water pathways and redistribute the subsequent injected water toward unswept zones. Through microwave-assisted grafting copolymerization of CMC with acrylamide (AM), we successfully generated multi-sized dry particles within the range of 250-800 µm. Comprehensive analyses, including Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), have confirmed the chemical composition and morphology of the resulting carboxymethyl cellulose-grafted crosslinked polyacrylamide (CMC/PAMBA). Swelling kinetics and rheology tests were conducted to confirm the ability of this novel PPG system to perform at different reservoir conditions. The results of core flooding experiments showed that the CMC/PAMBA PPG is capable of plugging open fractures with a water breakthrough pressure gradient of up to 144 psi/ft. This preformed particle gel (PPG) system was designed specifically for application in Middle East reservoirs, which are distinguished by high salinity and elevated temperature levels. This PPG system is able to swell up to 10 times its original size in seawater and maintain a strength of about 1300 Pa at a temperature of 80 °C. Further optimization is conceivable to enhance injection efficiency and achieve superior plugging outcomes.
Collapse
Affiliation(s)
- Abdulaziz Almakimi
- Petroleum Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Ahmed Ben Ali
- Gas Processing Center, Qatar University, Doha P.O. Box 2713, Qatar; (A.B.A.); (I.A.H.)
| | | | - Baojun Bai
- Petroleum Engineering Department, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| |
Collapse
|
21
|
Raj V, Chun KS, Lee S. State-of-the-art advancement in tara gum polysaccharide (Caesalpinia spinosa) modifications and their potential applications for drug delivery and the food industry. Carbohydr Polym 2024; 323:121440. [PMID: 37940305 DOI: 10.1016/j.carbpol.2023.121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
In preference to synthetic or petroleum-based materials, current research in food and pharmaceutical industries has focused on the development of biodegradable and sustainable materials due to their low toxicity, and biocompatibility. In particular, the natural water-soluble polysaccharide tara gum (Caesalpinia spinosa) has been widely used as a food-grade and drug-delivery agent due to its biodegradability, and biocompatibility. Moreover, owing to its easily modifiable hydroxy groups, tara gum, and its derivatives have been employed as food packaging films and pharmaceutical materials. In the present critical review, facile grafting methods of tara gum are reviewed, and an up-to-date comprehensive application of tara gum polysaccharides revealed their uses in pH-sensitive food packaging. In addition, modified tara gum materials exhibited improved drug delivery applications with biocompatible properties. The non-toxic nature and non-Newtonian, pseudoplastic rheological properties as well as the synergistic behavior of tara gum with other polysaccharides explore its further industrial applications in several fields. Additionally, several approaches for improving tara gum for use as a stabilizer and thickener for food items, and monitoring food spoilage, have provided notable customized characteristics. In brief, its many advantages make tara gum polysaccharide a promising material for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Rahimkhoei V, Padervand M, Hedayat M, Seidi F, Dawi EA, Akbari A. Biomedical applications of electrospun polycaprolactone-based carbohydrate polymers: A review. Int J Biol Macromol 2023; 253:126642. [PMID: 37657575 DOI: 10.1016/j.ijbiomac.2023.126642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Carbohydrate used in biomedical applications is influenced by numerous factors. One of the most appealing characteristic of carbohydrates is their ability to reproduce from natural resources which makes them ecologically friendly. Due to their abundance, biocompatibility, and no contamination by residual initiators, the desire for polysaccharides in medical uses is growing. Research on fiber-based materials, with a variety of medical applications including bio-functional scaffolds, continues to yield novel and intriguing findings. Almost all biopolymers of diverse structural compositions are electrospun to fulfill biomedical usage criteria, and the electrospinning technique is widely employed in biomedical technologies for both in-vivo and in-vitro therapies. Due to its biocompatibility and biodegradability, polycaprolactone (PCL) is employed in medical applications like tissue engineering and drug delivery. Although PCL nanofibers have established effects in vitro, more research is needed before their potential therapeutic application in the clinic. Here we tried to focus mainly on the carbohydrate incorporated PCL-based nanofibers production techniques, structures, morphology, and physicochemical properties along with their usage in biomedicine.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohsen Padervand
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O Box 55181-83111, Maragheh, Iran
| | - Mohaddeseh Hedayat
- Department of Phramacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - E A Dawi
- Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
Nocca G, Arcovito A, Elkasabgy NA, Basha M, Giacon N, Mazzinelli E, Abdel-Maksoud MS, Kamel R. Cellulosic Textiles-An Appealing Trend for Different Pharmaceutical Applications. Pharmaceutics 2023; 15:2738. [PMID: 38140079 PMCID: PMC10747844 DOI: 10.3390/pharmaceutics15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cellulose, the most abundant biopolymer in nature, is derived from various sources. The production of pharmaceutical textiles based on cellulose represents a growing sector. In medicated textiles, textile and pharmaceutical sciences are integrated to develop new healthcare approaches aiming to improve patient compliance. Through the possibility of cellulose functionalization, pharmaceutical textiles can broaden the applications of cellulose in the biomedical field. This narrative review aims to illustrate both the methods of extraction and preparation of cellulose fibers, with a particular focus on nanocellulose, and diverse pharmaceutical applications like tissue restoration and antimicrobial, antiviral, and wound healing applications. Additionally, the merging between fabricated cellulosic textiles with drugs, metal nanoparticles, and plant-derived and synthetic materials are also illustrated. Moreover, new emerging technologies and the use of smart medicated textiles (3D and 4D cellulosic textiles) are not far from those within the review scope. In each section, the review outlines some of the limitations in the use of cellulose textiles, indicating scientific research that provides significant contributions to overcome them. This review also points out the faced challenges and possible solutions in a trial to present an overview on all issues related to the use of cellulose for the production of pharmaceutical textiles.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Nermeen A. Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | - Elena Mazzinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.N.); (A.A.); (E.M.)
| | | | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Cairo 12622, Egypt (R.K.)
| |
Collapse
|
24
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
25
|
Tlou S, Suter E, Alfred M, Rutto H, Omwoyo W. In situ capping of silver nanoparticles with cellulosic matrices from wheat straws in enhancing their antimicrobial activity: Synthesis and characterization. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:903-913. [PMID: 37735931 DOI: 10.1080/10934529.2023.2260295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Silver nanoparticles have gained worldwide attention in the scientific community due to their high antimicrobial activity. However, they tend to agglomerate and lose their shape and properties, thus capping agents necessary to protect their shapes, sizes, and properties. To enhance their antimicrobial activity, this research aimed to cap silver nanoparticles with cellulosic matrices from wheat straws. The wheat straw was delignified with 6% HNO3, and the residual was treated with 1% NaOH and NaClO: CH3COOH (1:1), then used to synthesize cellulose nanocrystals via acid hydrolysis. AgNPs were incorporated into the CPC and CNCs by in-situ synthesis using NaHB4 as the reducing agent. Fourier Transform Infrared, Scanning Electron Microscopy, and X-ray diffraction were used to investigate their features. The findings exhibited crystallinity increased with subsequent treatments, according to XRD analysis. Ultraviolet-visible, FTIR, TEM, and XRD analysis confirmed the capping of AgNPs onto the cellulosic materials. Antibacterial activity against Staphylococcus aureus and Escherichia coli, with CNCs-AgNPs composite, exhibited higher activity compared to CPC-AgNPs composite due to the increased surface area and excellent binding on the surface of the composite.
Collapse
Affiliation(s)
- Shappo Tlou
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Evans Suter
- Department of Chemical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Mitema Alfred
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Hilary Rutto
- Department of Chemical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Wesley Omwoyo
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
26
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
27
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
28
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
29
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Magalhães S, Fernandes C, Pedrosa JFS, Alves L, Medronho B, Ferreira PJT, Rasteiro MDG. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers (Basel) 2023; 15:3138. [PMID: 37514527 PMCID: PMC10386580 DOI: 10.3390/polym15143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose's use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed.
Collapse
Affiliation(s)
- Solange Magalhães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Catarina Fernandes
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Jorge F S Pedrosa
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
- FSCN, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Paulo J T Ferreira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Maria da Graça Rasteiro
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
31
|
Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 2023; 11:1190879. [PMID: 37274159 PMCID: PMC10235636 DOI: 10.3389/fbioe.2023.1190879] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Chito-oligosaccharides (COS), derived from chitosan (CH), are attracting increasing attention as drug delivery carriers due to their biocompatibility, biodegradability, and mucoadhesive properties. Grafting, the process of chemically modifying CH/COS by adding side chains, has been used to improve their drug delivery performance by enhancing their stability, targeted delivery, and controlled release. In this review, we aim to provide an in-depth study on the recent advances in the grafting of CH/COS for multifarious applications. Moreover, the various strategies and techniques used for grafting, including chemical modification, enzymatic modification, and physical modification, are elaborated. The properties of grafted CH/COS, such as stability, solubility, and biocompatibility, were reported. Additionally, the review detailed the various applications of grafted CH/COS in drug delivery, including the delivery of small drug molecule, proteins, and RNA interference therapeutics. Furthermore, the effectiveness of grafted CH/COS in improving the pharmacokinetics and pharmacodynamics of drugs was included. Finally, the challenges and limitations associated with the use of grafted CH/COS for drug delivery and outline directions for future research are addressed. The insights provided in this review will be valuable for researchers and drug development professionals interested in the application of grafted CH/COS for multifarious applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Sunny R. Shah
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Tanavirsing Rajput
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nitin Ade
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| | - Himanshu Paliwal
- Drug Delivery System Excellence Centre, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Dhaval D. Mori
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| | - Ashvin V. Dudhrejiya
- B. K. Mody Government Pharmacy College, Gujarat Technological University, Rajkot, India
| |
Collapse
|
32
|
An L, Perkins P, Yi R, Ren T. Development of polylactic acid based antimicrobial food packaging films with N-halamine modified microcrystalline cellulose. Int J Biol Macromol 2023; 242:124685. [PMID: 37148924 DOI: 10.1016/j.ijbiomac.2023.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Bio-based "green" films with superior antimicrobial activity were developed from polylactic acid (PLA) and cyclic N-halamine 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC) grafted microcrystalline cellulose (MCC) fibers (herein referred to as g-MCC). The structure of g-MCC was characterized by Fourier Transform Infrared (FT-IR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Results indicated N-halamine MC was successfully grafted onto MCC fibers, with a grafting percentage of 10.24 %. The grafting improved compatibility between g-MCC and PLA, leading to an excellent dispersion of g-MCC in the film matrix, and a superior transparency of the g-MCC/PLA compared to that of the MCC/PLA films. Additionally, the enhanced compatibility the g-MCC/PLA films produced better mechanical properties including mechanical strength, elongation at break and initial modulus than those of both MCC/PLA and MC/PLA composites. With N-halamine, g-MCC/PLA completely inactivated all the inoculated Escherichia coli and Staphylococcus aureus within 5 and 30 min of contact, respectively. More importantly, the migration test showed that the oxidative chlorine of g-MCC/PLA was highly stable than that of MC/PLA films, providing a long-term antimicrobial activity. Finally, preservation test conducted on fresh bread slices further demonstrated its promising applications in the food industry.
Collapse
Affiliation(s)
- Ling An
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Phil Perkins
- Solaster LLC, 2001 Duck Cove Dr, Knoxville, TN 37922, USA.
| | - Runlin Yi
- Nanjing Forestry University, Nanjing 210008, China
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
33
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
34
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
35
|
Sasikanth V, Meganathan B, Rathinavel T, Seshachalam S, Nallappa H, Gopi B. General overview of biopolymers: structure and properties. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
Biopolymers are synthesized from a biological origin under natural phenomenon especially during their growth cycle, in the form of polymeric substances that portrays excellent properties such as flexibility, tensile strength, steadiness, reusability, and so on. The amalgamated form of two or more biopolymers leads to the formation of “biocomposites” with novel applications. Several mechanisms were identified for the effective production of biopolymers from diverse life forms such as microbial origin plant and animal origin. Based on their origin, biopolymer differs in their structure and functions. Biopolymers are preferred over chemically synthesized polymers due to their biodegradability and their impact on the environment. Biopolymers play a pivotal role in pharmaceutical industries. The biopolymers could be employed for, the administration of medicine as well as regenerative medicine to reach minimal immunogenicity and maximum pharmacological expressivity in a treated individual. Based on their properties biopolymers were exclusively used in medical devices, cosmaceuticals, and confectionaries, it is also used as additives in food industries, bio-sensors, textile industries, and wastewater treatment plants. Ecological support is of utmost concern nowadays due to the ever-expanding ramification over the planet by usage of plastic as packaging material, turning up scientists and researchers to focus on biodegradable biopolymer utilization. The miscibility-structural-property relation between every biopolymer must be focused on to improve the better environment. Specific biopolymers are designed for the betterment of agrarian and commoners of society. Advanced structural modifications, properties of biopolymers, and applications of biopolymers to achieve a greener environment were discussed in this chapter.
Collapse
Affiliation(s)
- Vasuki Sasikanth
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | | | | | - Sindhu Seshachalam
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Harini Nallappa
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Brindha Gopi
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| |
Collapse
|
36
|
Hao Y, Qu J, Tan L, Liu Z, Wang Y, Lin T, Yang H, Peng J, Zhai M. Synthesis and property of superabsorbent polymer based on cellulose grafted 2-acrylamido-2-methyl-1-propanesulfonic acid. Int J Biol Macromol 2023; 233:123643. [PMID: 36775220 DOI: 10.1016/j.ijbiomac.2023.123643] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
An eco-friendly superabsorbent polymer (SAP) was prepared by grafting 2-acrylamido-2-methyl-1-propanesulfonic acid onto microcrystalline cellulose in lithium chloride/N, N-dimethylacetamide system. The synthesized SAP (cellulose-g-PAMPS) was characterized by FTIR, TGA, SEM, 1H NMR, 13C NMR and XRD. The water absorption equilibrium of cellulose-g-PAMPS could be achieved within 10 min in distilled water. Moreover, the maximum water absorption capacities of cellulose-g-PAMPS in distilled water, 0.9 wt% NaCl solution and 3.2 wt% Na2CO3 solution were 648.9, 298.4 and 207.3 g·g-1, respectively. The water absorption behavior of cellulose-g-PAMPS was interpreted by the pseudo-second-order model. Furthermore, cellulose-g-PAMPS could be used in some extreme conditions due to its high acid and alkali resistance. The water retention rate of cellulose-g-PAMPS could be maintained above 90 % at 25 °C for 6 h. As a consequence, the synthesized SAP can be applied to increase the plant growth and survival time under drought conditions, even under saline alkali conditions.
Collapse
Affiliation(s)
- Yan Hao
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China.
| | - Jing Qu
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Lei Tan
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Zunyi Liu
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Tingrui Lin
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., Putian, Fujian 351100, PR China
| | - Hui Yang
- Institute of Applied Chemistry School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, PR China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
37
|
Prasad C, Madkhali N, Jeong SG, Malkappa K, Choi HY, Govinda V. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. Int J Biol Macromol 2023; 233:123551. [PMID: 36740107 DOI: 10.1016/j.ijbiomac.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cellulose is a plentiful, biodegradable, renewable, and natural polymer in the world that can be widely utilized in the production of polymer nanocomposites. Cellulose is developed in nanomaterials owing to its remarkable inherent features of low density, non-toxicity, and affordability, as well as the amazing sample characteristics of strength and thermal stability. Recently, there has been a lot of interest in organic-inorganic composites because of their adaptable qualities. Cellulose and semiconductors have exciting properties, and new combinations of both materials may result in efficient functional hybrid composites with distinct properties. Lately, a huge study was reported on cellulose and semiconductor-based nanocomposites. In this review, we summarize the present research development in the preparation methods, structure, features, and possible applications of multifunctional cellulose and semiconductor-based nanocomposites. The cellulose/semiconductor based nanocomposites have massive potential applications in the areas of photodegradation of organic dyes, hydrogen production, metal removal, biomedical, and sensor applications. It is also assumed that this article will promote additional investigation and will establish innovative capabilities to enhance novel cellulose and semiconductor based nanocomposites with new and exciting applications.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Kuruma Malkappa
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Hyeong Yeol Choi
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea.
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (A), Rushikonda campus, Visakhapatnam 530045, India
| |
Collapse
|
38
|
Fahim H, Motamedzadegan A, Farahmandfar R, Khaligh NG. Surface analysis and thermal behavior of the functionalized cellulose by glutaric anhydride through a solvent-free and catalyst-free process. Int J Biol Macromol 2023; 232:123268. [PMID: 36646345 DOI: 10.1016/j.ijbiomac.2023.123268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
According to the 12 principles of green chemistry, surface functionalization was performed using glutaric anhydride under solvent-free and catalyst-free conditions. FTIR spectra and DS analyses demonstrated the functionalization of HCl-hydrolyzed cellulose. The influence of two parameters, i.e., the glutaric anhydride concentration and the reaction time, on the functionalization of HCl-hydrolyzed cellulose was investigated. Protocol efficiency was studied by a degree of substitution (DS). It was found that higher concentrations of glutaric anhydride cause an enhancement of DS to 0.75 and 0.87 for GA3-12 and GA9-12, respectively. In addition, the longer reaction time increased zeta potential from -12.2 ± 1.7 for G9-6 to -34.57 ± 2.2 for GA9-12. Morphology analysis by SEM showed a decrease in fiber length for the functionalized cellulose. DSC profiles confirmed dehydration at a range of 17 to 134 °C. A glass transition was revealed at -30 to -20 °C for all studied samples. The fusion, the depolymerization of cellulose chains, the cleavage of glycosidic linkages, and the decomposition of the crystalline parts of cellulose occur at 195 to 374 °C. Therefore, an efficient and greener process was developed to functionalize the HCl-hydrolyzed cellulose by glutaric anhydride, a safe and non-toxic anhydride, in the absence of the solvent and catalyst.
Collapse
Affiliation(s)
- Hoda Fahim
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Po Box 578, Sari, Mazandaran, Iran
| | - Ali Motamedzadegan
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Po Box 578, Sari, Mazandaran, Iran.
| | - Reza Farahmandfar
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Po Box 578, Sari, Mazandaran, Iran
| | - Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
39
|
Cellulose/Grape-Seed-Extract Composite Films with High Transparency and Ultraviolet Shielding Performance Fabricated from Old Cotton Textiles. Polymers (Basel) 2023; 15:polym15061451. [PMID: 36987229 PMCID: PMC10053784 DOI: 10.3390/polym15061451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Plastics displaying many merits have been indispensable in daily life and they still maintain the strong momentum of development. Nevertheless, petroleum-based plastics possess a stable polymer structure and most of them are incinerated or accumulated in the environment, leading to devastating impacts on our ecology system. Thus, exploiting renewable and biodegradable materials to substitute or replace these traditional petroleum-derived plastics is an urgent and important task. In this work, renewable and biodegradable all-biomass cellulose/grape-seed-extract (GSEs) composite films with high transparency and anti-ultraviolet performance were fabricated successfully from pretreated old cotton textiles (P-OCTs) using a relatively simple, green, yet cost-effective, approach. It is proved that the obtained cellulose/GSEs composite films exhibit good ultraviolet shielding performance without sacrificing their transparency, and their UV-A and UV-B blocking values can reach as high as nearly 100%, indicating the good UV-blocking performance of GSEs. Meanwhile, the cellulose/GSEs film show higher thermal stability and water vapor transmission rate (WVTR) than most common plastics. Moreover, the mechanical property of the cellulose/GSEs film can be adjusted by the addition of a plasticizer. Briefly, the transparent all-biomass cellulose/grape-seed-extracts composite films with high anti-ultraviolet capacity were manufactured successfully and they can be used as potential materials in the packaging field.
Collapse
|
40
|
Ding Y, Pang Z, Lan K, Yao Y, Panzarasa G, Xu L, Lo Ricco M, Rammer DR, Zhu JY, Hu M, Pan X, Li T, Burgert I, Hu L. Emerging Engineered Wood for Building Applications. Chem Rev 2023; 123:1843-1888. [PMID: 36260771 DOI: 10.1021/acs.chemrev.2c00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Douglas R Rammer
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, Maryland20742, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin53706, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,Center for Materials Innovation, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
41
|
Jiang H, Wu S, Zhou J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. Int J Biol Macromol 2023; 236:123916. [PMID: 36898461 DOI: 10.1016/j.ijbiomac.2023.123916] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Heavy metals are a notable pollutant in aquatic ecosystems that results in many deadly diseases of the human body after enrichment through the food chain. As an environmentally friendly renewable resource, nanocellulose can be competitive with other materials at removing heavy metal ions due to its large specific surface area, high mechanical strength, biocompatibility and low cost. In this review, the research status of modified nanocellulose for heavy metal adsorbents is primarily reviewed. Two primary forms of nanocellulose are cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). The preparation process of nanocellulose was derived from natural plants, and the preparation process included noncellulosic constituent removal and extraction of nanocellulose. Focusing on heavy metal adsorption, the modification of nanocellulose was explored in depth, including direct modification methods, surface grafting modification methods based on free radical polymerization and physical activation. The adsorption principles of nanocellulose-based adsorbents when removing heavy metals are analyzed in detail. This review may further facilitate the application of the modified nanocellulose in the field of heavy metal removal.
Collapse
Affiliation(s)
- Haoyuan Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| |
Collapse
|
42
|
Rudich A, Sapru S, Shoseyov O. Biocompatible, Resilient, and Tough Nanocellulose Tunable Hydrogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050853. [PMID: 36903731 PMCID: PMC10005666 DOI: 10.3390/nano13050853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/19/2023] [Indexed: 06/12/2023]
Abstract
Hydrogels have been proposed as potential candidates for many different applications. However, many hydrogels exhibit poor mechanical properties, which limit their applications. Recently, various cellulose-derived nanomaterials have emerged as attractive candidates for nanocomposite-reinforcing agents due to their biocompatibility, abundance, and ease of chemical modification. Due to abundant hydroxyl groups throughout the cellulose chain, the grafting of acryl monomers onto the cellulose backbone by employing oxidizers such as cerium(IV) ammonium nitrate ([NH4]2[Ce(NO3)6], CAN) has proven a versatile and effective method. Moreover, acrylic monomers such as acrylamide (AM) may also polymerize by radical methods. In this work, cerium-initiated graft polymerization was applied to cellulose-derived nanomaterials, namely cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF), in a polyacrylamide (PAAM) matrix to fabricate hydrogels that display high resilience (~92%), high tensile strength (~0.5 MPa), and toughness (~1.9 MJ/m3). We propose that by introducing mixtures of differing ratios of CNC and CNF, the composite's physical behavior can be fine-tuned across a wide range of mechanical and rheological properties. Moreover, the samples proved to be biocompatible when seeded with green fluorescent protein (GFP)-transfected mouse fibroblasts (3T3s), showing a significant increase in cell viability and proliferation compared to samples comprised of acrylamide alone.
Collapse
|
43
|
Silva CEP, Bernardes JS, Loh W. Stabilizing both oil droplets and titanium dioxide nanoparticles in aqueous dispersion with nanofibrillated cellulose. Carbohydr Polym 2023; 302:120354. [PMID: 36604044 DOI: 10.1016/j.carbpol.2022.120354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Nanocellulose is a well-known stabilizer for several colloidal dispersions, including emulsions and solid nanoparticles, replacing surfactants, polymers, and other additives, and therefore providing more minimalistic and eco-friendly formulations. However, could this ability be extended to stabilize oil droplets and inorganic nanoparticles simultaneously in the same colloidal system? This work aimed to answer this question. We evaluated both cationic and anionic nanofibrillated celluloses to stabilize both titanium dioxide nanoparticles and oil droplets. The resulting suspensions held their macroscopic stability for up to 2 months, regardless of pH or surface charge. Cryo-TEM images revealed a complex network formation involving nanofibers and TiO2 nanoparticles, which agrees with the high viscosity values and gel-like behavior found in rheology measurements. We propose that the formation of this network is responsible for the simultaneous stabilization of oil droplets and TiO2 nanoparticles, and that this may be used as a formulation tool for other complex systems.
Collapse
Affiliation(s)
- Caroline E P Silva
- Institute of Chemistry, University of Campinas (UNICAMP), Caixa Postal 6154, 13083-970 Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, SP, Brazil
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, SP, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil.
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), Caixa Postal 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
44
|
Lu C, Shen Y, Wang X, Xu S, Wang J, Yong Q, Chu F. Biomimetic ultra-strong, ultra-tough, degradable cellulose-based composites for multi-stimuli responsive shape memory. Int J Biol Macromol 2023; 226:1468-1476. [PMID: 36442569 DOI: 10.1016/j.ijbiomac.2022.11.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Fabrication of ultra-strong, ultra-tough, sustainable, and degradable bio-based composites is urgently needed but remains challenging. Here, a biomimetic sustainable, degradable, and multi-stimuli responsive cellulose/PCL/Fe3O4 composite with ultra-strong mechanical strength and ultra-high toughness was developed. To prepare the proposed composites, the soft poly(ε-caprolactone) (PCL) side chain was grafted onto the rigid cellulose backbone, then the cellulose graft copolymer (EC-g-PCL) reacted with rigid hexamethylenediamine modified Fe3O4 nanoparticle (Fe3O4-NH2) to construct the crosslinking network using MDI-50 as a crosslinker. Given by the construction of crosslinking network and the "hard" and "soft" interactive structure, the composites showed ultra-strong mechanical strength (25.7 MPa) and ultra-high toughness (107.0 MJ/m3), and the composite specimen could lift a weight of approximately 21,200 times its mass. The composites also exhibited rapid degradation ability with high degradation efficiency. In addition, the composites showed excellent thermal responsive shape memory property with a shape recovery ratio above 96 %. Most importantly, the Fe3O4 nanoparticles endowed the composites with photothermal conversion property, the composites exhibited superior NIR light-triggered shape memory capability. The EC-g-PCL/Fe3O4 composites with ultra-strong mechanical strength and ultra-high toughness have promising applications in heavy-lift, object transportation, and self-tightening knots.
Collapse
Affiliation(s)
- Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China
| | - Yi Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shijian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jifu Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuxiang Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
45
|
Sudhaik A, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Van Le Q, Thakur S, Thakur VK, Selvasembian R, Singh P. Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. Int J Biol Macromol 2023; 226:1284-1308. [PMID: 36574582 DOI: 10.1016/j.ijbiomac.2022.11.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.
Collapse
Affiliation(s)
- Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sourbh Thakur
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh EH9 3JG, Scotland, UK
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
46
|
Zhang Z, Abidi N, Lucia L, Chabi S, Denny CT, Parajuli P, Rumi SS. Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review and perspective. Carbohydr Polym 2023; 299:120140. [PMID: 36876763 DOI: 10.1016/j.carbpol.2022.120140] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Superabsorbent hydrogels (SAH) are crosslinked three-dimensional networks distinguished by their super capacity to stabilize a large quantity of water without dissolving. Such behavior enables them to engage in various applications. Cellulose and its derived nanocellulose can become SAHs as an appealing, versatile, and sustainable platform because of abundance, biodegradability, and renewability compared to petroleum-based materials. In this review, a synthetic strategy that reflects starting cellulosic resources to their associated synthons, crosslinking types, and synthetic controlling factors was highlighted. Representative examples of cellulose and nanocellulose SAH and an in-depth discussion of structure-absorption relationships were listed. Finally, various applications of cellulose and nanocellulose SAH, challenges and existing problems, and proposed future research pathways were listed.
Collapse
Affiliation(s)
- Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, USA; Department of Forest Biomaterials, NC State University, Raleigh, NC, USA.
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA.
| | - Lucian Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA; Department of Chemistry, NC State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, NC State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.
| | - Sakineh Chabi
- Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, USA
| | - Christian T Denny
- Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, USA
| | - Prakash Parajuli
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| | - Shaida Sultana Rumi
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
47
|
Chang YS, Kumari P, Munro CJ, Szekely G, Vega LF, Nunes S, Dumée LF. Plasticization mitigation strategies for gas and liquid filtration membranes - A review. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Synthesis, scale inhibition performance evaluation and mechanism study of 3-amino-1-propane sulfonic acid modified polyaspartic acid copolymer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Research progress on chemical modification of waste biomass cellulose to prepare heavy metal adsorbents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Salfate G, Sánchez J. Rare Earth Elements Uptake by Synthetic Polymeric and Cellulose-Based Materials: A Review. Polymers (Basel) 2022; 14:4786. [PMID: 36365775 PMCID: PMC9654408 DOI: 10.3390/polym14214786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Contemporary industrial processes and the application of new technologies have increased the demand for rare earth elements (REEs). REEs are critical components for many applications related to semiconductors, luminescent molecules, catalysts, batteries, and so forth. REEs refer to a group of 17 elements that have similar chemical properties. REE mining has increased considerably in the last decade and is starting an REE supply crisis. Recently, the viability of secondary REE sources, such as mining wastewaters and acid mine drainage (AMD), has been considered. A strategy to recover REEs from secondary water-related sources is through the usage of adsorbents and ion exchange materials in preconcentration steps due to their presence in low concentrations. In the search for more sustainable processes, the evaluation of synthetic polymers and natural source materials, such as cellulose-based materials, for REE capture from secondary sources should be considered. In this review, the chemistry, sources, extraction, uses, and environmental impact of REEs are briefly described to finally focus on the study of different adsorption/ion exchange materials and their performance in capturing REEs from water sources, moving from commercially available ion exchange resins to cellulose-based materials.
Collapse
Affiliation(s)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|