1
|
Murphy AR, Ng XJ, Lidgerwood G, Pébay A, Truong YB, O'Brien CM, Glattauer V. Functionalized Collagen I Membranes as a Bruch's Membrane Mimetic for Outer Retinal In Vitro Models. ACS Biomater Sci Eng 2024; 10:5653-5665. [PMID: 39133836 PMCID: PMC11388139 DOI: 10.1021/acsbiomaterials.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Physiologically relevant in vitro models of the human outer retina are required to better elucidate the complex interplay of retinal tissue layers and investigate their role in retinal degenerative disorders. Materials currently used to mimic the function of Bruch's membrane fail to replicate a range of important structural, mechanical, and biochemical properties. Here, we detail the fabrication of a surface-functionalized, fibrous collagen I membrane. We demonstrate its ability to better replicate a range of important material properties akin to the function of human Bruch's membrane when compared with a commonly utilized synthetic polyethylene terephthalate alternative. We further reveal the ability of this membrane to support the culture of the ARPE-19 cell line, as well as human pluripotent stem cell-derived RPE-like cells and human umbilical vein endothelial cells. This material could provide greater physiological relevance to the native Bruch's membrane than current synthetic materials and further improve the outcomes of in vitro outer retinal models.
Collapse
Affiliation(s)
- Ashley R Murphy
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| | - Xuen Jen Ng
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| | - Grace Lidgerwood
- Department of Anatomy and Physiology, the University of Melbourne, Parkville 3010, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, the University of Melbourne, Parkville 3010, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, the University of Melbourne, Parkville 3050, VIC, Australia
| | - Yen B Truong
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| | - Carmel M O'Brien
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton 3168, Australia
| | - Veronica Glattauer
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton 3168, VIC, Australia
| |
Collapse
|
2
|
Koçak G, Uyulgan S, Polatlı E, Sarı V, Kahveci B, Bursali A, Binokay L, Reçber T, Nemutlu E, Mardinoğlu A, Karakülah G, Utine CA, Güven S. Generation of Anterior Segment of the Eye Cells from hiPSCs in Microfluidic Platforms. Adv Biol (Weinh) 2024; 8:e2400018. [PMID: 38640945 DOI: 10.1002/adbi.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Indexed: 04/21/2024]
Abstract
Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.
Collapse
Affiliation(s)
- Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sude Uyulgan
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Elifsu Polatlı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Burak Kahveci
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
| | - Leman Binokay
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, 35340, Türkiye
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, 35340, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, 35340, Türkiye
- Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, 35340, Türkiye
| |
Collapse
|
3
|
Du XY, Yang JY. Biomimetic microfluidic chips for toxicity assessment of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170745. [PMID: 38340832 DOI: 10.1016/j.scitotenv.2024.170745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.
Collapse
Affiliation(s)
- Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China..
| |
Collapse
|
4
|
Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv Healthc Mater 2023; 12:e2203256. [PMID: 37018430 PMCID: PMC11468608 DOI: 10.1002/adhm.202203256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Indexed: 04/07/2023]
Abstract
The extracellular matrix (ECM) is a complex, dynamic network present within all tissues and organs that not only acts as a mechanical support and anchorage point but can also direct fundamental cell behavior, function, and characteristics. Although the importance of the ECM is well established, the integration of well-controlled ECMs into Organ-on-Chip (OoC) platforms remains challenging and the methods to modulate and assess ECM properties on OoCs remain underdeveloped. In this review, current state-of-the-art design and assessment of in vitro ECM environments is discussed with a focus on their integration into OoCs. Among other things, synthetic and natural hydrogels, as well as polydimethylsiloxane (PDMS) used as substrates, coatings, or cell culture membranes are reviewed in terms of their ability to mimic the native ECM and their accessibility for characterization. The intricate interplay among materials, OoC architecture, and ECM characterization is critically discussed as it significantly complicates the design of ECM-related studies, comparability between works, and reproducibility that can be achieved across research laboratories. Improving the biomimetic nature of OoCs by integrating properly considered ECMs would contribute to their further adoption as replacements for animal models, and precisely tailored ECM properties would promote the use of OoCs in mechanobiology.
Collapse
Affiliation(s)
- Hazal Kutluk
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Effie E. Bastounis
- Institute of Microbiology and Infection Medicine (IMIT)Eberhard Karls University of TübingenAuf der Morgenstelle 28, E872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” EXC 2124Eberhard Karls University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
5
|
Li Q, Wong HL, Ip YL, Chu WY, Li MS, Saha C, Shih KC, Chan YK. Current microfluidic platforms for reverse engineering of cornea. Mater Today Bio 2023; 20:100634. [PMID: 37139464 PMCID: PMC10149412 DOI: 10.1016/j.mtbio.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
According to the World Health Organization, corneal blindness constitutes 5.1% of global blindness population. Surgical outcomes have been improved significantly in the treatment of corneal blindness. However, corneal transplantation is limited by global shortage of donor tissue, prompting researchers to explore alternative therapies such as novel ocular pharmaceutics to delay corneal disease progression. Animal models are commonly adopted for investigating pharmacokinetics of ocular drugs. However, this approach is limited by physiological differences in the eye between animals and human, ethical issues and poor bench-to-bedside translatability. Cornea-on-a-chip (CoC) microfluidic platforms have gained great attention as one of the advanced in vitro strategies for constructing physiologically representative corneal models. With significant improvements in tissue engineering technology, CoC integrates corneal cells with microfluidics to recapitulate human corneal microenvironment for the study of corneal pathophysiological changes and evaluation of ocular drugs. Such model, in complement to animal studies, can potentially accelerate translational research, in particular the pre-clinical screening of ophthalmic medication, driving clinical treatment advancement for corneal diseases. This review provides an overview of engineered CoC platforms with respect to their merits, applications, and technical challenges. Emerging directions in CoC technology are also proposed for further investigations, to accentuate preclinical obstacles in corneal research.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Ho Lam Wong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yan Lam Ip
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Wang Yee Chu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Man Shek Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Chinmoy Saha
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Kendrick Co Shih
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yau Kei Chan
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
6
|
Miyamoto Y. Cryopreservation of Cell Sheets for Regenerative Therapy: Application of Vitrified Hydrogel Membranes. Gels 2023; 9:gels9040321. [PMID: 37102933 PMCID: PMC10137452 DOI: 10.3390/gels9040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Organ transplantation is the first and most effective treatment for missing or damaged tissues or organs. However, there is a need to establish an alternative treatment method for organ transplantation due to the shortage of donors and viral infections. Rheinwald and Green et al. established epidermal cell culture technology and successfully transplanted human-cultured skin into severely diseased patients. Eventually, artificial cell sheets of cultured skin were created, targeting various tissues and organs, including epithelial sheets, chondrocyte sheets, and myoblast cell sheets. These sheets have been successfully used for clinical applications. Extracellular matrix hydrogels (collagen, elastin, fibronectin, and laminin), thermoresponsive polymers, and vitrified hydrogel membranes have been used as scaffold materials to prepare cell sheets. Collagen is a major structural component of basement membranes and tissue scaffold proteins. Collagen hydrogel membranes (collagen vitrigel), created from collagen hydrogels through a vitrification process, are composed of high-density collagen fibers and are expected to be used as carriers for transplantation. In this review, the essential technologies for cell sheet implantation are described, including cell sheets, vitrified hydrogel membranes, and their cryopreservation applications in regenerative medicine.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Graduate School of BASE, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Department of Mechanical Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
7
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Looking into the Eyes—In Vitro Models for Ocular Research. Int J Mol Sci 2022; 23:ijms23169158. [PMID: 36012421 PMCID: PMC9409455 DOI: 10.3390/ijms23169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Animal research undoubtedly provides scientists with virtually unlimited data but inflicts pain and suffering on animals. Currently, legislators and scientists alike are promoting alternative in vitro approaches allowing for an accurate evaluation of processes occurring in the body without animal sacrifice. Historically, one of the most infamous animal tests is the Draize test, mainly performed on rabbits. Even though this test was considered the gold standard for around 50 years, the Draize test fails to mimic human response mainly due to human and rabbit eye physiological differences. Therefore, many alternative assays were developed to evaluate ocular toxicity and drug effectiveness accurately. Here we review recent achievements in tissue engineering of in vitro 2D, 2.5D, 3D, organoid and organ-on-chip ocular models, as well as in vivo and ex vivo models in terms of their advantages and limitations.
Collapse
|
9
|
Recent advances in lung-on-a-chip models. Drug Discov Today 2022; 27:2593-2602. [PMID: 35724916 DOI: 10.1016/j.drudis.2022.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
With the global burden of respiratory diseases, rapid identification of the best therapeutic measures to combat these diseases is essential. Animal models and 2D cell culture models do not replicate the findings observed in vivo. To gain deeper insight into lung pathology and physiology, 3D and advanced lung-on-a-chip models have been developed recently. Lung-on-a-chip models more accurately simulate the lung's microenvironment and functions in vivo, resulting in more-accurate assessments of drug safety and effectiveness. This review discusses the transition from 2D to 3D models and the recent advances in lung-on-a-chip platforms, their implementation and the numerous challenges faced. Finally, a general overview of this platform and its potential applications in respiratory disease research and drug discovery is highlighted.
Collapse
|
10
|
Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022; 16:683-706. [PMID: 35585479 DOI: 10.1002/term.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Cornea as the outermost layer of the eye is at risk of various genetic and environmental diseases that can damage the cornea and impair vision. Corneal transplantation is among the most applicable surgical procedures for repairing the defected tissue. However, the scarcity of healthy tissue donations as well as transplantation failure has remained as the biggest challenges in confront of corneal grafting. Therefore, alternative approaches based on stem-cell transplantation and classic regenerative medicine have been developed for corneal regeneration. In this review, the application and limitation of the recently-used advanced approaches for regeneration of cornea are discussed. Additionally, other emerging powerful techniques such as 5D printing as a new branch of scaffold-based technologies for construction of tissues other than the cornea are highlighted and suggested as alternatives for corneal reconstruction. The introduced novel techniques may have great potential for clinical applications in corneal repair including disease modeling, 3D pattern scheming, and personalized medicine.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge L Alio
- Department of Research and Development, VISSUM, Alicante, Spain.,Cornea, Cataract and Refractive Surgery Department, VISSUM, Alicante, Spain.,Department of Pathology and Surgery, Division of Ophthalmology, Faculty of Medicine, Miguel Hernández University, Alicante, Spain
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Choi B, Choi JW, Jin H, Sim HR, Park JH, Park TE, Kang JH. Condensed ECM-based nanofilms on highly permeable PET membranes for robust cell-to-cell communications with improved optical clarity. Biofabrication 2021; 13. [PMID: 34479224 DOI: 10.1088/1758-5090/ac23ad] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
The properties of a semipermeable porous membrane, including pore size, pore density, and thickness, play a crucial role in creating a tissue interface in a microphysiological system (MPS) because it dictates multicellular interactions between different compartments. The small pore-sized membrane has been preferentially used in an MPS for stable cell adhesion and the formation of tissue barriers on the membrane. However, it limited the applicability of the MPS because of the hindered cell transmigration via sparse through-holes and the optical translucence caused by light scattering through pores. Thus, there remain unmet challenges to construct a compartmentalized MPS without those drawbacks. Here we report a submicrometer-thickness (∼500 nm) fibrous extracellular matrix (ECM) film selectively condensed on a large pore-sized track-etched (TE) membrane (10µm-pores) in an MPS device, which enables the generation of functional tissue barriers simultaneously achieving optical transparency, intercellular interactions, and transmigration of cells across the membrane. The condensed ECM fibers uniformly covering the surface and 10µm-pores of the TE membrane permitted sufficient surface areas where a monolayer of the human induced pluripotent stem cell-derived brain endothelial cells is formed in the MPS device. The functional maturation of the blood-brain barrier (BBB) was proficiently achieved due to astrocytic endfeet sheathing the brain endothelial cells through 10µm pores of the condensed-ECM-coated TE (cECMTE) membrane. We also demonstrated the extravasation of human metastatic breast tumor cells through the human BBB on the cECMTE membrane. Thus, the cECMTE membrane integrated with an MPS can be used as a versatile platform for studying various intercellular communications and migration, mimicking the physiological barriers of an organ compartment.
Collapse
Affiliation(s)
- Brian Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyungwon Jin
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hye-Rim Sim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Benítez-Del-Castillo JM, Molina-Martínez IT. Combined hyperosmolarity and inflammatory conditions in stressed human corneal epithelial cells and macrophages to evaluate osmoprotective agents as potential DED treatments. Exp Eye Res 2021; 211:108723. [PMID: 34384756 DOI: 10.1016/j.exer.2021.108723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE To develop an easy-to-perform combined model in human corneal epithelial cells (HCECs) and Balb/c mice macrophages J774.A1 (MP) for preliminary screening of potential ophthalmic therapeutic substances. METHODS HCECs were exposed to different osmolarities (350-500 mOsm/L) and MTT assay was employed for cell survival and flow cytometry to assess apoptosis-necrosis and relative cell size (RCS) distribution. Effectiveness of Betaine, L-Carnitine, Taurine at different concentrations (ranging from 20 mM to 200 mM) was studied. Also, mucoadhesive polymers such as Hyaluronic acid (HA) and Hydroxypropylmethylcellulose (HPMC) (0.4 and 0.8%) were evaluated. Cells were pre-incubated with the compounds (8h) and then exposed to hyperosmotic stress (470 mOsm/L) for 16h. Moreover, anti-inflammatory activity was performed in LPS-stimulated MP. RESULTS Exposure to hyperosmotic solutions between 450 and 500 mOsm/L promoted the highest cell death after 16h exposures (p < 0.0001) with a drop in viability to 34.96% ± 11.77 for 470 mOsm/L. Pre-incubation with Betaine at 150 mM and 200 mM provided the highest cell survival against hyperosmolarity (66.01% ± 3.65 and 65.90% ± 0.78 respectively) while HA 0.4% was the most effective polymer in preventing cell death (42.2% ± 3.60). Flow cytometry showed that Betaine and Taurine at concentrations between 150-200 mM and 20-80 mM respectively presented the highest anti-apoptotic activity. Also, HA and HPMC polymers reduced apoptotic-induced cell death. All osmoprotectants modified RCS, and polymers increased their value over 100%. L-Carnitine 50 mM, Taurine 40 mM and HA 0.4% presented the highest TNF-α inhibition activity (60%) albeit all of them showed anti-inflammatory inhibition percentages higher than 20% CONCLUSIONS: HCECs hyperosmolar model combined with inflammatory conditions in macrophages allows the screening of osmoprotectants by simulating chronic hyperosmolarity (16h) and inflammation (24h).
Collapse
Affiliation(s)
- J J López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Plaza Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain; Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, 28040, Spain
| | - M A González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Plaza Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain
| | - V Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Plaza Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain; Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, 28040, Spain
| | - R Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Plaza Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain; Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, 28040, Spain.
| | - J M Benítez-Del-Castillo
- Ocular Surface and Inflammation Unit, Ophthalmology Department, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, 28040, Spain
| | - I T Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Plaza Ramón y Cajal s/n, Universidad Complutense, 28040 Madrid, Spain; Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, 28040, Spain.
| |
Collapse
|
13
|
Arık YB, de Sa Vivas A, Laarveld D, van Laar N, Gemser J, Visscher T, van den Berg A, Passier R, van der Meer AD. Collagen I Based Enzymatically Degradable Membranes for Organ-on-a-Chip Barrier Models. ACS Biomater Sci Eng 2021; 7:2998-3005. [PMID: 33625834 PMCID: PMC8278385 DOI: 10.1021/acsbiomaterials.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organs-on-chips are microphysiological in vitro models of human organs and tissues that rely on culturing cells in a well-controlled microenvironment that has been engineered to include key physical and biochemical parameters. Some systems contain a single perfused microfluidic channel or a patterned hydrogel, whereas more complex devices typically employ two or more microchannels that are separated by a porous membrane, simulating the tissue interface found in many organ subunits. The membranes are typically made of synthetic and biologically inert materials that are then coated with extracellular matrix (ECM) molecules to enhance cell attachment. However, the majority of the material remains foreign and fails to recapitulate the native microenvironment of the barrier tissue. Here, we study microfluidic devices that integrate a vitrified membrane made of collagen-I hydrogel (VC). The biocompatibility of this membrane was confirmed by growing a healthy population of stem cell derived endothelial cells (iPSC-EC) and immortalized retinal pigment epithelium (ARPE-19) on it and assessing morphology by fluorescence microscopy. Moreover, VC membranes were subjected to biochemical degradation using collagenase II. The effects of this biochemical degradation were characterized by the permeability changes to fluorescein. Topographical changes on the VC membrane after enzymatic degradation were also analyzed using scanning electron microscopy. Altogether, we present a dynamically bioresponsive membrane integrated in an organ-on-chip device with which disease-related ECM remodeling can be studied.
Collapse
Affiliation(s)
- Yusuf B Arık
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands.,BIOS Lab on a Chip group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Aisen de Sa Vivas
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands.,BIOS Lab on a Chip group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Daphne Laarveld
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Neri van Laar
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Jesse Gemser
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Thomas Visscher
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip group, Technical Medical Centre, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Andries D van der Meer
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
14
|
Manafi N, Shokri F, Achberger K, Hirayama M, Mohammadi MH, Noorizadeh F, Hong J, Liebau S, Tsuji T, Quinn PMJ, Mashaghi A. Organoids and organ chips in ophthalmology. Ocul Surf 2020; 19:1-15. [PMID: 33220469 DOI: 10.1016/j.jtos.2020.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have driven the development of stem cell-derived, self-organizing, three-dimensional miniature organs, termed organoids, which mimic different eye tissues including the retina, cornea, and lens. Organoids and engineered microfluidic organ-on-chips (organ chips) are transformative technologies that show promise in simulating the architectural and functional complexity of native organs. Accordingly, they enable exploration of facets of human disease and development not accurately recapitulated by animal models. Together, these technologies will increase our understanding of the basic physiology of different eye structures, enable us to interrogate unknown aspects of ophthalmic disease pathogenesis, and serve as clinically-relevant surrogates for the evaluation of ocular therapeutics. Both the burden and prevalence of monogenic and multifactorial ophthalmic diseases, which can cause visual impairment or blindness, in the human population warrants a paradigm shift towards organoids and organ chips that can provide sensitive, quantitative, and scalable phenotypic assays. In this article, we review the current situation of organoids and organ chips in ophthalmology and discuss how they can be leveraged for translational applications.
Collapse
Affiliation(s)
- Navid Manafi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Fereshteh Shokri
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, the Netherlands
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Masatoshi Hirayama
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan; Department of Ophthalmology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Melika Haji Mohammadi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands
| | | | - Jiaxu Hong
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Key Laboratory of Myopia, National Health and Family Planning Commission, Shanghai, China
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan; Organ Technologies Inc., Minato, Tokyo, 105-0001, Japan
| | - Peter M J Quinn
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University. New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA.
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
15
|
Peng Z, Zhou L, Wong JKW, Chan YK. Eye-on-a-chip (EOC) models and their role in the future of ophthalmic drug discovery. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1788388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhiting Peng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R.China
| | - Liangyu Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
16
|
Bai J, Wang C. Organoids and Microphysiological Systems: New Tools for Ophthalmic Drug Discovery. Front Pharmacol 2020; 11:407. [PMID: 32317971 PMCID: PMC7147294 DOI: 10.3389/fphar.2020.00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Organoids are adept at preserving the inherent complexity of a given cellular environment and when integrated with engineered micro-physiological systems (MPS) present distinct advantages for simulating a precisely controlled geometrical, physical, and biochemical micro-environment. This then allows for real-time monitoring of cell-cell interactions. As a result, the two aforementioned technologies hold significant promise and potential in studying ocular physiology and diseases by replicating specific eye tissue microstructures in vitro. This miniaturized review begins with defining the science behind organoids/MPS and subsequently introducing methods for generating organoids and engineering MPS. Furthermore, we will discuss the current state of organoids and MPS models in retina, cornea surrogates, and other ocular tissue, in regards to physiological/disease conditions. Finally, future prospective on organoid/MPS will be covered here. Organoids and MPS technologies closely recapture the in vivo microenvironment and thusly will continue to provide new understandings in organ functions and novel approaches to drug development.
Collapse
Affiliation(s)
- Jing Bai
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
17
|
Sidar B, Jenkins BR, Huang S, Spence JR, Walk ST, Wilking JN. Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip). LAB ON A CHIP 2019; 19:3552-3562. [PMID: 31556415 PMCID: PMC8327675 DOI: 10.1039/c9lc00653b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human intestinal organoids (HIOs) are millimeter-scale models of the human intestinal epithelium and hold tremendous potential for advancing fundamental and applied biomedical research. HIOs resemble the native gut in that they consist of a fluid-filled lumen surrounded by a polarized epithelium and associated mesenchyme; however, their topologically-closed, spherical shape prevents flow through the interior luminal space, making the system less physiological and leading to the buildup of cellular and metabolic waste. These factors ultimately limit experimentation inside the HIOs. Here, we present a millifluidic device called the gut organoid flow chip (GOFlowChip), which we use to "port" HIOs and establish steady-state liquid flow through the lumen for multiple days. This long-term flow is enabled by the use of laser-cut silicone gaskets, which allow liquid in the device to be slightly pressurized, suppressing bubble formation. To demonstrate the utility of the device, we establish separate luminal and extraluminal flow and use luminal flow to remove accumulated waste. This represents the first demonstration of established liquid flow through the luminal space of a gastrointestinal organoid over physiologically relevant time scales. Flow cytometry results reveal that HIO cell viability is unaffected by long-term porting and luminal flow. We expect the real-time, long-term control over luminal and extraluminal contents provided by the GOFlowChip will enable a wide variety of studies including intestinal secretion, absorption, transport, and co-culture with intestinal microorganisms.
Collapse
Affiliation(s)
- Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J, Nikolova M, Cora V, Antkowiak L, Haq W, Shen N, Schenke-Layland K, Ueffing M, Liebau S, Loskill P. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife 2019; 8:46188. [PMID: 31451149 PMCID: PMC6777939 DOI: 10.7554/elife.46188] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
The devastating effects and incurable nature of hereditary and sporadic retinal diseases such as Stargardt disease, age-related macular degeneration or retinitis pigmentosa urgently require the development of new therapeutic strategies. Additionally, a high prevalence of retinal toxicities is becoming more and more an issue of novel targeted therapeutic agents. Ophthalmologic drug development, to date, largely relies on animal models, which often do not provide results that are translatable to human patients. Hence, the establishment of sophisticated human tissue-based in vitro models is of upmost importance. The discovery of self-forming retinal organoids (ROs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) is a promising approach to model the complex stratified retinal tissue. Yet, ROs lack vascularization and cannot recapitulate the important physiological interactions of matured photoreceptors and the retinal pigment epithelium (RPE). In this study, we present the retina-on-a-chip (RoC), a novel microphysiological model of the human retina integrating more than seven different essential retinal cell types derived from hiPSCs. It provides vasculature-like perfusion and enables, for the first time, the recapitulation of the interaction of mature photoreceptor segments with RPE in vitro. We show that this interaction enhances the formation of outer segment-like structures and the establishment of in vivo-like physiological processes such as outer segment phagocytosis and calcium dynamics. In addition, we demonstrate the applicability of the RoC for drug testing, by reproducing the retinopathic side-effects of the anti-malaria drug chloroquine and the antibiotic gentamicin. The developed hiPSC-based RoC has the potential to promote drug development and provide new insights into the underlying pathology of retinal diseases.
Collapse
Affiliation(s)
- Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Rogal
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Chuchuy
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Nikolova
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nian Shen
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Natural and Medical Sciences Institute (NMI), Reutlingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, Los Angeles, United States
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Sakthivel K, O'Brien A, Kim K, Hoorfar M. Microfluidic analysis of heterotypic cellular interactions: A review of techniques and applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Kankala RK, Wang SB, Chen AZ. Microengineered Organ-on-a-chip Platforms towards Personalized Medicine. Curr Pharm Des 2019; 24:5354-5366. [DOI: 10.2174/1381612825666190222143542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022]
Abstract
Current preclinical drug evaluation strategies that are explored to predict the pharmacological parameters,
as well as toxicological issues, utilize traditional oversimplified cell cultures and animal models. However,
these traditional approaches are time-consuming, and cannot reproduce the functions of the complex biological
tissue architectures. On the other hand, the obtained data from animal models cannot be precisely extrapolated to
humans because it sometimes results in the distinct safe starting doses for clinical trials due to vast differences in
their genomes. To address these limitations, the microengineered, biomimetic organ-on-a-chip platforms fabricated
using advanced materials that are interconnected using the microfluidic circuits, can stanchly reiterate or
mimic the complex tissue-organ level structures including the cellular architecture and physiology, compartmentalization
and interconnectivity of human organ platforms. These innovative and cost-effective systems potentially
enable the prediction of the responses toward pharmaceutical compounds and remarkable advances in
materials and microfluidics technology, which can rapidly progress the drug development process. In this review,
we emphasize the integration of microfluidic models with the 3D simulations from tissue engineering to fabricate
organ-on-a-chip platforms, which explicitly fulfill the demand of creating the robust models for preclinical testing
of drugs. At first, we give a brief overview of the limitations associated with the current drug development pipeline
that includes drug screening methods, in vitro molecular assays, cell culture platforms and in vivo models.
Further, we discuss various organ-on-a-chip platforms, highlighting their benefits and performance in the preclinical
stages. Next, we aim to emphasize their current applications toward pharmaceutical benefits including the
drug screening as well as toxicity testing, and advances in personalized precision medicine as well as potential
challenges for their commercialization. We finally recapitulate with the lessons learned and the outlook highlighting
the future directions for accelerating the clinical translation of delivery systems.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ai-Zheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China
| |
Collapse
|
21
|
Musah S, Dimitrakakis N, Camacho DM, Church GM, Ingber DE. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. Nat Protoc 2019; 13:1662-1685. [PMID: 29995874 DOI: 10.1038/s41596-018-0007-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protocols have been established to direct the differentiation of human induced pluripotent stem (iPS) cells into nephron progenitor cells and organoids containing many types of kidney cells, but it has been difficult to direct the differentiation of iPS cells to form specific types of mature human kidney cells with high yield. Here, we describe a detailed protocol for the directed differentiation of human iPS cells into mature, post-mitotic kidney glomerular podocytes with high (>90%) efficiency within 26 d and under chemically defined conditions, without genetic manipulations or subpopulation selection. We also describe how these iPS cell-derived podocytes may be induced to form within a microfluidic organ-on-a-chip (Organ Chip) culture device to build a human kidney Glomerulus Chip that mimics the structure and function of the kidney glomerular capillary wall in vitro within 35 d (starting with undifferentiated iPS cells). The podocyte differentiation protocol requires skills for culturing iPS cells, and the development of a Glomerulus Chip requires some experience with building and operating microfluidic cell culture systems. This method could be useful for applications in nephrotoxicity screening, therapeutic development, and regenerative medicine, as well as mechanistic study of kidney development and disease.
Collapse
Affiliation(s)
- Samira Musah
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Diogo M Camacho
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA. .,Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA.
| |
Collapse
|
22
|
Kumar V, Varghese S. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment. Adv Healthc Mater 2019; 8:e1801198. [PMID: 30516355 PMCID: PMC6384151 DOI: 10.1002/adhm.201801198] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The emergence of immunotherapies and recent FDA approval of several of them makes them a promising therapeutic strategy for cancer. While these advancements underscore the potential of engaging the immune system to target tumors, this approach has so far been efficient only for certain cancers. Extending immunotherapy as a widely acceptable treatment for various cancers requires a deeper understanding of the interactions of tumor cells within the tumor microenvironment (TME). The immune cells are a key component of the TME, which also includes other stromal cells, soluble factors, and extracellular matrix-based cues. While in vivo studies function as a gold standard, tissue-engineered microphysiological tumor models can offer patient-specific insights into cancer-immune interactions. These platforms, which recapitulate cellular and non-cellular components of the TME, enable a systematic understanding of the contribution of each component toward disease progression in isolation and in concert. Microfluidic-based microphysiological platforms recreating these environments, also known as "tumor-on-a-chip," are increasingly being utilized to study the effect of various elements of TME on tumor development. Herein are reviewed advancements in tumor-on-a-chip technology that are developed and used to understand the interaction of tumor cells with other surrounding cells, including immune cells, in the TME.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA,
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine Durham, NC 27703, USA
| |
Collapse
|
23
|
Haderspeck JC, Chuchuy J, Kustermann S, Liebau S, Loskill P. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Discov 2018; 14:47-57. [DOI: 10.1080/17460441.2019.1551873] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jasmin C. Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Chuchuy
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| |
Collapse
|
24
|
Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun 2018; 86:IAI.00282-18. [PMID: 30181350 DOI: 10.1128/iai.00282-18] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
Collapse
|
25
|
Mandenius CF. Conceptual Design of Micro-Bioreactors and Organ-on-Chips for Studies of Cell Cultures. Bioengineering (Basel) 2018; 5:E56. [PMID: 30029542 PMCID: PMC6164921 DOI: 10.3390/bioengineering5030056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/19/2023] Open
Abstract
Engineering design of microbioreactors (MBRs) and organ-on-chip (OoC) devices can take advantage of established design science theory, in which systematic evaluation of functional concepts and user requirements are analyzed. This is commonly referred to as a conceptual design. This review article compares how common conceptual design principles are applicable to MBR and OoC devices. The complexity of this design, which is exemplified by MBRs for scaled-down cell cultures in bioprocess development and drug testing in OoCs for heart and eye, is discussed and compared with previous design solutions of MBRs and OoCs, from the perspective of how similarities in understanding design from functionality and user purpose perspectives can more efficiently be exploited. The review can serve as a guideline and help the future design of MBR and OoC devices for cell culture studies.
Collapse
|
26
|
Arık YB, van der Helm MW, Odijk M, Segerink LI, Passier R, van den Berg A, van der Meer AD. Barriers-on-chips: Measurement of barrier function of tissues in organs-on-chips. BIOMICROFLUIDICS 2018; 12:042218. [PMID: 30018697 PMCID: PMC6019329 DOI: 10.1063/1.5023041] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/11/2018] [Indexed: 05/22/2023]
Abstract
Disruption of tissue barriers formed by cells is an integral part of the pathophysiology of many diseases. Therefore, a thorough understanding of tissue barrier function is essential when studying the causes and mechanisms of disease as well as when developing novel treatments. In vitro methods play an integral role in understanding tissue barrier function, and several techniques have been developed in order to evaluate barrier integrity of cultured cell layers, from microscopy imaging of cell-cell adhesion proteins to measuring ionic currents, to flux of water or transport of molecules across cellular barriers. Unfortunately, many of the current in vitro methods suffer from not fully recapitulating the microenvironment of tissues and organs. Recently, organ-on-chip devices have emerged to overcome this challenge. Organs-on-chips are microfluidic cell culture devices with continuously perfused microchannels inhabited by living cells. Freedom of changing the design of device architecture offers the opportunity of recapitulating the in vivo physiological environment while measuring barrier function. Assessment of barriers in organs-on-chips can be challenging as they may require dedicated setups and have smaller volumes that are more sensitive to environmental conditions. But they do provide the option of continuous, non-invasive sensing of barrier quality, which enables better investigation of important aspects of pathophysiology, biological processes, and development of therapies that target barrier tissues. Here, we discuss several techniques to assess barrier function of tissues in organs-on-chips, highlighting advantages and technical challenges.
Collapse
Affiliation(s)
| | - Marinke W van der Helm
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | | | - Albert van den Berg
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Andries D van der Meer
- Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
27
|
Bennet D, Estlack Z, Reid T, Kim J. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. LAB ON A CHIP 2018; 18:1539-1551. [PMID: 29736535 DOI: 10.1039/c8lc00158h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Animals are commonly used for pharmacokinetic studies which are the most frequent events tested during ocular drug development and preclinical evaluation. Inaccuracy, cost, and ethical criticism in these tests have created a need to construct an in vitro model for studying corneal constraints. In this work, a porous membrane embedded microfluidic platform is fabricated that separates a chip into an apical and basal side. After functionalizing the membrane surface with fibronectin, the membrane's mechanical and surface properties are measured to ensure correct modeling of in vivo characteristics. Immortalized human corneal epithelial cells are cultured on the membrane to create a microengineered corneal epithelium-on-a-chip (cornea chip) that is validated with experiments designed to test the barrier properties of the human corneal epithelium construct using model drugs. A pulsatile flow model is used that closely mimics the ocular precorneal constraints and is reasonable for permeability analysis that models in vivo conditions. This model can be used for preclinical evaluations of potential therapeutic drugs and to mimic the environment of the human cornea.
Collapse
Affiliation(s)
- Devasier Bennet
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | |
Collapse
|
28
|
Prina E, Mistry P, Sidney LE, Yang J, Wildman RD, Bertolin M, Breda C, Ferrari B, Barbaro V, Hopkinson A, Dua HS, Ferrari S, Rose FRAJ. 3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review. Stem Cell Rev Rep 2018; 13:430-441. [PMID: 28573367 DOI: 10.1007/s12015-017-9740-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, there has been increased research interest in generating corneal substitutes, either for use in the clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the reconstruction of the native microarchitecture that controls epithelial cell adhesion, migration and differentiation. In addition, such technology has allowed the inclusion of a dynamic fluid flow that better mimics the physiology of the native cornea. We review the latest innovative products in development in this field, from 3D microfabricated hydrogels to microfluidic devices.
Collapse
Affiliation(s)
- Elisabetta Prina
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Pritesh Mistry
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Marina Bertolin
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Barbara Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Vanessa Barbaro
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy.
| | - Felicity R A J Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
30
|
Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. LAB ON A CHIP 2017; 17:3026-3036. [PMID: 28795174 PMCID: PMC5621042 DOI: 10.1039/c7lc00462a] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.
Collapse
Affiliation(s)
- L A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD 20892, USA.
| | | |
Collapse
|
31
|
Urbaczek AC, Leão PAGC, Souza FZRD, Afonso A, Vieira Alberice J, Cappelini LTD, Carlos IZ, Carrilho E. Endothelial Cell Culture Under Perfusion On A Polyester-Toner Microfluidic Device. Sci Rep 2017; 7:10466. [PMID: 28874818 PMCID: PMC5585355 DOI: 10.1038/s41598-017-11043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
This study presents an inexpensive and easy way to produce a microfluidic device that mimics a blood vessel, serving as a start point for cell culture under perfusion, cardiovascular research, and toxicological studies. Endpoint assays (i.e., MTT reduction and NO assays) were used and revealed that the components making up the microchip, which is made of polyester and toner (PT), did not induce cell death or nitric oxide (NO) production. Applying oxygen plasma and fibronectin improved the adhesion and proliferation endothelial cell along the microchannel. As expected, these treatments showed an increase in vascular endothelial growth factor (VEGF-A) concentration profiles, which is correlated with adherence and cell proliferation, thus promoting endothelialization of the device for neovascularization. Regardless the simplicity of the device, our “vein-on-a-chip” mimetic has a potential to serve as a powerful tool for those that demand a rapid microfabrication method in cell biology or organ-on-a-chip research.
Collapse
Affiliation(s)
- Ana Carolina Urbaczek
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Paulo Augusto Gomes Carneiro Leão
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Fayene Zeferino Ribeiro de Souza
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Ana Afonso
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,GHTM - Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal.,Laboratório de Parasitologia, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Juliana Vieira Alberice
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Luciana Teresa Dias Cappelini
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Escola Paulista de Medicina, Universidade Federal de São Paulo, Unifesp, São Paulo, SP, Brazil
| | - Iracilda Zeppone Carlos
- Faculdade de Ciências Farmacêuticas, FCFar, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil.
| |
Collapse
|
32
|
An In Vitro Model for the Ocular Surface and Tear Film System. Sci Rep 2017; 7:6163. [PMID: 28733649 PMCID: PMC5522434 DOI: 10.1038/s41598-017-06369-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023] Open
Abstract
Dry eye is a complicated ocular surface disease whose exact pathogenesis is not yet fully understood. For the therapeutic evaluation and pathogenesis study of dry eye, we established an in vitro three-dimensional (3D) coculture model for the ocular surface. It is composed of rabbit conjunctival epithelium and lacrimal gland cell spheroids, and recapitulates the aqueous and mucin layers of the tear film. We first investigated the culture conditions for both cell types to optimize their secretory functions, by employing goblet cell enrichment, air-lifting culture, and 3D spheroid formation techniques. The coculture of the two cell components leads to elevated secretion and higher expression of tear secretory markers. We also compared several coculture systems, and found that direct cell contact between the two cell types significantly increased tear secretion. Inflammation was induced to mimic dry eye disease in the coculture model system. Our results showed that the coculture system provides a more physiologically relevant therapeutic response compared to monocultures. Our work provides a complex 3D model as a recapitulation of the ocular surface and tear film system, which can be further developed as a model for dry eye disease and therapeutic evaluation.
Collapse
|
33
|
Estlack Z, Bennet D, Reid T, Kim J. Microengineered biomimetic ocular models for ophthalmological drug development. LAB ON A CHIP 2017; 17:1539-1551. [PMID: 28401229 DOI: 10.1039/c7lc00112f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current ophthalmological drug discovery and testing methods have limitations and concerns regarding reliability, ethicality, and applicability. These drawbacks can be mitigated by developing biomimetic eye models through mathematical and experimental methods which are often referred to as "eye-on-a-chip" or "eye chip". These eye chip technologies emulate ocular physiology, anatomy, and microenvironmental conditions. Such models enable understanding of the fundamental biology, pharmacology, and toxicology mechanisms by investigating the pharmacokinetics and pharmacodynamics of various candidate drugs under ocular anatomical and physiological conditions without animal models. This review provides a comprehensive overview of the latest advances in theoretical and in vitro experimental models of the anterior segment of the eye and its microenvironment, including eye motions and tear film dynamics. The current state of ocular modeling and simulation from predictive models to experimental models is discussed in detail with their advantages and limitations. The potential for future eye chip models to expedite new ophthalmic drug discoveries is also discussed.
Collapse
Affiliation(s)
- Zachary Estlack
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | |
Collapse
|
34
|
|
35
|
Hung SSC, Khan S, Lo CY, Hewitt AW, Wong RCB. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. Pharmacol Ther 2017; 177:32-43. [PMID: 28223228 DOI: 10.1016/j.pharmthera.2017.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Shahnaz Khan
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Camden Y Lo
- Monash Micro Imaging, Monash University, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia.
| |
Collapse
|
36
|
Borovjagin AV, Ogle BM, Berry JL, Zhang J. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues. Circ Res 2017; 120:150-165. [PMID: 28057791 PMCID: PMC5224928 DOI: 10.1161/circresaha.116.308538] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/14/2023]
Abstract
Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents.
Collapse
Affiliation(s)
- Anton V Borovjagin
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Brenda M Ogle
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Joel L Berry
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.).
| |
Collapse
|
37
|
|
38
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
39
|
|
40
|
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2015; 32:760-72. [PMID: 25093883 DOI: 10.1038/nbt.2989] [Citation(s) in RCA: 1975] [Impact Index Per Article: 197.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- 1] Department of Electrical Engineering &Computer Science, Koch Institute and Institute for Medical Engineering and Science, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Donald E Ingber
- 1] Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA. [2] Vascular Biology Program, Departments of Pathology &Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes. J Biomed Mater Res B Appl Biomater 2015; 104:300-7. [DOI: 10.1002/jbm.b.33381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 11/07/2022]
|
42
|
Kimura H, Ikeda T, Nakayama H, Sakai Y, Fujii T. An on-chip small intestine-liver model for pharmacokinetic studies. ACTA ACUST UNITED AC 2014; 20:265-73. [PMID: 25385717 DOI: 10.1177/2211068214557812] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 01/10/2023]
Abstract
Testing of drug effects and cytotoxicity by using cultured cells has been widely performed as an alternative to animal testing. However, the estimation of pharmacokinetics by conventional cell-based assay methods is difficult because of the inability to evaluate multiorgan effects. An important challenge in the field is to mimic the organ-to-organ network in the human body by using a microfluidic network connecting small-scale tissues based on recently emerging MicroTAS (Micro Total Analysis Systems) technology for prediction of pharmacokinetics. Here, we describe an on-chip small intestine-liver coupled model for pharmacokinetic studies. To construct an in vitro pharmacokinetic model that appropriately models in vivo conditions, physiological parameters such as the structure of internal circulation, volume ratios of each organ, and blood flow ratio of the portal vein to the hepatic artery were mimicked using microfluidic networks. To demonstrate interactions between organs in vitro in pharmacokinetic studies, Caco-2, HepG2, and A549 cell cultures were used as organ models of the small intestine, liver, and lung, respectively, and connected to each other through a microporous membrane and microchannels to prepare a simple model of a physiological organ-to-organ network. The on-chip organ model assay using three types of substrate-epirubicine (EPI), irinotecan (CPT-11), and cyclophosphamide (CPA)-were conducted to model the effects of orally administered or biologically active anticancer drugs. The result suggested that the device can replicate physiological phenomena such as activity of the anticancer drugs on the target cells. This microfluidic device can thus be used as an in vitro organ model to predict the pharmacokinetics of drugs in the human body and may thus provide not only an alternative to animal testing but also a method of obtaining parameters for in silico models of physiologically based pharmacokinetics.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan Department of Mechanical Engineering, Tokai University, Kanagawa, Japan Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Takashi Ikeda
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | - Hidenari Nakayama
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Teruo Fujii
- Institute of Industrial Science, the University of Tokyo, Tokyo, Japan Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
43
|
Thuenauer R, Rodriguez-Boulan E, Römer W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst 2014; 139:3206-18. [PMID: 24668405 PMCID: PMC4286366 DOI: 10.1039/c4an00056k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers.
Collapse
Affiliation(s)
- Roland Thuenauer
- Institute of Biology II, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
44
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
45
|
Chan CY, Huang PH, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ. Accelerating drug discovery via organs-on-chips. LAB ON A CHIP 2013; 13:4697-710. [PMID: 24193241 PMCID: PMC3998760 DOI: 10.1039/c3lc90115g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Considerable advances have been made in the development of micro-physiological systems that seek to faithfully replicate the complexity and functionality of animal and human physiology in research laboratories. Sometimes referred to as "organs-on-chips", these systems provide key insights into physiological or pathological processes associated with health maintenance and disease control, and serve as powerful platforms for new drug development and toxicity screening. In this Focus article, we review the state-of-the-art designs and examples for developing multiple "organs-on-chips", and discuss the potential of this emerging technology to enhance our understanding of human physiology, and to transform and accelerate the drug discovery and preclinical testing process. This Focus article highlights some of the recent technological advances in this field, along with the challenges that must be addressed for these technologies to fully realize their potential.
Collapse
Affiliation(s)
- Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Xiaoyun Ding
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - John D. Mai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Po Ki Yuen
- Science & Technology, Corning Incorporated, Corning, New York, 14831-0001, USA. ; Fax: +1 607-974-5957; Tel: +1 607- 974-9680
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| |
Collapse
|
46
|
Yum K, Hong SG, Healy KE, Lee LP. Physiologically relevant organs on chips. Biotechnol J 2013; 9:16-27. [PMID: 24357624 DOI: 10.1002/biot.201300187] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology.
Collapse
Affiliation(s)
- Kyungsuk Yum
- Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Materials Science and Engineering, University of Texas, Arlington, TX, USA
| | | | | | | |
Collapse
|
47
|
Hattori K, Sugiura S, Kanamori T. Pressure-Driven Microfluidic Perfusion Culture Device for Integrated Dose-Response Assays. ACTA ACUST UNITED AC 2013; 18:437-45. [DOI: 10.1177/2211068213503155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Abstract
'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.
Collapse
|
49
|
Abstract
With the experimental tools and knowledge that have accrued from a long history of reductionist biology, we can now start to put the pieces together and begin to understand how biological systems function as an integrated whole. Here, we describe how microfabricated tools have demonstrated promise in addressing experimental challenges in throughput, resolution, and sensitivity to support systems-based approaches to biological understanding.
Collapse
Affiliation(s)
- Mei Zhan
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Loice Chingozha
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
50
|
Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. LAB ON A CHIP 2013; 13:3548-54. [PMID: 23887749 DOI: 10.1039/c3lc50210d] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human tissues and organs are inherently heterogeneous. Their functionality is determined by the interplay between different cell types, their secondary architecture, vascular system and gradients of signaling molecules and metabolites. Here we propose a stratified 3D cell culture platform, in which adjacent lanes of gels and liquids are patterned by phaseguides to capture this tissue heterogeneity. We demonstrate 3D cell culture of HepG2 hepatocytes under continuous perfusion, a rifampicin toxicity assay and co-culture with fibroblasts. 4T1 breast cancer cells are used to demonstrate invasion and aggregation models. The platform is incorporated in a microtiter plate format that renders it fully compatible with automation and high-content screening equipment. The extended functionality, ease of handling and full compatibility to standard equipment is an important step towards adoption of Organ-on-a-Chip technology for screening in an industrial setting.
Collapse
Affiliation(s)
- Sebastiaan J Trietsch
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|