1
|
Zhang X, Li M, Meng G, Huang Z, Zhu S, Chen B. Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate. Anal Chem 2024; 96:6112-6121. [PMID: 38554137 DOI: 10.1021/acs.analchem.3c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-sized periodic Au nanograting (Au-NG) decorated with well-arranged Ag nanoparticles (Ag-NPs) (denoted as Ag-NPs@Au-NG) as a three-dimensional (3D) flexible hybrid SERS substrate with high sensitivity and good reproducibility. The Au-NG patterns with periodic ridges and grooves are fabricated through nanoimprint lithography by employing a low-cost digital versatile disc (DVD) as a master mold, and the Ag-NPs are assembled by a well-controlled interface self-assembly method without any coupling agents. Multiple coupling electromagnetic field effects are created at the nanogaps between the Ag-NPs and Au-NG patterns, leading to high-density and uniform hot spots throughout the substrate. As a result, the Ag-NPs@Au-NG arrays demonstrate an ultrahigh SERS sensitivity as low as 10-13 M for rhodamine 6G with a high average enhancement factor (EF) of 1.85 × 108 and good signal reproducibility. For practical applications, toxic organic pollutants including crystal violet, thiram, and melamine have been successfully detected with high sensitivity at a low detection limit, showing a good perspective in the rapid detection of toxic organic pollutants.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingtao Li
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou 543002, China
| | - Guowen Meng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Shuyi Zhu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Bin Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Wu D, Tang Z, Dong L, Li G, Li D, Wang L, Shi T, Rahman MM, Zhang X. Enhanced ultrasonic spray ionization for direct mass spectrometry analysis of aqueous solution and complex samples using a single-orifice piezoelectric atomizer. Talanta 2023; 255:124237. [PMID: 36587426 DOI: 10.1016/j.talanta.2022.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
An efficient and superior soft ionization approach for direct mass spectrometry analysis of a variety of samples such as aqueous solution, raw biological sample and proteins, was developed based on commercially available piezoelectric atomizers. A single conical orifice (5 μm in diameter) was created on the atomizer, which resulted in generation of uniform fine droplets and long-duration of MS signal. The two electrodes of piezoelectric atomizer were connected to the two sides of ceramic ring which was insulated from the metallic substrate. The unique design allowed an additional high voltage input towards the spray reagents, which facilitated direct analysis of more complex samples without sample pre-treatment, such as biological samples (tomato tissue). The ionization was driven by an extremely low electrical power (3.5 V rechargeable battery) yet providing an efficient and superior soft ionization. The method displayed a better thermal and pH stability than nano electrospray ionization (nanoESI) and electrospray ionization (ESI) on direct analysis of Vitamin B and protein aqueous solutions. Quantitative analysis of Vitamin B and Rhodamine B aqueous solutions was also investigated, showing a good linearity (R2 > 0.99). In addition, our results suggested that compared with ESI and nanoESI, the method not only could be used for direct analysis of intact protein, but also provide more information concerning the association between intact protein and the subunits.
Collapse
Affiliation(s)
- Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China.
| | - Ziyang Tang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Lulu Dong
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Guolin Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Dian Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Li Wang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China.
| | - Tong Shi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Md Matiur Rahman
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| |
Collapse
|
3
|
Caleb Bagley M, Garrard KP, Muddiman DC. The development and application of matrix assisted laser desorption electrospray ionization: The teenage years. MASS SPECTROMETRY REVIEWS 2023; 42:35-66. [PMID: 34028071 DOI: 10.1002/mas.21696] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/24/2023]
Abstract
In the past 15 years, ambient ionization techniques have witnessed a significant incursion into the field of mass spectrometry imaging, demonstrating their ability to provide complementary information to matrix-assisted laser desorption ionization. Matrix-assisted laser desorption electrospray ionization is one such technique that has evolved since its first demonstrations with ultraviolet lasers coupled to Fourier transform-ion cyclotron resonance mass spectrometers to extensive use with infrared lasers coupled to orbitrap-based mass spectrometers. Concurrently, there have been transformative developments of this imaging platform due to the high level of control the principal group has retained over the laser technology, data acquisition software (RastirX), instrument communication, and image processing software (MSiReader). This review will discuss the developments of MALDESI since its first laboratory demonstration in 2005 to the most recent advances in 2021.
Collapse
Affiliation(s)
- Michael Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- The Precision Engineering Consortium, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Li X, Ma C, Li L, Gao H, Gu J, Zhu C, Wu Y, Guo S, Wei Y, Wang G, Wang Z, Chen G. A Lanthanide Complex Fluorescent Probe for the Detection of Melamine. APPLIED SPECTROSCOPY 2021; 75:1312-1319. [PMID: 34041959 DOI: 10.1177/00037028211022375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Melamine has been illegally adulterated in dairy food because of the rich nitrogen content and stable chemical properties in recent years. Therefore, the detection of melamine is of great significance for food safety supervision and human health protection. As melamine is a weak fluorescent substance, it is difficult to detect melamine directly by fluorescence spectroscopy. In this work, we found that melamine can significantly enhance the emission of the tetracycline-europium (EuTC) complex at 616 nm. Therefore, we took EuTC complex as a fluorescent probe to detect melamine. According to the characterizations of absorption spectra, molecular electrostatic potential distribution, and the time-resolved spectra, we speculated that tetracycline and melamine may form a complex through hydrogen bonding interaction in the melamine-EuTC reaction system, causing the melamine closer approach to Eu3+ and reducing the non-radiative energy loss of water molecules to Eu3+, which significantly enhanced the fluorescence intensity of EuTC. The fluorescence intensity of EuTC complex with melamine concentration in the range of 0.5-40.0 μM shows a good linear relationship, and the correlation coefficient is 0.9951 with the detection limit of 7.85 × 10-8 M. It shows a high sensitivity for the EuTC complex as a fluorescent probe to detect melamine, which provides a supplement and extension for the detection of melamine by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Xiaolin Li
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chaoqun Ma
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Lei Li
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Hui Gao
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Jiao Gu
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chun Zhu
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Yamin Wu
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Senqi Guo
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Yitao Wei
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoyu Wang
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Zirui Wang
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoqing Chen
- School of Science, 66374Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| |
Collapse
|
5
|
Electropolymerization as an electrochemical preconcentration approach for the determination of melamine in milk samples. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
He J, Wang W, Zhang H, Ju Y, Yu K, Zhang X, Jiang J. Nebulization dielectric barrier discharge ionization mass spectrometry: Rapid and sensitive analysis of acenaphthene. Talanta 2021; 222:121681. [PMID: 33167287 DOI: 10.1016/j.talanta.2020.121681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023]
Abstract
A rapid, simple and sensitive method was proposed for low-polar acenaphthene analysis by coupling nebulization with dielectric barrier discharge ionization (N-DBDI). The sample solution was nebulized followed by heating and converted to be gas-phase analyte molecules prior to DBDI. This boosts the collision efficiency of analyte molecules with reactive species and thus the sensitivity, and the high-velocity gas from nebulization guides ions directed to the MS inlet without deflection. The dependence of sensitivity on the operation parameters was systematically investigated. The LOD and LOQ of acenaphthene were determined to be 0.61 ng/L and 2.05 ng/L, respectively, which were superior approximately 30 folds compared to those obtained by other methods. Parameters, including accuracy, precision, reproducibility and utility, were tested to further evaluate the performance of N-DBDI. Real environmental samples, including river water, initial rainwater and mineral water, were analyzed with good accuracy (93.61-103.50%) and satisfactory precision (RSD ≤ 8.92%). These findings suggest that the N-DBDI allows the determination of non/low-polar species at sub-pg/mL possible, and would benefit for the non/low-polar species analysis in real environmental samples.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China.
| | - Yun Ju
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China
| | - Xiangnan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China.
| |
Collapse
|
7
|
He J, Wang W, Zhang H, Yu K, Kan G, Wang Y, Guo C, Liu J, Jiang J. High-sensitive detection of fluorene by ambient ionization mass spectrometry. NEW J CHEM 2021. [DOI: 10.1039/d1nj01569a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High sensitive analysis for fluorene at the sub-ng L−1 level in real water samples was achieved by nebulization-dielectric barrier discharge ionization.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Wenxin Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Kai Yu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Guangfeng Kan
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Yingying Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| | - Changlu Guo
- School of Marine Science and Technology
- Harbin Institute of Technology at Weihai
- Weihai
- P. R. China
| | - Junyu Liu
- School of Marine Science and Technology
- Harbin Institute of Technology at Weihai
- Weihai
- P. R. China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
- School of Marine Science and Technology
| |
Collapse
|
8
|
Shirani M, Kamboh MA, Akbari-Adergani B, Akbari A, Sadia Arain S, Rashidi Nodeh H. Sonodecoration of magnetic phosphonated-functionalized sporopollenin as a novel green nanocomposite for stir bar sorptive dispersive microextraction of melamine in milk and milk-based food products. Food Chem 2020; 341:128460. [PMID: 33162256 DOI: 10.1016/j.foodchem.2020.128460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023]
Abstract
The novel green magnetic phosphonated-functionalized sporopollenin nanocomposite (MPSP-nanocomposite) was synthetized and used for stir bar sorptive dispersive microextraction (SBSDME) of melamine in milk and milk-based food products. TEM, SEM-EDX, FT-IR, VSM techniques were applied for characterization of MPSP-nanocomposite. The influential parameters including pH, extraction time, stirring rate, elution solvent type and volume, sample volume, desorption time, and ionic strength were studied and at optimum conditions, the linear range of 1-500 (µg L-1), the LOD (S/N = 3) of 0.30 (µg L-1), and the LOQ (S/N = 10) of 0.95 (µg L-1) were achieved. The intra-day precision values (RSD (%), n = 7) of 3.5% for the melamine concentration of 25 (µg L-1). The relative recoveries of 95.8% to 99.6% were acquired for the real samples which confirmed that the proposed method could be successfully utilized in complex matrixes with high matrix effects.
Collapse
Affiliation(s)
- Mahboube Shirani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| | - Muhammad Afzal Kamboh
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education Tehran Islamic Republic of Iran, Iran.
| | - Ali Akbari
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, P. O. Box 7867161167, Iran
| | - Sadaf Sadia Arain
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Hamid Rashidi Nodeh
- Department of Food Science and Technology, Faculty of Food Industry and Agriculture, Standard Research Institute, Karaj, Iran
| |
Collapse
|
9
|
Song L, You Y, Perdomo NR, Evans-Nguyen T. Inexpensive Ultrasonic Nebulization Coupled with Direct Current Corona Discharge Ionization Mass Spectrometry for Liquid Samples and Its Fundamental Investigations. Anal Chem 2020; 92:11072-11079. [PMID: 32662994 DOI: 10.1021/acs.analchem.0c00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The concept of direct mass-spectrometric analysis, especially exploited by ambient desorption/ionization (ADI) methods, provides numerous means for convenient sample analysis. While many simple and versatile ionization sources have been developed, challenges lay in achieving efficient sample introduction. In previous work, a sample introduction method employing direct current corona discharge (CD) coupled to a surface acoustic wave nebulization (SAWN) device enhanced sampling performance for both polar and nonpolar analytes by up to 4 orders of magnitude. In fact, the SAWN-CD method generated a multiply charged peptide ion signal comparable to that of conventional ESI. Unfortunately, the high cost of the SAWN devices themselves limits their accessibility. Herein, we report on an analogous implementation of CD with an inexpensive ultrasonic nebulizer (USN) on the basis of a commercial room humidifier demonstrating equivalent exemplary performance. We subsequently compare the two methods of SAWN-CD and USN-CD in a screening application of milk for the detection of two antibiotic drugs, ciprofloxacin and ampicillin. Finally, we further investigate the relative softness of these CD-coupled acoustic nebulization methods in comparison to that of ESI using a survival yield study of the thermometer ion nitrobenzylpyridinium.
Collapse
Affiliation(s)
- Linxia Song
- University of South Florida, Tampa, Florida 33620, United States
| | - Yi You
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Germany
| | | | | |
Collapse
|
10
|
McCullough BJ, Patel K, Francis R, Cain P, Douce D, Whyatt K, Bajic S, Lumley N, Hopley C. Atmospheric Solids Analysis Probe Coupled to a Portable Mass Spectrometer for Rapid Identification of Bulk Drug Seizures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:386-393. [PMID: 32031401 DOI: 10.1021/jasms.9b00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of ambient ionization techniques and their combination with smaller, cheaper mass spectrometers is beginning to make real the possibility of mass spectrometry measurements being made routinely outside of traditional laboratory settings. Here, we describe the development of an atmospheric solids analysis probe (ASAP) source for a commercially available miniaturized, single-quadrupole mass spectrometer and subsequent modification of the instrument to allow it to run as a deployable system; we further go on to describe the application of this instrument to the identification of the contents of drug seizures. For the drug seizure analysis, a small quantity of the material (powder, tablet, resin, etc.) was dissolved in ethanol and shaken to extract the analytes, the resulting solutions were then sampled by dipping a sealed glass capillary into the solution prior to analysis by ASAP-MS. Identification of the contents of the seizures was carried out using a NIST searching approach utilizing a bespoke spectral library containing 46 compounds representative of those most commonly encountered in UK forensic laboratories. In order to increase confidence in identification the library sample and subsequent analyses were carried out using a four-channel acquisition method; each channel in this method used a different cone voltage (15, 30, 50, and 70 V) inducing differing levels of in-source fragmentation in each channel; the match score across each channel was then used for identification. Using this developed method, a set of 50 real-life drug samples was analyzed with each of these being identified correctly using the library searching method.
Collapse
Affiliation(s)
- Bryan J McCullough
- National Measurement Laboratory , LGC , Queen's Road , Teddington TW11 0LY , UK
| | - Kirtan Patel
- Eurofins Forensic Services , Queens Road , Teddington TW11 0LY , UK
| | - Ryan Francis
- Eurofins Forensic Services , Queens Road , Teddington TW11 0LY , UK
| | - Peter Cain
- Eurofins Forensic Services , Queens Road , Teddington TW11 0LY , UK
| | - David Douce
- Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , UK
| | - Kate Whyatt
- Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , UK
| | - Steve Bajic
- Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , UK
| | - Nicola Lumley
- Waters Corporation , Stamford Avenue , Wilmslow SK9 4AX , UK
| | - Chris Hopley
- National Measurement Laboratory , LGC , Queen's Road , Teddington TW11 0LY , UK
| |
Collapse
|
11
|
Ninomiya S, Rankin-Turner S, Hiraoka K. Rapid desorption of low-volatility compounds in liquid droplets accompanied by the flash evaporation of solvent below the Leidenfrost temperature. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8535. [PMID: 31334891 DOI: 10.1002/rcm.8535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The objective of this work is to study the interaction of methanol droplets with the heated surface for the improved detection of low-volatility and thermally labile compounds by the flash evaporation that occurs below the Leidenfrost temperature. METHODS 5 μL solutions of low-volatility compounds in methanol were introduced into the heated tube. Desorbed analytes were ionized in the sealed atmospheric pressure chemical ionization (APCI) source by direct current (DC) corona discharge using air as the reagent gas. RESULTS The rapid desorption of low-volatility compounds accompanied by the flash evaporation of methanol solvent was observed in the temperature range of 60-100°C. Linear relationships between the signal intensities and the solute concentrations in the range of 0.01-5 ppm for morphine, cocaine, methamphetamine, and amphetamine were obtained at 95°C. CONCLUSIONS The observed rapid desorption of low-volatility compounds below the Leidenfrost temperature would provide useful information in many fields, e.g., the interaction of liquid droplets with heated matter, liquid sample introduction into the injection port of a gas chromatograph, coupling of the flash evaporation with pulse valve operated miniaturized mass spectrometer, etc.
Collapse
Affiliation(s)
- Satoshi Ninomiya
- Interdisciplinary Graduate School, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Stephanie Rankin-Turner
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| |
Collapse
|
12
|
Liu C, Li J, Chen H, Zare RN. Scale-up of microdroplet reactions by heated ultrasonic nebulization. Chem Sci 2019; 10:9367-9373. [PMID: 32110301 PMCID: PMC7017870 DOI: 10.1039/c9sc03701b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dramatically higher rates for a variety of chemical reactions have been reported in microdroplets compared with those in the liquid bulk phase. However, the scale-up of microdroplet chemical synthesis has remained a major challenge to the practical application of microdroplet chemistry. Heated ultrasonic nebulization (HUN) was found as a new way for scaling up chemical synthesis in microdroplets. Four reactions were examined, a base-catalyzed Claisen-Schmidt condensation, an oximation reaction from a ketone, a two-phase oxidation reaction without the use of a phase-transfer-catalyst, and an Eschenmoser coupling reaction. These reactions show acceleration of one to three orders of magnitude (122, 23, 6536, and 62) in HUN microdroplets compared to the same reactions in bulk solution. Then, using the present method, the scale-up of the reactions was achieved at an isolated rate of 19 mg min-1 for the product of the Claisen-Schmidt condensation, 21 mg min-1 for the synthesis of benzophenone oxime from benzophenone, 31 mg min-1 for the synthesis of 4-methoxybenzaldehyde from 4-methoxybenzyl alcohol, and 40 mg min-1 for the enaminone product of the Eschenmoser coupling reaction.
Collapse
Affiliation(s)
- Chengyuan Liu
- Department of Chemistry , Fudan University , Shanghai 200438 , China .
| | - Jia Li
- Department of Chemistry , Fudan University , Shanghai 200438 , China .
| | - Hao Chen
- Department of Chemistry & Environmental Science , New Jersey Institute of Technology , Newark , NJ 07102 , USA
| | - Richard N Zare
- Department of Chemistry , Fudan University , Shanghai 200438 , China .
| |
Collapse
|
13
|
Ramezani AM, Ahmadi R, Absalan G. Designing a sustainable mobile phase composition for melamine monitoring in milk samples based on micellar liquid chromatography and natural deep eutectic solvent. J Chromatogr A 2019; 1610:460563. [PMID: 31564559 DOI: 10.1016/j.chroma.2019.460563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Modified micellar liquid chromatography (MLC) with a natural deep eutectic solvent (NADES), produced from choline chloride (ChCl) and ethylene glycol (EG), was employed for melamine (MEL) monitoring in milk matrix. This sustainable mobile phase was attained through chemometrical optimization of crucial variables including concentration of sodium dodecyl sulphate ([SDS]) along with volume percentages of both NADES and glacial acetic acid (GAC). The desirability function and central composite design were utilized as chemometrical tools. Retention time (tR-MEL), and chromatographic peak width of MEL at 50% of its height (W50%-MEL) were considered for finding the best possible arrangement of the influential factors in the configuration of the mobile phase. Under the optimal experimental conditions of 0.10 mol L-1 SDS, 4% (v/v) NADES, and 4% (v/v) GAC, the results showed that both tR-MEL and W50%-MEL drastically decreased when NADES was a part of the mobile phase composition. This indicated that ChCl-EG-based NADES had a significant impact on improving the chromatographic behaviour of an ionizable polar compound, MEL. At the optimal point, MEL was eluted in approximately 10 min without being interfered by coexisting proteins and endogenous species in milk. The practical performance of the mobile phase was established through direct injection of milk samples into the MLC system. The eligibility criteria of the United State-Food and Drug Administration (US-FDA) were considered for validation of the introduced methodology.
Collapse
Affiliation(s)
- Amir M Ramezani
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Raheleh Ahmadi
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Ghodratollah Absalan
- Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| |
Collapse
|
14
|
Ruichi Zhao, Sun S, Hao W, Guo H, Gao Y, Shi L. A Highly Sensitive Determination for the Melamine in Milk on MIL-101/AuNPs/CTS-PVP-rGO/GCE Electrochemical Sensor. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519070048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Khavani M, Izadyar M, Housaindokht MR. MD/QM modeling of the modified gold nanoparticles and investigation of their sensing ability for selective detection of melamine. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Rahman M, Wu D, Chingin K. Direct Analysis of Aqueous Solutions and Untreated Biological Samples Using Nanoelectrospray Ionization Mass Spectrometry with Pipette Tip in Series with High-Ohmic Resistor as Ion Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:814-823. [PMID: 30834507 DOI: 10.1007/s13361-019-02142-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Commercially available disposable plastic pipette tip with the inner diameter of ca. 120 μm in series with a high-ohmic resistor (10 GΩ) was adapted as a low-cost alternative ion source for high-throughput nanoelectrospray mass spectrometry (nESI-MS) analysis of a variety of samples, especially aqueous solutions, without sample pretreatment. The use of high-ohmic resistor enabled the formation of stable electrospray of aqueous solutions at ambient conditions. In addition, corona discharge was avoided even with a high voltage applied. Quantitative analysis of vitamin B in water was successfully conducted by tip-ESI. The results exhibited a good linearity (R ˃ 0.9983), a low detection limit (0.25 ng/mL), and a wide dynamic response range (0.25-1000 ng/mL). Our study revealed that tip-ESI not only performed equally well to capillary nESI in terms of flow rate (˂ 100 nL/min), signal sensitivity, and sample consumption, but also offered a number of additional advantages, including better signal duration, tolerance to high analyte concentration (> 100 μg/mL) and high ionizing voltage (up to 6 kV), and obviation of tip clogging and corona discharge. High compatibility of tip-ESI with various kinds of samples (aqueous, viscous, solid, or bulk biological samples) makes it a promising tool for direct MS analysis.
Collapse
Affiliation(s)
- Matiur Rahman
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, People's Republic of China
| | - Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, People's Republic of China.
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, People's Republic of China
| |
Collapse
|
17
|
Jeong S, Kwon WY, Hwang SH, Shin J, Kim Y, Lee M, Park KS. Fluorescence, turn-on detection of melamine based on its dual functions as fluorescence enhancer of DNA-AgNCs and Hg(II)-scavenger. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:621-625. [DOI: 10.1080/21691401.2019.1574264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sehan Jeong
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Sung Hyun Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jiye Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yonghwan Kim
- Daisung Green Tech, Gyeonggi-do, Republic of Korea
| | - Miran Lee
- Daisung Green Tech, Gyeonggi-do, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Conical nanofluidic channel for selective quantitation of melamine in combination with β-cyclodextrin and a single-walled carbon nanotube. Biosens Bioelectron 2019; 127:200-206. [DOI: 10.1016/j.bios.2018.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Xie L, Zi X, Zeng H, Sun J, Xu L, Chen S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal Chim Acta 2018; 1053:131-138. [PMID: 30712558 DOI: 10.1016/j.aca.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
Abstract
Despite that microfluidic paper-based analytical devices (μPADs) provide effective analytical platforms for point-of-care diagnosis in resource-limited areas, it remains challenging to achieve simple and low-cost fabrication of μPADs. A novel method for fabrication of μPADs is developed in this study using a folded polydimethylsiloxane (PDMS)-coated paper mask with a specific pattern to form a sandwich structure with inserted chromatographic paper. PDMS penetrates the target paper from the front and the back sides, and then is cured in the target paper to form legible channels. This method for prototyping μPADs has many favorable merits including simple operation without the need of trained personnel, fast fabrication and low cost. We further investigated colorimetric detection of melamine in the μPADs, and it showed a remarkable measurement with a detection limit of 0.1 ppm in aqueous solutions and liquid milk discriminated by the naked eye, which meets the detection limit required by USA and China. The fabricating strategy developed in this study is very promising and attractive for the development of simple μPADs for point-of-care applications, including diagnostic testing, food safety control and environmental monitoring.
Collapse
Affiliation(s)
- Liping Xie
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Xingyu Zi
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Hedele Zeng
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Lisheng Xu
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Shuo Chen
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| |
Collapse
|
20
|
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Leng X, Tu Y, Wu Y, Wang Y, Liu S, Pei Q, Cui X, Huang J. Exonuclease III-aided recycling amplification of proximity ligation assay using thymine-melamine-thymine triplex structure for ultrasensitive fluorometric determination of melamine. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Fu Y, Jin H, Bu X, Gui R. Melamine-Induced Decomposition and Anti-FRET Effect from a Self-Assembled Complex of Rhodamine 6G and DNA-Stabilized Silver Nanoclusters Used for Dual-Emitting Ratiometric and Naked-Eye-Visible Fluorescence Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9819-9827. [PMID: 30160493 DOI: 10.1021/acs.jafc.8b03402] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, blue-emitting silver nanoclusters (AgNCs) were prepared in a matrix of single-stranded deoxyribonucleic acid (DNA) on the basis of ambient hydrothermal reactions. DNA acted as the stabilizer or coating agent, and NaBH4 was used as the reducing agent. Through the interactions between rhodamine 6G (Rh6G) and the synthesized DNA-AgNCs, the self-assembled complex of DNA-AgNC-Rh6G was generated. Meanwhile, fluorescence emission of AgNCs was weakened as a result of fluorescence-resonance-energy transfer (FRET) from AgNCs (donor) to Rh6G (acceptor). In the DNA-AgNC-Rh6G complex aqueous suspension, the addition of melamine induced obvious emission recovery of AgNCs and fluorescence decrease of Rh6G, attributable to melamine-induced decomposition of the self-assembled complex and anti-FRET effects. There was a well-plotted linear relationship of ratiometric fluorescence intensities ( IAgNCs/ IRh6G) versus melamine concentration in the range of 0.1-10 μM, with a low detection limit of 25 nM. Responses of IAgNCs/ IRh6G to melamine were highly selective and sensitive over potential interferents. A novel dual-emitting ratiometric fluorescence sensor of melamine was facilely constructed on the basis of the DNA-AgNC-Rh6G complex. In particular, the sensor enabled visual fluorescence detection of melamine both in aqueous solution and on wetted filter paper. Superior detection results of the sensor were experimentally obtained and confirmed its high feasibility for melamine detection in practical samples.
Collapse
Affiliation(s)
- Yongxin Fu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory , Qingdao University , Shandong 266071 , PR China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory , Qingdao University , Shandong 266071 , PR China
| | - Xiangning Bu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory , Qingdao University , Shandong 266071 , PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory , Qingdao University , Shandong 266071 , PR China
| |
Collapse
|
23
|
Arfaoui F, Khlifi A, Bargaoui M, Khalfaoui M, Kalfat R. Thin Melamine Imprinted Sol Gel Coating on Silica Beads: Experimental and Statistical Physics Study. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0015-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Falcone CE, Jaman Z, Wleklinski M, Koswara A, Thompson DH, Cooks RG. Reaction screening and optimization of continuous-flow atropine synthesis by preparative electrospray mass spectrometry. Analyst 2018; 142:2836-2845. [PMID: 28703239 DOI: 10.1039/c7an00622e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preparative electrospray (ES) exploits the acceleration of reactions in charged microdroplets to perform a small scale chemical synthesis. In combination with on-line mass spectrometric (MS) analysis, it constitutes a rapid screening tool to select reagents to generate specific products. A successful reaction in preparative ES triggers a refined microfluidic reaction screening procedure which includes the optimization for stoichiometry, temperature and residence time. We apply this combined approach for refining a flow synthesis of atropine. A successful preparative ES pathway for the synthesis of the phenylacetyl ester intermediate, using tropine/HCl/phenylacetyl chloride, was optimized for solvent in both the preparative ES and microfluidics flow systems and a base screening was conducted by both methods to increase atropine yield, increase percentage conversion and reduce byproducts. In preparative ES, the first step yielded 55% conversion (judged using MS) to intermediate and the second step yielded 47% conversion to atropine. When combined in two discrete steps in continuous-flow microfluidics, a 44% conversion of the starting material and a 30% actual yield of atropine were achieved. When the reactions were continuously telescoped in a new form of preparative reactive extractive electrospray (EES), atropine was synthesized with a 24% conversion. The corresponding continuous-flow microfluidics experiment gave a 55% conversion with an average of 34% yield in 8 min residence time. This is the first in depth study to utilize telescoped preparative ES and the first use of dual ESI emitters for multistep synthesis.
Collapse
Affiliation(s)
- Caitlin E Falcone
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Zinia Jaman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Michael Wleklinski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - Andy Koswara
- Chemical Engineering, Purdue University, 480 W Stadium Ave., West Lafayette, IN 47907, USA
| | - David H Thompson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Li WL, Kong FZ, Zhang Q, Liu WW, Kong H, Liu XP, Khan MI, Wahid A, Saud S, Xiao H, Cao CX, Fan LY. Simple Chip Electrophoresis Titration of Neutralization Boundary with EDTA Photocatalysis for Distance-Based Sensing of Melamine in Dairy Products. Anal Chem 2018; 90:6710-6717. [DOI: 10.1021/acs.analchem.8b00543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen-Lin Li
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-Zhi Kong
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Wen Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Kong
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Ping Liu
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad-Idrees Khan
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Amir Wahid
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shah Saud
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng-Xi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu-Yin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Liu X, Xu N, Gai P, Li F. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine. Talanta 2018; 185:352-358. [PMID: 29759211 DOI: 10.1016/j.talanta.2018.03.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/11/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Since melamine is a strong hazard to human health, the development of new methods for highly sensitive detection of melamine is highly desirable. Herein, a novel fluorescent biosensing strategy was designed for sensitive and selective melamine assay based on the recognition ability of abasic (AP) site in triplex towards melamine and signal amplification by Mg2+-dependent DNAzyme. In this strategy, the melamine-induced formation of triplex DNA was employed to trigger the strand displacement reaction (SDR). The SDR process converted the specific target recognition into the release and activation of Mg2+-dependent DNAzyme, which could catalyze the cleavage of fluorophore/quencher labeled DNA substrate (FQ), resulting in a significantly increased fluorescent signal. Under the optimal conditions, the fluorescent signal has a linear relationship with the logarithm of the melamine concentration in a wide range of 0.005-50 μM. The detection limit was estimated to be 0.9 nM (0.1ppb), which is sufficiently sensitive for practical application. Furthermore, this strategy exhibits high selectivity against other potential interfering substances, and the practical application of this strategy for milk samples reveals that the proposed strategy works well for melamine assay in real samples. Therefore, this strategy presents a new method for the sensitive melamine assay and holds great promise for sensing applications in the environment and the food safety field.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ningning Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; Key Laboratory of Applied Mycology of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China.
| |
Collapse
|
27
|
Tang L, Mo S, Liu SG, Ling Y, Zhang XF, Li NB, Luo HQ. A Sensitive "Turn-On" Fluorescent Sensor for Melamine Based on FRET Effect between Polydopamine-Glutathione Nanoparticles and Ag Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2174-2179. [PMID: 29420884 DOI: 10.1021/acs.jafc.7b05245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, Ag nanoparticles (AgNPs) were synthesized quickly by a one-step method utilizing polydopamine-glutathione nanoparticles (PDA-GNPs) as a reducing agent. The PDA-GNPs and the generated AgNPs acted as the energy donor and acceptor, respectively. Accordingly, the fluorescence of PDA-GNPs was quenched on the basis of fluorescence resonance energy transfer (FRET). In the presence of melamine, the preferential combination of Ag(I) and melamine to form Ag(I)-melamine complex prevents Ag(I) from forming AgNPs, together with fluorescence enhancement compared with the absence of melamine. Under the optimal conditions including the concentration of AgNO3, reaction time, reaction temperature, and pH, the fluorescence enhancement efficiency has a linear response to the concentration of melamine from 0.1 to 40 μM with a detection limit of 23 nM for melamine. The proposed method is simple, time-saving, and low-cost, which was further applied to detect melamine in real milk products with satisfactory results.
Collapse
Affiliation(s)
- Li Tang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Shi Mo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Shi Gang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Yu Ling
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Xiao Fang Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
28
|
Kumbhani S, Longin T, Wingen LM, Kidd C, Perraud V, Finlayson-Pitts BJ. New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles. Anal Chem 2018; 90:2055-2062. [DOI: 10.1021/acs.analchem.7b04164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Kumbhani
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697-2025, United States
| | - T. Longin
- Department
of Chemistry, University of Redlands, Redlands, California 92373, United States
| | - L. M. Wingen
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697-2025, United States
| | - C. Kidd
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697-2025, United States
| | - V. Perraud
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697-2025, United States
| | - B. J. Finlayson-Pitts
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
29
|
Han X, Qin Z, Zhao M, Song J, Qu F, Qu F, Kong RM. Convenient and sensitive colorimetric detection of melamine in dairy products based on Cu(ii)-H2O2-3,3′,5,5′-tetramethylbenzidine system. RSC Adv 2018; 8:34877-34882. [PMID: 35547033 PMCID: PMC9087323 DOI: 10.1039/c8ra07167e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The illegal adulteration of melamine in dairy products for false protein content increase is a strong hazard to human health. Herein, a simple and sensitive colorimetric method was developed for the quantification of melamine in dairy products based on a Cu2+-hydrogen peroxide (H2O2)-3,3′,5,5′-tetramethylbenzidine (TMB) system. In this strategy, Cu2+ exhibits peroxidase-like activity and can catalyze the oxidation of TMB to oxidized TMB (oxTMB) in the presence of H2O2 with a blue colour change of the solution. However, the presence of melamine quickly interacts with H2O2 leading to the consumption of H2O2 and thus strongly hinders the oxidation of TMB. Under the optimal conditions, the absorbance change of oxTMB has a linear response to the concentration of melamine from 1 to 100 μM with a detection limit of 0.5 μM for melamine. The proposed method has many merits including more simplicity, good selectivity, and more cost-effectiveness without using any nanomaterials. The method was further successfully applied to detect melamine in dairy products including milk and infant formula powder. Convenient and sensitive colorimetric detection of melamine in dairy products based on a Cu(ii)-H2O2-3,3′,5,5′-tetramethylbenzidine system was reported.![]()
Collapse
Affiliation(s)
- Xue Han
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Zhixin Qin
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Mengyao Zhao
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Jiajia Song
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Fei Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|
30
|
Sheng Y, You Y, Cao Z, Liu L, Wu HC. Rapid and selective DNA-based detection of melamine using α-hemolysin nanopores. Analyst 2018; 143:2411-2415. [DOI: 10.1039/c8an00580j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed a rapid and selective approach for the detection of melamine based on simple DNA probes and α-hemolysin nanopores.
Collapse
Affiliation(s)
- Yingying Sheng
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha 410114
| | - Yi You
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha 410114
| | - Zhong Cao
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha 410114
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Hai-Chen Wu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
31
|
Multi-channel microfluidic chip coupling with mass spectrometry for simultaneous electro-sprays and extraction. Sci Rep 2017; 7:17389. [PMID: 29234133 PMCID: PMC5727197 DOI: 10.1038/s41598-017-17764-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Considering the advantages and research status of microfluidic chip coupling with mass spectrometry (MS), a microfluidic chip-based multi-channel ionization (MCMCI) for the extraction of untreated compounds in complex matrices without sample pretreatments was developed. Quantitative analysis of human urine spiked with various rhodamine B concentrations was also performed, and good linearity was obtained. Comparing to the macro ionization device, MCMCI significantly improved the integration of ionization source, simplified the operation of such a device, and greatly increased the signal intensity with much lower gas pressure. Comparison of our MCMCI with two and three gas channels indicated that the liquid–liquid extraction process before spraying and after spraying produced similar MS results. Moreover, this MCMCI with three gas channels also implemented simultaneous dual sprays with high DC voltages, the interference of two samples was minor and ion suppression effect was drastically alleviated. Such advantages may easily enable internal calibration for accurate mass measurement. Furthermore, dual extraction can be implemented by integrating such multi-spray configuration, which can improve the extracted signal intensity and sensitivity. These technologies open up new avenues for the application of microfluidic chip coupling with MS.
Collapse
|
32
|
Wu ML, Chen TY, Chen YC, Chen YC. Carbon Fiber Ionization Mass Spectrometry for the Analysis of Analytes in Vapor, Liquid, and Solid Phases. Anal Chem 2017; 89:13458-13465. [DOI: 10.1021/acs.analchem.7b03736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min-Li Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Te-Yu Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yen-Chun Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
33
|
A Electrochemical Sensor for Melamine Detection Based on Copper-Melamine Complex Using OMC Modified Glassy Carbon Electrode. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1025-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Automatic ionic liquid-enhanced membrane microextraction for the determination of melamine in food samples. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Melamine Detection in Milk and Dairy Products: Traditional Analytical Methods and Recent Developments. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0984-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Liu X, Song M, Li F. Triplex DNA-based Bioanalytical Platform for Highly Sensitive Homogeneous Electrochemical Detection of Melamine. Sci Rep 2017; 7:4490. [PMID: 28674450 PMCID: PMC5495805 DOI: 10.1038/s41598-017-04812-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
Melamine detection has attracted much attention since the discovery of the damage of melamine to human health. Herein, we have developed a sensitive homogeneous electroanalytical platform for melamine detection, which is relied on the formation of triplex molecular beacon integrated with exonuclease III (Exo III)-mediated signal amplification. The formation of triplex molecular beacon was triggered by the recognition and incorporation of melamine to the abasic (AP) site contained in the triplex stem. The stem of the triplex molecular beacon was designed to have a protruding double-strand DNA, which can be recognized and hydrolyzed by Exo III for releasing methylene blue (MB)-labeled mononucleotide. These released MB molecules exhibit high diffusivity toward indium tin oxide electrode with negative charge, thus producing a significantly increased electrochemical response. Taking advantages of the high binding affinity of the DNA triplex structure containing AP sites towards melamine and the unique features of Exo III, this sensing platform is capable for sensitive and selective melamine assay with a detection limit as low as 8.7 nM. Furthermore, this strategy shows good applicability for melamine assay in real samples. Therefore, this strategy broadens the application of triplex DNA and presents a new method for sensitive detection of melamine.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Mengmeng Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
37
|
Chang K, Wang S, Zhang H, Guo Q, Hu X, Lin Z, Sun H, Jiang M, Hu J. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. PLoS One 2017; 12:e0177131. [PMID: 28475597 PMCID: PMC5419598 DOI: 10.1371/journal.pone.0177131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/21/2017] [Indexed: 11/19/2022] Open
Abstract
A biosensing system with optical fibers is proposed for the colorimetric detection of melamine in liquid milk samples by using the localized surface plasmon resonance (LSPR) of unmodified gold nanoparticles (AuNPs). The biosensing system consists of a broadband light source that covers the spectral range from 200 nm to 1700 nm, an optical attenuator, three types of 600 μm premium optical fibers with SMA905 connectors and a miniature spectrometer with a linear charge coupled device (CCD) array. The biosensing system with optical fibers is low-cost, simple and is well-proven for the detection of melamine. Its working principle is based on the color changes of AuNPs solution from wine-red to blue due to the inter-particle coupling effect that causes the shifts of wavelength and absorbance in LSPR band after the to-be-measured melamine samples were added. Under the optimized conditions, the detection response of the LSPR biosensing system was found to be linear in melamine detection in the concentration range from 0μM to 0.9 μM with a correlation coefficient (R2) 0.99 and a detection limit 33 nM. The experimental results obtained from the established LSPR biosensing system in the actual detection of melamine concentration in liquid milk samples show that this technique is highly specific and sensitive and would have a huge application prospects.
Collapse
Affiliation(s)
- Keke Chang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shun Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
| | - Qingqian Guo
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Xinran Hu
- School of Human Nutrition and Dietetics, McGill University, Macdonald Campus, Ste Anne de Bellevue, Quebec, Canada
| | - Zhili Lin
- College of Information Science and Engineering, Huaqiao University, Xiamen, China
| | - Haifeng Sun
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Min Jiang
- College of life sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
- * E-mail:
| |
Collapse
|
38
|
Hu H, Zhang J, Ding Y, Zhang X, Xu K, Hou X, Wu P. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine. Anal Chem 2017; 89:5101-5106. [DOI: 10.1021/acs.analchem.7b00666] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | | | | | | |
Collapse
|
39
|
|
40
|
Guo T, Yong W, Jin Y, Zhang L, Liu J, Wang S, Chen Q, Dong Y, Su H, Tan T. Applications of DART-MS for food quality and safety assurance in food supply chain. MASS SPECTROMETRY REVIEWS 2017; 36:161-187. [PMID: 25975720 DOI: 10.1002/mas.21466] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
Direct analysis in real time (DART) represents a new generation of ion source which is used for rapid ionization of small molecules under ambient conditions. The combination of DART and various mass spectrometers allows analyzing multiple food samples with simple or no sample treatment, or in conjunction with prevailing protocolized sample preparation methods. Abundant applications by DART-MS have been reviewed in this paper. The DART-MS strategy applied to food supply chain (FSC), including production, processing, and storage and transportation, provides a comprehensive solution to various food components, contaminants, authenticity, and traceability. Additionally, typical applications available in food analysis by other ambient ionization mass spectrometers were summarized, and fundamentals mainly including mechanisms, devices, and parameters were discussed as well. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:161-187, 2017.
Collapse
Affiliation(s)
- Tianyang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wei Yong
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, P.R. China
| | - Yong Jin
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, P.R. China
| | - Liya Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiahui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Sai Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qilong Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yiyang Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
41
|
Usmanov DT, Ninomiya S, Chen LC, Saha S, Mandal MK, Sakai Y, Takaishi R, Habib A, Hiraoka K, Yoshimura K, Takeda S, Wada H, Nonami H. Desorption in Mass Spectrometry. ACTA ACUST UNITED AC 2017; 6:S0059. [PMID: 28337398 DOI: 10.5702/massspectrometry.s0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.
Collapse
Affiliation(s)
| | - Satoshi Ninomiya
- Graduate School, Department of Interdisciplinary Research, University of Yamanashi
| | - Lee Chuin Chen
- Graduate School, Department of Interdisciplinary Research, University of Yamanashi
| | | | | | - Yuji Sakai
- Clean Energy Research Center, University of Yamanashi
| | - Rio Takaishi
- Clean Energy Research Center, University of Yamanashi
| | - Ahsan Habib
- Clean Energy Research Center, University of Yamanashi
| | - Kenzo Hiraoka
- Clean Energy Research Center, University of Yamanashi
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Hiroshi Wada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization
| | - Hiroshi Nonami
- Plant Biophysics/Biochemistry Research Laboratory, Faculty of Agriculture, Ehime University
| |
Collapse
|
42
|
Gautam S, Batule BS, Kim HY, Park KS, Park HG. Smartphone-based portable wireless optical system for the detection of target analytes. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shreedhar Gautam
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Bhagwan S Batule
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program); Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
43
|
Bittar DB, Catelani TA, Nigoghossian K, Barud HDS, Ribeiro SJL, Pezza L, Pezza HR. Optimized Synthesis of Silver Nanoparticles by Factorial Design with Application for the Determination of Melamine in Milk. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1196213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dayana Borges Bittar
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| | - Tiago Augusto Catelani
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| | - Karina Nigoghossian
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| | - Sidney José Lima Ribeiro
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| | - Leonardo Pezza
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| | - Helena Redigolo Pezza
- Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, São Paulo, Brazil
| |
Collapse
|
44
|
Qu F, Xu X, You J. A new dual-emission fluorescence sensor based on carbon nanodots and gold nanoclusters for the detection of melamine. NEW J CHEM 2017. [DOI: 10.1039/c7nj02594g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new dual-emission fluorescence sensor is developed to detect melamine, in which the gold nanoclusters serve as the signal section and the carbon nanodots serve as the internal reference.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis
- Qufu Normal University
- Qufu 273165
- China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
| | - Xiao Xu
- The Key Laboratory of Life-Organic Analysis
- Qufu Normal University
- Qufu 273165
- China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis
- Qufu Normal University
- Qufu 273165
- China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
| |
Collapse
|
45
|
Ambient Desorption/Ionization. Mass Spectrom (Tokyo) 2017. [DOI: 10.1007/978-3-319-54398-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
46
|
Azad T, Ahmed S. Common milk adulteration and their detection techniques. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2016. [DOI: 10.1186/s40550-016-0045-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Yang X, Jia Z, Tan Z, Xu H, Luo N, Liao X. Determination of melamine in infant formulas by fluorescence quenching based on the functionalized Au nanoclusters. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Zhou N, Zhou Q, Meng G, Huang Z, Ke Y, Liu J, Wu N. Incorporation of a Basil-Seed-Based Surface Enhanced Raman Scattering Sensor with a Pipet for Detection of Melamine. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ningning Zhou
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Qitao Zhou
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Guowen Meng
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhulin Huang
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Ke
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jing Liu
- Key
Laboratory of Materials Physics, CAS Center for Excellence in Nanoscience,
and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute
of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Nianqiang Wu
- Department
of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, West Virginia 26506, United States
| |
Collapse
|
49
|
Lenzen C, Winterfeld GA, Schmitz OJ. Comparison of piracetam measured with HPLC-DAD, HPLC-ESI-MS, DIP-APCI-MS, and a newly developed and optimized DIP-ESI-MS. Anal Bioanal Chem 2016; 408:4103-10. [DOI: 10.1007/s00216-016-9499-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
50
|
Correa DN, Santos JM, Eberlin LS, Eberlin MN, Teunissen SF. Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage? Anal Chem 2016; 88:2515-26. [DOI: 10.1021/acs.analchem.5b02397] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deleon N. Correa
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
- Technical-Scientific Police Superintendence—IC-SPTC-SP, São Paulo, São Paulo 05507-06, Brazil
| | - Jandyson M. Santos
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Livia S. Eberlin
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712 United States
| | - Marcos N. Eberlin
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Sebastiaan F. Teunissen
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|