1
|
Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology-General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules 2023; 28:4932. [PMID: 37446593 PMCID: PMC10343226 DOI: 10.3390/molecules28134932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The role of nanotechnology is increasingly important in our society. Through it, scientists are acquiring the ability to understand the structure and properties of materials and manipulate them at the scale of atoms and molecules. Nanomaterials are at the forefront of the rapidly growing field of nanotechnology. The synthesis of nanostructured materials, especially metallic nanoparticles, has attracted tremendous interest over the past decade due to their unique properties, making these materials excellent and indispensable in many areas of human activity. These special properties can be attributed to the small size and large specific surface area of nanoparticles, which are very different from those of bulk materials. Nanoparticles of different sizes and shapes are needed for many applications, so a variety of protocols are required to produce monodisperse nanoparticles with controlled morphology. The purpose of this review is firstly to introduce the reader to the basic aspects related to the field of nanotechnology and, secondly, to discuss metallic nanoparticles in greater detail. This article explains the basic concepts of nanotechnology, introduces methods for synthesizing nanoparticles, and describes their types, properties, and possible applications. Of many methods proposed for the synthesis of metal nanoparticles, a chemical reduction is usually preferred because it is easy to perform, cost-effective, efficient, and also allows control of the structural parameters through optimization of the synthesis conditions. Therefore, a chemical reduction method is discussed in more detail-each factor needed for the synthesis of nanoparticles by chemical reduction is described in detail, i.e., metal precursors, solvents, reducing agents, and stabilizers. The methods that are used to characterize nanomaterials are described. Finally, based on the available literature collection, it is shown how changing the synthesis parameters/methods affects the final characteristics of nanoparticles.
Collapse
Affiliation(s)
- Paulina Szczyglewska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | |
Collapse
|
2
|
Ament K, Köwitsch N, Hou D, Götsch T, Kröhnert J, Heard CJ, Trunschke A, Lunkenbein T, Armbrüster M, Breu J. Nanoparticles Supported on Sub-Nanometer Oxide Films: Scaling Model Systems to Bulk Materials. Angew Chem Int Ed Engl 2021; 60:5890-5897. [PMID: 33289925 PMCID: PMC7986867 DOI: 10.1002/anie.202015138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/07/2022]
Abstract
Ultrathin layers of oxides deposited on atomically flat metal surfaces have been shown to significantly influence the electronic structure of the underlying metal, which in turn alters the catalytic performance. Upscaling of the specifically designed architectures as required for technical utilization of the effect has yet not been achieved. Here, we apply liquid crystalline phases of fluorohectorite nanosheets to fabricate such architectures in bulk. Synthetic sodium fluorohectorite, a layered silicate, when immersed into water spontaneously and repulsively swells to produce nematic suspensions of individual negatively charged nanosheets separated to more than 60 nm, while retaining parallel orientation. Into these galleries oppositely charged palladium nanoparticles were intercalated whereupon the galleries collapse. Individual and separated Pd nanoparticles were thus captured and sandwiched between nanosheets. As suggested by the model systems, the resulting catalyst performed better in the oxidation of carbon monoxide than the same Pd nanoparticles supported on external surfaces of hectorite or on a conventional Al2 O3 support. XPS confirmed a shift of Pd 3d electrons to higher energies upon coverage of Pd nanoparticles with nanosheets to which we attribute the improved catalytic performance. DFT calculations showed increasing positive charge on Pd weakened CO adsorption and this way damped CO poisoning.
Collapse
Affiliation(s)
- Kevin Ament
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Nicolas Köwitsch
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzGermany
| | - Dianwei Hou
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Thomas Götsch
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Jutta Kröhnert
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Christopher J. Heard
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Annette Trunschke
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Thomas Lunkenbein
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Marc Armbrüster
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzGermany
| | - Josef Breu
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
3
|
Ament K, Köwitsch N, Hou D, Götsch T, Kröhnert J, Heard CJ, Trunschke A, Lunkenbein T, Armbrüster M, Breu J. Nanopartikel auf subnanometer dünnen oxidischen Filmen: Skalierung von Modellsystemen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5954-5961. [PMID: 38505494 PMCID: PMC10946923 DOI: 10.1002/ange.202015138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 03/21/2024]
Abstract
AbstractDurch die Abscheidung von ultradünnen Oxidschichten auf atomar‐flachen Metalloberflächen konnte die elektronische Struktur des Metalls und hierdurch dessen katalytische Aktivität beeinflusst werden. Die Skalierung dieser Architekturen für eine technische Nutzbarkeit war bisher aber kaum möglich. Durch die Verwendung einer flüssigkristallinen Phase aus Fluorhectorit‐Nanoschichten, können wir solche Architekturen in skalierbarem Maßstab imitieren. Synthetischer Natriumfluorhectorit (NaHec) quillt spontan und repulsiv in Wasser zu einer nematischen flüssigkristallinen Phase aus individuellen Nanoschichten. Diese tragen eine permanente negative Schichtladung, sodass selbst bei einer Separation von über 60 nm eine parallele Anordnung der Schichten behalten wird. Zwischen diesen Nanoschichten können Palladium‐Nanopartikel mit entgegengesetzter Ladung eingelagert werden, wodurch die nematische Phase kollabiert und separierte Nanopartikel zwischen den Schichten fixiert werden. Die Aktivität zur CO‐Oxidation des so entstandenen Katalysators war höher als z. B. die der gleichen Nanopartikel auf konventionellem Al2O3 oder der externen Oberfläche von NaHec. Durch Röntgenphotoelektronenspektroskopie konnte eine Verschiebung der Pd‐3d‐Elektronen zu höheren Bindungsenergien beobachtet werden, womit die erhöhte Aktivität erklärt werden kann. Berechnungen zeigten, dass mit erhöhter positiver Ladung des Pd die Adsorptionsstärke von CO erniedrigt und damit auch die Vergiftung durch CO vermindert wird.
Collapse
Affiliation(s)
- Kevin Ament
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthDeutschland
| | - Nicolas Köwitsch
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzDeutschland
| | - Dianwei Hou
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Thomas Götsch
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Jutta Kröhnert
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Christopher J. Heard
- Department of Physical and Macromolecular ChemistryCharles UniversityHlavova 8128 00Prague 2Czech Republic
| | - Annette Trunschke
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Thomas Lunkenbein
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinDeutschland
| | - Marc Armbrüster
- Faculty of Natural SciencesInstitute of ChemistryMaterials for Innovative Energy ConceptsChemnitz University of TechnologyStraße der Nationen 6209111ChemnitzDeutschland
| | - Josef Breu
- Bavarian Polymer Institute and Department of ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthDeutschland
| |
Collapse
|
4
|
Krishnaveni T, Kaveri MV, Kadirvelu K. The first PdO nanoparticle catalyzed one pot synthesis of propargylamine through A 3-coupling of an aldehyde, alkyne and amine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium(ii) oxide (PdO) nanoparticles (Nps) were prepared by an environmentally benign hydrothermal method with a new capping agent quercetin.
Collapse
Affiliation(s)
- T. Krishnaveni
- Department of Chemistry, Bharathiar University Coimbatore, 641046, India
| | - M. V. Kaveri
- Department of Chemistry, Bharathiar University Coimbatore, 641046, India
| | - K. Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore – 641046, India
| |
Collapse
|
5
|
Staiger L, Kratky T, Günther S, Tomanek O, Zbořil R, Fischer RW, Fischer RA, Cokoja M. Steric and Electronic Effects of Phosphane Additives on the Catalytic Performance of Colloidal Palladium Nanoparticles in the Semi‐Hydrogenation of Alkynes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lena Staiger
- Chair of Inorganic and Metal-Organic Chemistry Department of Chemistry and Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85747 Garching b. München Germany
| | - Tim Kratky
- Chair of Physical Chemistry with Focus on Catalysis Department of Chemistry and Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85747 Garching b. München Germany
| | - Sebastian Günther
- Chair of Physical Chemistry with Focus on Catalysis Department of Chemistry and Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85747 Garching b. München Germany
| | - Ondrej Tomanek
- Regional Center of Advanced Technologies and Materials RCPTM Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Radek Zbořil
- Regional Center of Advanced Technologies and Materials RCPTM Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Richard W. Fischer
- Clariant Produkte (Deutschland) GmbH Waldheimer Straße 15 83052 Bruckmühl Germany
| | - Roland A. Fischer
- Chair of Inorganic and Metal-Organic Chemistry Department of Chemistry and Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85747 Garching b. München Germany
| | - Mirza Cokoja
- Chair of Inorganic and Metal-Organic Chemistry Department of Chemistry and Catalysis Research Center Technical University of Munich Ernst-Otto-Fischer-Straße 1 85747 Garching b. München Germany
| |
Collapse
|
6
|
Sharma V, De D, Saha R, Chattaraj PK, Bharadwaj PK. Flexibility Induced Encapsulation of Ultrafine Palladium Nanoparticles into Organic Cages for Tsuji-Trost Allylation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8539-8546. [PMID: 31977185 DOI: 10.1021/acsami.9b19480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of three positional isomers of organic cages namely o-OC, m-OC, and p-OC, have been self-assembled using dynamic covalent chemistry. Their room temperature controlled fabrication with palladium gives ultrafine diameter (1-2 nm) of palladium nanoparticles (Pd NPs). We observed that the shape-flexibility of cages have great impact on the formation of Pd NPs. Theoretical calculations reveals that theoretically obtainable size of Pd NPs for each cage which was complementary to the experimental results. Theoretical studies indicate that the driving forces for the specific orientational preference may be ascribed to subtle variations on the level of π-π interactions, which ultimately governs the growth of Pd NPs therein. It is the first example of shape-flexible synthesis of organic cages where flexibility governs the nanoparticle growth. Pd NPs have shown excellent catalysis of Tsuji-Trost allylation at room temperature and pressure in water.
Collapse
Affiliation(s)
- Vivekanand Sharma
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Dinesh De
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Ranajit Saha
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur - 721302 , India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur - 721302 , India
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai , 400076 , India
| | - Parimal K Bharadwaj
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| |
Collapse
|
7
|
Qiu L, McCaffrey R, Jin Y, Gong Y, Hu Y, Sun H, Park W, Zhang W. Cage-templated synthesis of highly stable palladium nanoparticles and their catalytic activities in Suzuki-Miyaura coupling. Chem Sci 2018; 9:676-680. [PMID: 29629135 PMCID: PMC5869600 DOI: 10.1039/c7sc03148c] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
We report the controlled synthesis of small palladium nanoparticles (PdNPs) with narrow particle size distribution (1.8 ± 0.2 nm) using an organic molecular cage as a template. The well-defined cage structure and thioether anchoring groups inside the cavity are critical for the formation of narrowly distributed PdNPs, offering a confined organic molecular environment and guiding PdNP nucleation and growth. The resulting encapsulated PdNPs are resistant to agglomeration and stable in solution exposed to air at room temperature. When provided with a protective cage shell with minimum surface coverage, such PdNPs are capable of catalyzing organic reactions, showing high catalytic activity in Suzuki-Miyaura coupling reactions.
Collapse
Affiliation(s)
- Li Qiu
- School of Materials Science and Engineering , Yunnan Key Laboratory for Micro/Nano Materials & Technology , Yunnan University , 650091 Kunming , China
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| | - Ryan McCaffrey
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| | - Yinghua Jin
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| | - Yu Gong
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| | - Yiming Hu
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| | - Hongliang Sun
- School of Materials Science and Engineering , Yunnan Key Laboratory for Micro/Nano Materials & Technology , Yunnan University , 650091 Kunming , China
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| | - Wounjhang Park
- Department of Electrical , Computer and Energy Engineering , University of Colorado at Boulder , CO 80309 , USA
| | - Wei Zhang
- School of Materials Science and Engineering , Yunnan Key Laboratory for Micro/Nano Materials & Technology , Yunnan University , 650091 Kunming , China
- Department of Chemistry and Biochemistry , University of Colorado at Boulder , CO 80309 , USA .
| |
Collapse
|
8
|
Rossi LM, Fiorio JL, Garcia MAS, Ferraz CP. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans 2018; 47:5889-5915. [DOI: 10.1039/c7dt04728b] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this Perspective article, we highlight emerging opportunities for the rational design of catalysts upon the choice, exchange, partial removal or pyrolysis of ligands.
Collapse
Affiliation(s)
- Liane M. Rossi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Jhonatan L. Fiorio
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Marco A. S. Garcia
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Camila P. Ferraz
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
9
|
Moreno-Marrodan C, Liguori F, Barbaro P, Caporali S, Merlo L, Oldani C. Metal Nanoparticles Supported on Perfluorinated Superacid Polymers: A Family of Bifunctional Catalysts for the Selective, One-Pot Conversion of Vegetable Substrates in Water. ChemCatChem 2017. [DOI: 10.1002/cctc.201700945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Francesca Liguori
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Caporali
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali; Via Giusti 9 50121 Firenze Italy
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Luca Merlo
- Solvay Specialty Polymers (Italy) S.p.A.; Viale Lombardia 20 20021 Bollate Milano Italy
| | - Claudio Oldani
- Solvay Specialty Polymers (Italy) S.p.A.; Viale Lombardia 20 20021 Bollate Milano Italy
| |
Collapse
|
10
|
Liguori F, Barbaro P, Said B, Galarneau A, Santo VD, Passaglia E, Feis A. Unconventional Pd@Sulfonated Silica Monoliths Catalysts for Selective Partial Hydrogenation Reactions under Continuous Flow. ChemCatChem 2017. [DOI: 10.1002/cctc.201700381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Bilel Said
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS; Université de Montpellier-ENSCM, ENSCM; 8 rue de l'Ecole Normale 34296 Montpellier Cedex 05 France
| | - Anne Galarneau
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS; Université de Montpellier-ENSCM, ENSCM; 8 rue de l'Ecole Normale 34296 Montpellier Cedex 05 France
| | - Vladimiro Dal Santo
- Consiglio Nazionale delle Ricerche; Istituto di Scienze e Tecnologie Molecolari; Via Golgi 19 20133 Milano Italy
| | - Elisa Passaglia
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Moruzzi 1 56124 Pisa Italy
| | - Alessandro Feis
- Department of Chemistry; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
11
|
Purohit P, Seth K, Kumar A, Chakraborti AK. C–O Bond Activation by Nickel–Palladium Hetero-Bimetallic Nanoparticles for Suzuki–Miyaura Reaction of Bioactive Heterocycle-Tethered Sterically Hindered Aryl Carbonates. ACS Catal 2017. [DOI: 10.1021/acscatal.6b02912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Priyank Purohit
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India
| | - Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India
| | - Asim Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar 160 062, Punjab, India
| |
Collapse
|
12
|
Vishnukumar P, Vivekanandhan S, Muthuramkumar S. Plant-Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Perumalsamy Vishnukumar
- VHNSN College; Sustainable Materials and Nanotechnology Lab (SMNL); Department of Physics; 626 001 Virudhunagar Tamilnadu India
| | - Singaravelu Vivekanandhan
- VHNSN College; Sustainable Materials and Nanotechnology Lab (SMNL); Department of Physics; 626 001 Virudhunagar Tamilnadu India
| | | |
Collapse
|
13
|
Linares N, Moreno-Marrodan C, Barbaro P. PdNP@Titanate Nanotubes as Effective Catalyst for Continuous-Flow Partial Hydrogenation Reactions. ChemCatChem 2016. [DOI: 10.1002/cctc.201501126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Noemi Linares
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
- Molecular Nanotechnology Lab; Department of Inorganic Chemistry; University of Alicante; Carretera San Vicente s/n, E- 03690 Alicante Spain
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche; Istituto di Chimica dei Composti Organo Metallici; Via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
14
|
Viral nanoparticles, noble metal decorated viruses and their nanoconjugates. Adv Colloid Interface Sci 2015; 222:119-34. [PMID: 24836299 DOI: 10.1016/j.cis.2014.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/28/2013] [Accepted: 04/11/2014] [Indexed: 01/09/2023]
Abstract
Virus-based nanotechnology has generated interest in a number of applications due to the specificity of virus interaction with inorganic and organic nanoparticles. A well-defined structure of virus due to its multifunctional proteinaceous shell (capsid) surrounding genomic material is a promising approach to obtain nanostructured materials. Viruses hold great promise in assembling and interconnecting novel nanosized components, allowing to develop organized nanoparticle assemblies. Due to their size, monodispersity, and variety of chemical groups available for modification, they make a good scaffold for molecular assembly into nanoscale devices. Virus based nanocomposites are useful as an engineering material for the construction of smart nanoobjects because of their ability to associate into desired structures including a number of morphologies. Viruses exhibit the characteristics of an ideal template for the formation of nanoconjugates with noble metal nanoparticles. These bioinspired systems form monodispersed units that are highly amenable through genetic and chemical modifications. As nanoscale assemblies, viruses have sophisticated yet highly ordered structural features, which, in many cases, have been carefully characterized by modern structural biological methods. Plant viruses are increasingly being used for nanobiotechnology purposes because of their relative structural and chemical stability, ease of production, multifunctionality and lack of toxicity and pathogenicity in animals or humans. The multifunctional viruses interact with nanoparticles and other functional additives to the generation of bioconjugates with different properties – possible antiviral and antibacterial activities.
Collapse
|
15
|
Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, García-Martínez J. Mesoporous materials for clean energy technologies. Chem Soc Rev 2015; 43:7681-717. [PMID: 24699503 DOI: 10.1039/c3cs60435g] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.
Collapse
Affiliation(s)
- Noemi Linares
- Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain.
| | | | | | | | | |
Collapse
|
16
|
Nguyen LTM, Park H, Banu M, Kim JY, Youn DH, Magesh G, Kim WY, Lee JS. Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts. RSC Adv 2015. [DOI: 10.1039/c5ra21017h] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pure formic acid was produced via CO2 hydrogenation over a heterogeneous PdNi alloy catalyst on carbon nanotube-graphene support in water solvent without a base additive.
Collapse
Affiliation(s)
- Lan Thi Mai Nguyen
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Korea
| | - Hunmin Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Korea
| | - Marimuthu Banu
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Korea
| | - Jae Yul Kim
- Basic Materials & Chemicals R&D
- LG Chem, Ltd
- Daejeon
- Korea
| | - Duck Hyun Youn
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Korea
| | - Ganesan Magesh
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Korea
| | - Won Yong Kim
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Korea
| | - Jae Sung Lee
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Korea
| |
Collapse
|
17
|
Wang F, Tang S, Ma H, Wang L, Li X, Yin B. Room-Temperature Suzuki-Miyaura Reaction Catalyzed by Palladium Nanoparticles in Lactate-Anion Ionic Liquid. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Saha J, Bhowmik K, Das I, De G. Pd–Ni alloy nanoparticle doped mesoporous SiO2film: the sacrificial role of Ni to resist Pd-oxidation in the C–C coupling reaction. Dalton Trans 2014; 43:13325-32. [DOI: 10.1039/c4dt01438c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Li L, Wu T, Wang J, Wang R. Water-Soluble Ionic Palladium Complexes: Effect of Pendant Ionic Groups on Palladium Nanoparticles and Suzuki-Miyaura Reaction in Neat Water. Chempluschem 2013; 79:257-265. [DOI: 10.1002/cplu.201300374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 12/20/2022]
|
20
|
Clergeaud G, Genç R, Ortiz M, O'Sullivan CK. Liposomal nanoreactors for the synthesis of monodisperse palladium nanoparticles using glycerol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15405-15413. [PMID: 24246054 DOI: 10.1021/la402892f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The synthesis of highly stable ultrasmall monodisperse populations of palladium nanoparticles in the range of 1-3 nm in size was achieved via polyol reduction within 1,2-dioleoyl-sn-glycero-3-phosphor-rac-(1-glycerol) liposomal nanoreactors exploiting glycerol as both reducing and stabilizing agent. The liposome-based green method was compared with synthesis in solution, and the reducing agent concentration and the lipidic composition of the liposomal nanoreactors were demonstrated to have a strong effect on the final size and homogeneity of the palladium nanoparticles. Glycerol molecules acting as capping agent demonstrated the ability to stabilize the palladium nanoparticles over a long period of time, maintaining their homogeneity in size and shape. The obtained palladium nanoparticles were characterized using transmission electron microscopy, selected area electron diffraction, Fourier transform infrared and Raman spectroscopies, X-ray diffraction, and dynamic light scattering to determine their morphology, size, charge, surface chemistry, and crystal structure. The catalytic activity of the palladium nanoparticles was also tested for a reduction reaction.
Collapse
Affiliation(s)
- Gael Clergeaud
- Nanobiotechnology & Bioanalysis Group, Department d'Enginyeria Quimica, Universitat Rovira i Virgili , Tarragona 43007, Spain
| | | | | | | |
Collapse
|
21
|
Crespo P, de la Presa P, Marín P, Multigner M, Alonso JM, Rivero G, Yndurain F, González-Calbet JM, Hernando A. Magnetism in nanoparticles: tuning properties with coatings. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:484006. [PMID: 24201075 DOI: 10.1088/0953-8984/25/48/484006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.
Collapse
|
22
|
Caporali M, Guerriero A, Ienco A, Caporali S, Peruzzini M, Gonsalvi L. Water-Soluble, 1,3,5-Triaza-7-phosphaadamantane-Stabilized Palladium Nanoparticles and their Application in Biphasic Catalytic Hydrogenations at Room Temperature. ChemCatChem 2013. [DOI: 10.1002/cctc.201300079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Kong F, Zhou C, Wang J, Yu Z, Wang R. Water-Soluble Palladium Click Chelating Complex: An Efficient and Reusable Precatalyst for Suzuki-Miyaura and Hiyama Reactions in Water. Chempluschem 2013. [DOI: 10.1002/cplu.201300067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Serrano E, Linares N, Garcia-Martinez J, Berenguer JR. Sol-Gel Coordination Chemistry: Building Catalysts from the Bottom-Up. ChemCatChem 2013. [DOI: 10.1002/cctc.201200938] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Sharma S, Kim B, Lee D. Water-soluble Pd nanoparticles capped with glutathione: synthesis, characterization, and magnetic properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15958-15965. [PMID: 23092154 DOI: 10.1021/la303326u] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synthesis, characterization, and magnetic properties of water-soluble Pd nanoparticles capped with glutathione are described. The glutathione-capped Pd nanoparticles were synthesized under argon and air atmospheres at room temperature. Whereas the former exhibits a bulklike lattice parameter, the lattice parameter of the latter is found to be considerably greater, indicating anomalous lattice expansion. Comparative structural and compositional studies of these nanoparticles suggest the presence of oxygen in the core lattice when Pd nanoparticles are prepared under an air atmosphere. Both Pd nanoparticles prepared under argon and air show ferromagnetism at 5 K, but the latter exhibits significantly greater coercivity (88 Oe) and magnetization (0.09 emu/g at 50 kOe). The enhanced ferromagnetic properties are explained by the electronic effect of the incorporated oxygen that increases the 4d density of holes at the Pd site and localizes magnetic moments.
Collapse
Affiliation(s)
- Sachil Sharma
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
26
|
Wang Z, Li H, Zhen S, He N. Preparation of carboxyl group-modified palladium nanoparticles in an aqueous solution and their conjugation with DNA. NANOSCALE 2012; 4:3536-3542. [PMID: 22543815 DOI: 10.1039/c2nr30649b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The use of nanomaterials in biomolecular labeling and their corresponding detection has been attracting much attention, recently. There are currently very few studies on palladium nanoparticles (Pd NPs) due to their lack of appropriate surface functionalities for conjugation with DNA. In this paper, we thus firstly present an approach to prepare carboxyl group-modified Pd NPs (with an average size of 6 nm) by the use of 11-mercaptoundecanoic acid (MUDA) as a stabilizer in the aqueous solution. The effect of the various reducing reaction conditions on the morphology of the Pd NPs was investigated. The particles were further characterized by TEM, UV-vis, FT-IR and XPS techniques. DNA was finally covalently conjugated to the surface of the Pd NPs through the activation of the carboxyl group, which was confirmed by agarose gel electrophoresis and fluorescence analysis. The resulting Pd NPs-DNA conjugates show high single base pair mismatch discrimination capabilities. This work therefore sets a good foundation for further applications of Pd NPs in bio-analytical research.
Collapse
Affiliation(s)
- Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | |
Collapse
|
27
|
Rao CNR, Ramakrishna Matte HSS, Voggu R, Govindaraj A. Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans 2012; 41:5089-120. [PMID: 22430878 DOI: 10.1039/c2dt12266a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles probably constitute the largest class of nanomaterials. Nanoparticles of several inorganic materials have been prepared by employing a variety of synthetic strategies. Besides synthesizing nanoparticles, there has been considerable effort to selectively prepare nanoparticles of different shapes. In view of the great interest in inorganic nanoparticles evinced in the last few years, we have prepared this perspective on the present status of the synthesis of inorganic nanoparticles. This article includes a brief discussion of methods followed by reports on the synthesis of nanoparticles of various classes of inorganic materials such as metals, alloys, oxides chalcogenides and pnictides. A brief section on core-shell nanoparticles is also included.
Collapse
Affiliation(s)
- C N R Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560 064, India.
| | | | | | | |
Collapse
|
28
|
Zhang H, Yang Y, Dai W, Yang D, Lu S, Ji Y. An aqueous-phase catalytic process for the selective hydrogenation of acetylene with monodisperse water soluble palladium nanoparticles as catalyst. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20179h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Zhou X, Zheng L, Li R, Li B, Pillai S, Xu P, Zhang Y. Biotemplated fabrication of size controlled palladium nanoparticle chains. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16411f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Radha B, Kiruthika S, Kulkarni GU. Metal Anion–Alkyl Ammonium Complexes as Direct Write Precursors to Produce Nanopatterns of Metals, Nitrides, Oxides, Sulfides, And Alloys. J Am Chem Soc 2011; 133:12706-13. [DOI: 10.1021/ja2039612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Radha
- Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - S. Kiruthika
- Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - G. U. Kulkarni
- Chemistry and Physics of Materials Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
31
|
Fernández-García MP, Gorria P, Sevilla M, Fuertes AB, Boada R, Chaboy J, Aquilanti G, Blanco JA. Co nanoparticles inserted into a porous carbon amorphous matrix: the role of cooling field and temperature on the exchange bias effect. Phys Chem Chem Phys 2011; 13:927-32. [DOI: 10.1039/c0cp00396d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
|
33
|
Linares N, Serrano E, Rico M, Mariana Balu A, Losada E, Luque R, García-Martínez J. Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun (Camb) 2011; 47:9024-35. [DOI: 10.1039/c1cc11016k] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Gálvez N, Valero E, Domínguez-Vera JM, Masciocchi N, Guagliardi A, Clemente-León M, Coronado E. Structural and magnetic characterization of Pd nanoparticles encapsulated in apoferritin. NANOTECHNOLOGY 2010; 21:274017. [PMID: 20571204 DOI: 10.1088/0957-4484/21/27/274017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Pd nanoparticles exhibiting permanent magnetism at room temperature have been prepared within the apoferritin cavity. Pd nanoparticles in air and under an inert atmosphere were synthesized to study the influence of the aerobic and anaerobic conditions in the final magnetic properties. The surface of nanoparticles as well as the type of crystalline phase could determine the magnetic properties. X-ray powder diffraction, including Debye-function analysis, transmission electronic microscopy, and magnetization measurements have been used for characterizing the nanoparticles.
Collapse
Affiliation(s)
- Natividad Gálvez
- Departamento Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Hong JY, Yoon H, Jang J. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:679-86. [PMID: 20127667 DOI: 10.1002/smll.200902231] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A facile way to synthesize nanometer-sized polymer (polypyrrole, PPy) particles is explored on the basis of the formation of complexes between water-soluble polymers and metal cations in aqueous solution. The metal cation is used as an oxidizing agent to initiate the chemical oxidation polymerization of the corresponding monomer, and the water-soluble polymer effectively provides a steric stability for the growth of polymer nanoparticles during the polymerization process. Light-scattering analyses are performed to give insight into the behavior of the complexes in aqueous solution. In addition, major physical parameters affecting the formation of polymer nanoparticles are investigated, including hydrodynamic radius, radius of gyration, shape factor, and viscosity. By judicious control of these parameters, PPy nanoparticles with narrow size distribution can be readily fabricated in large quantities. It is also possible to control the diameter of the nanoparticles by changing critical synthetic variables. Importantly, PPy nanoparticles of approximately 20-60 nm in diameter can be prepared without using any surfactants or specific templates; this novel strategy offers great possibility for mass production of polymer nanoparticles.
Collapse
Affiliation(s)
- Jin-Yong Hong
- School of Chemical and Biological Engineering College of Engineering, Seoul National University, 599 Gwanangno, Gwanakgu, Seoul 151-742, Korea
| | | | | |
Collapse
|
36
|
Manocchi AK, Horelik NE, Lee B, Yi H. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3670-3677. [PMID: 19919039 DOI: 10.1021/la9031514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transition-metal nanoparticles possess unique size-dependent optical, electronic, and catalytic properties on the nanoscale, which differ significantly from their bulk properties. In particular, palladium (Pd) nanoparticles have properties applicable to a wide range of applications in catalysis and electronics. However, predictable and controllable nanoparticle synthesis remains challenging because of harsh reaction conditions, artifacts from capping agents, and unpredictable growth. Biological supramolecules offer attractive templates for nanoparticle synthesis because of their precise structure and size. In this article, we demonstrate simple, controllable Pd nanoparticle synthesis on surface-assembled viral nanotemplates. Specifically, we exploit precisely spaced thiol functionalities of genetically modified tobacco mosaic virus (TMV1cys) for facile surface assembly and readily controllable Pd nanoparticle synthesis via simple electroless deposition under mild aqueous conditions. Atomic force microscopy (AFM) studies clearly show tunable surface assembly and Pd nanoparticle formation preferentially on the TMV1cys templates. Grazing incidence small-angle X-ray scattering (GISAXS) further provided an accurate and statistically meaningful route by which to investigate the broad size ranges and uniformity of the Pd nanoparticles formed on TMV templates by simply tuning the reducer concentration. We believe that our viral-templated bottom-up approach to tunable Pd nanoparticle formation combined with the first in-depth characterization via GISAXS represents a major advancement toward exploiting viral templates for facile nanomaterials/device fabrication. We envision that our strategy can be extended to a wide range of applications, including uniform nanostructure and nanocatalyst synthesis.
Collapse
Affiliation(s)
- Amy K Manocchi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02144, USA
| | | | | | | |
Collapse
|
37
|
Shen XS, Wang GZ, Hong X, Zhu W. Shape-Controlled Synthesis of Palladium Nanoparticles and Their SPR/SERS Properties. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/04/440-446] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|