1
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Guerreiro A, Compañón I, Lazaris FS, Labão-Almeida C, Oroz P, Ghirardello M, Marques MC, Corzana F, Bernardes GJL. Non-Natural MUC1 Glycopeptide Homogeneous Cancer Vaccine with Enhanced Immunogenicity and Therapeutic Activity. Angew Chem Int Ed Engl 2024:e202411009. [PMID: 39275921 DOI: 10.1002/anie.202411009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Glycopeptides derived from the glycoprotein mucin-1 (MUC1) have shown potential as tumor-associated antigens for cancer vaccine development. However, their low immunogenicity and non-selective conjugation to carriers present significant challenges for the clinical efficacy of MUC1-based vaccines. Here, we introduce a novel vaccine candidate based on a structure-guided design of an artificial antigen derived from MUC1 glycopeptide. This engineered antigen contains two non-natural amino acids and has an α-S-glycosidic bond, where sulfur replaces the conventional oxygen atom linking the peptide backbone to the sugar N-acetylgalactosamine. The glycopeptide is then specifically conjugated to the immunogenic protein carrier CRM197 (Cross-Reactive Material 197), a protein approved for human use. Conjugation involves selective reduction and re-bridging of a disulfide in CRM197, allowing the attachment of a single copy of MUC1. This strategy results in a chemically defined vaccine while maintaining both the structural integrity and immunogenicity of the protein carrier. The vaccine elicits a robust Th1-like immune response in mice and generates antibodies capable of recognizing human cancer cells expressing tumor-associated MUC1. When tested in mouse models of colon adenocarcinoma and pancreatic cancer, the vaccine is effective both as a prophylactic and therapeutic use, significantly delaying tumor growth. In therapeutic applications, improved outcomes were observed when the vaccine was combined with an anti-programmed cell death protein 1 (anti-PD-1) checkpoint inhibitor. Our strategy reduces batch-to-batch variability and enhances both immunogenicity and therapeutic potential. This site-specific approach disputes a prevailing dogma where glycoconjugate vaccines require multivalent display of antigens.
Collapse
Affiliation(s)
- Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
| | - Ismael Compañón
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Foivos S Lazaris
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Paula Oroz
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Mattia Ghirardello
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Marta C Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química and Instituto de Investigación en Química de la Universidad de La Rioja (IQUR), Madre de Dios, 53, 26006, Logroño, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Basinnov Lifesciences, Av. José Malhoa 2, Escritório 3.7, 1070-325, Lisboa, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| |
Collapse
|
3
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
4
|
Thekke Veettil K, Jayaraman N. Lymph Node Targeting Mediated by Albumin Hitchhiking of Synthetic Tn Glycolipid Leads to Robust In Vivo Antibody Production. Adv Healthc Mater 2024; 13:e2304664. [PMID: 38533876 DOI: 10.1002/adhm.202304664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Tn antigen is a tumor-associated carbohydrate antigen, which is present prominently on the tumor cell surfaces and attracts an interest in vaccine development. This work demonstrates that a synthetic Tn antigen carrying glycoconjugate forms a complex with circulating albumin, delivers the antigen to lymph nodes (LNs), and leads to the efficient production of antibodies against the antigen. Synthetic Tn antigen glycoconjugate, possessing DSPE-PEG2000 linker and lipophilic moieties, undergoes micellization in PBS buffer. In the presence of bovine serum albumin (BSA), demicellization of the glycolipid occurs, with a rate constant of 0.18 min-1. In vitro studies show that the glycoconjugate binds preferentially to BSA in the presence of cells. Immunological assessments in mice models reveal the albumin-enabled delivery of the Tn glycoconjugate to antigen-presenting cells in the LNs, specifically leading to a robust humoral immune response. ELISA titers show superior binding, with a saturation dilution of 1:51 200 for Tn glycoconjugate, in comparison to that mediated by the Tn-BSA covalent conjugate with a saturation dilution of 1:6400. Immunohistochemical staining shows delivery of Tn glycoconjugate at the LNs, specifically at the subcapsular sinus and interfollicular areas. The work highlights the potential of albumin-mediated target delivery strategy for cancer immunotherapies.
Collapse
|
5
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Weng W, Ren S, Teng C, Guo J, Guo Q, Zhang W, Zong C, Ding N. Chemoenzymatic synthesis and immunological evaluation of sialyl-Thomsen-Friedenreich (sTF) antigen conjugate to CRM197. Bioorg Med Chem 2024; 100:117615. [PMID: 38342079 DOI: 10.1016/j.bmc.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
sTF (sialyl-Thomsen-Friedenreich) is a type of tumor-associated carbohydrate antigens (TACAs) and is highly expressed in various human malignancies. To validate if sTF could be a valuable molecular target for future cancer vaccine development, in this work the sTF antigen was prepared by adopting a strategy combining chemical and enzymatic methods, and then was covalently conjugated to a carrier protein, CRM197. The preliminary immunological evaluation, performed on BALB/c mice, revealed that the sTF-CRM197 conjugate elicited high titers of specific IgG antibodies. FACS experiments showed that the antisera induced by sTF-CRM197 conjugate could specifically recognize and bind to sTF-positive cancer cells T-47D. Furthermore, the conjugate mediated effective and specific antibody-mediated complement-dependent cytotoxicity (CDC).
Collapse
Affiliation(s)
- Weizhao Weng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sumei Ren
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changcai Teng
- School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiuyu Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chengli Zong
- School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China.
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Bermejo IA, Guerreiro A, Eguskiza A, Martínez-Sáez N, Lazaris FS, Asín A, Somovilla VJ, Compañón I, Raju TK, Tadic S, Garrido P, García-Sanmartín J, Mangini V, Grosso AS, Marcelo F, Avenoza A, Busto JH, García-Martín F, Hurtado-Guerrero R, Peregrina JM, Bernardes GJL, Martínez A, Fiammengo R, Corzana F. Structure-Guided Approach for the Development of MUC1-Glycopeptide-Based Cancer Vaccines with Predictable Responses. JACS AU 2024; 4:150-163. [PMID: 38274250 PMCID: PMC10807005 DOI: 10.1021/jacsau.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Mucin-1 (MUC1) glycopeptides are exceptional candidates for potential cancer vaccines. However, their autoantigenic nature often results in a weak immune response. To overcome this drawback, we carefully engineered synthetic antigens with precise chemical modifications. To be effective and stimulate an anti-MUC1 response, artificial antigens must mimic the conformational dynamics of natural antigens in solution and have an equivalent or higher binding affinity to anti-MUC1 antibodies than their natural counterparts. As a proof of concept, we have developed a glycopeptide that contains noncanonical amino acid (2S,3R)-3-hydroxynorvaline. The unnatural antigen fulfills these two properties and effectively mimics the threonine-derived antigen. On the one hand, conformational analysis in water shows that this surrogate explores a landscape similar to that of the natural variant. On the other hand, the presence of an additional methylene group in the side chain of this analog compared to the threonine residue enhances a CH/π interaction in the antigen/antibody complex. Despite an enthalpy-entropy balance, this synthetic glycopeptide has a binding affinity slightly higher than that of its natural counterpart. When conjugated with gold nanoparticles, the vaccine candidate stimulates the formation of specific anti-MUC1 IgG antibodies in mice and shows efficacy comparable to that of the natural derivative. The antibodies also exhibit cross-reactivity to selectively target, for example, human breast cancer cells. This investigation relied on numerous analytical (e.g., NMR spectroscopy and X-ray crystallography) and biophysical techniques and molecular dynamics simulations to characterize the antigen-antibody interactions. This workflow streamlines the synthetic process, saves time, and reduces the need for extensive, animal-intensive immunization procedures. These advances underscore the promise of structure-based rational design in the advance of cancer vaccine development.
Collapse
Affiliation(s)
- Iris A. Bermejo
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Ana Guerreiro
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Ander Eguskiza
- Department
of Biotechnology, University of Verona, Verona 37134, Italy
| | - Nuria Martínez-Sáez
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
- Departamento
de Tecnología y Química Farmacéuticas, Universidad de Navarra, Pamplona 31008, Spain
| | - Foivos S. Lazaris
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Alicia Asín
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Víctor J. Somovilla
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Ismael Compañón
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Tom K. Raju
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Srdan Tadic
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Pablo Garrido
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Josune García-Sanmartín
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Vincenzo Mangini
- Center
for
Biomolecular Nanotechnologies@UniLe, Istituto
Italiano di Tecnologia (IIT), Arnesano, Lecce 73010, Italy
| | - Ana S. Grosso
- Applied
Molecular Biosciences Unit UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica 2829-516, Portugal
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Filipa Marcelo
- Applied
Molecular Biosciences Unit UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Caparica 2829-516, Portugal
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Caparica 2829-516, Portugal
| | - Alberto Avenoza
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Jesús H. Busto
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Fayna García-Martín
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Ramón Hurtado-Guerrero
- Institute
of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza 50018, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine,
Faculty of Health Sciences, University of
Copenhagen, Copenhagen 2200, Denmark
- Fundación
ARAID, Zaragoza 50018, Spain
| | - Jesús M. Peregrina
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Alfredo Martínez
- Angiogenesis
Group, Oncology Area, Center for Biomedical
Research of La Rioja (CIBIR), Logroño 26006, Spain
| | - Roberto Fiammengo
- Department
of Biotechnology, University of Verona, Verona 37134, Italy
- Center
for
Biomolecular Nanotechnologies@UniLe, Istituto
Italiano di Tecnologia (IIT), Arnesano, Lecce 73010, Italy
| | - Francisco Corzana
- Department
of Chemistry and Instituto de Investigación en Química
de la Universidad de La Rioja (IQUR), Universidad
de La Rioja, Logroño 26006, Spain
| |
Collapse
|
8
|
Duengo S, Muhajir MI, Hidayat AT, Musa WJA, Maharani R. Epimerisation in Peptide Synthesis. Molecules 2023; 28:8017. [PMID: 38138507 PMCID: PMC10745333 DOI: 10.3390/molecules28248017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/24/2023] Open
Abstract
Epimerisation is basically a chemical conversion that includes the transformation of an epimer into another epimer or its chiral partner. Epimerisation of amino acid is a side reaction that sometimes happens during peptide synthesis. It became the most avoided reaction because the process affects the overall conformation of the molecule, eventually even altering the bioactivity of the peptide. Epimerised products have a high similarity of physical characteristics, thus making it difficult for them to be purified. In regards to amino acids, epimerisation is very important in keeping the chirality of the assembled amino acids unchanged during the peptide synthesis and obtaining the desirable product without any problematic purification. In this review, we report several factors that induce epimerisation during peptide synthesis, including how to characterise and affect the bioactivities. To avoid undesirable epimerisation, we also describe several methods of suppressing the process.
Collapse
Affiliation(s)
- Suleman Duengo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, North Sulawesi, Indonesia;
| | - Muhamad Imam Muhajir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Weny J. A. Musa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, North Sulawesi, Indonesia;
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceutical, National Research and Innovation Agency (BRIN), Sumedang 45363, West Java, Indonesia
| |
Collapse
|
9
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Naletova I, Tomasello B, Attanasio F, Pleshkan VV. Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy. Pharmaceutics 2023; 15:1346. [PMID: 37242588 PMCID: PMC10222518 DOI: 10.3390/pharmaceutics15051346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy is among the most effective approaches for treating cancer. One of the key aspects for successful immunotherapy is to achieve a strong and stable antitumor immune response. Modern immune checkpoint therapy demonstrates that cancer can be defeated. However, it also points out the weaknesses of immunotherapy, as not all tumors respond to therapy and the co-administration of different immunomodulators may be severely limited due to their systemic toxicity. Nevertheless, there is an established way through which to increase the immunogenicity of immunotherapy-by the use of adjuvants. These enhance the immune response without inducing such severe adverse effects. One of the most well-known and studied adjuvant strategies to improve immunotherapy efficacy is the use of metal-based compounds, in more modern implementation-metal-based nanoparticles (MNPs), which are exogenous agents that act as danger signals. Adding innate immune activation to the main action of an immunomodulator makes it capable of eliciting a robust anti-cancer immune response. The use of an adjuvant has the peculiarity of a local administration of the drug, which positively affects its safety. In this review, we will consider the use of MNPs as low-toxicity adjuvants for cancer immunotherapy, which could provide an abscopal effect when administered locally.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
11
|
Freitas R, Peixoto A, Ferreira E, Miranda A, Santos LL, Ferreira JA. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnol Adv 2023; 65:108144. [PMID: 37028466 DOI: 10.1016/j.biotechadv.2023.108144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal.
| |
Collapse
|
12
|
Pifferi C, Aguinagalde L, Ruiz-de-Angulo A, Sacristán N, Baschirotto PT, Poveda A, Jiménez-Barbero J, Anguita J, Fernández-Tejada A. Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chem Sci 2023; 14:3501-3513. [PMID: 37006677 PMCID: PMC10055764 DOI: 10.1039/d2sc05639a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
The overexpression of aberrantly glycosylated tumor-associated mucin-1 (TA-MUC1) in human cancers makes it a major target for the development of anticancer vaccines derived from synthetic MUC1-(glyco)peptide antigens. However, glycopeptide-based subunit vaccines are weakly immunogenic, requiring adjuvants and/or additional immunopotentiating approaches to generate optimal immune responses. Among these strategies, unimolecular self-adjuvanting vaccine constructs that do not need coadministration of adjuvants or conjugation to carrier proteins emerge as a promising but still underexploited approach. Herein, we report the design, synthesis, immune-evaluation in mice, and NMR studies of new, self-adjuvanting and self-assembling vaccines based on our QS-21-derived minimal adjuvant platform covalently linked to TA-MUC1-(glyco)peptide antigens and a peptide helper T-cell epitope. We have developed a modular, chemoselective strategy that harnesses two distal attachment points on the saponin adjuvant to conjugate the respective components in unprotected form and high yields via orthogonal ligations. In mice, only tri-component candidates but not unconjugated or di-component combinations induced significant TA-MUC1-specific IgG antibodies able to recognize the TA-MUC1 on cancer cells. NMR studies revealed the formation of self-assembled aggregates, in which the more hydrophilic TA-MUC1 moiety gets exposed to the solvent, favoring B-cell recognition. While dilution of the di-component saponin-(Tn)MUC1 constructs resulted in partial aggregate disruption, this was not observed for the more stably-organized tri-component candidates. This higher structural stability in solution correlates with their increased immunogenicity and suggests a longer half-life of the construct in physiological media, which together with the enhanced antigen multivalent presentation enabled by the particulate self-assembly, points to this self-adjuvanting tri-component vaccine as a promising synthetic candidate for further development.
Collapse
Affiliation(s)
- Carlo Pifferi
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Nagore Sacristán
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Priscila Tonon Baschirotto
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
| | - Ana Poveda
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Laboratory, CIC BioGUNE, BRTA Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias Av. Monforte de Lemos, 3-5 28029 Madrid Spain
| | - Juan Anguita
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
- Inflammation and Macrophage Plasticity Laboratory, CIC BioGUNE, BRTA Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Biscay Technology Park, Building 801A 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
13
|
Tang L, Cegang F, Zhao H, Wang B, Jia S, Chen H, Cai H. Up-regulation of Core 1 Beta 1, 3-Galactosyltransferase Suppresses Osteosarcoma Growth with Induction of IFN-γ Secretion and Proliferation of CD8 + T Cells. Curr Cancer Drug Targets 2023; 23:265-277. [PMID: 36221889 DOI: 10.2174/1568009622666221010105701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
AIM Abnormal glycosylation often occurs in tumor cells. T-synthase (core 1 beta 1,3- galactosyltransferase, C1GALT1, or T-synthase) is a key enzyme involved in O-glycosylation. Although T-synthase is known to be important in human tumors, the effects of T-synthase and T-antigen on human tumor responses remain poorly defined. METHODS In this study, a T-synthase-specific short hairpin RNA (shRNA) or T-synthase-specific eukaryotic expression vector(pcDNA3.1(+)) was transfected into murine Osteosarcoma LM8 cells to assess the effects of T-synthase on T cells and cytokines. RESULTS The up-regulation of T-synthase promoted the proliferation of osteosarcoma cells in vitro, but it promoted the proliferation of tumor initially up to 2-3 weeks but showed significant growth inhibitory effect after 3 weeks post-implantation in vivo. Osteosarcoma cells with high T-synthase expression in vitro promoted the proliferation and inhibited the apoptosis of CD8+ T cells. Further, T-synthase upregulation promoted CD8+ T-cell proliferation and the increased production of CD4+ T cell-derived IFN-γ cytokines to induce the increased tumor lethality of CTLs. CONCLUSION Our data suggest that high T-synthase expression inhibits tumor growth by improving the body's anti-tumor immunity. Therefore, using this characteristic to prepare tumor cell vaccines with high immunogenicity provides a new idea for clinical immunotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Lei Tang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fu Cegang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Department of Orthopedics, Haikou Orthopedic and Diabetes Hospital, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan Province, China
| | - Hongwei Zhao
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Bofei Wang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Siyu Jia
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Haidan Chen
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huili Cai
- Department of Hematology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| |
Collapse
|
14
|
Chemical and Synthetic Biology Approaches for Cancer Vaccine Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206933. [PMID: 36296526 PMCID: PMC9611187 DOI: 10.3390/molecules27206933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
Cancer vaccines have been considered promising therapeutic strategies and are often constructed from whole cells, attenuated pathogens, carbohydrates, peptides, nucleic acids, etc. However, the use of whole organisms or pathogens can elicit unwanted immune responses arising from unforeseen reactions to the vaccine components. On the other hand, synthetic vaccines, which contain antigens that are conjugated, often with carrier proteins, can overcome these issues. Therefore, in this review we have highlighted the synthetic approaches and discussed several bioconjugation strategies for developing antigen-based cancer vaccines. In addition, the major synthetic biology approaches that were used to develop genetically modified cancer vaccines and their progress in clinical research are summarized here. Furthermore, to boost the immune responses of any vaccines, the addition of suitable adjuvants and a proper delivery system are essential. Hence, this review also mentions the synthesis of adjuvants and utilization of biomaterial scaffolds, which may facilitate the design of future cancer vaccines.
Collapse
|
15
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
16
|
Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JDC, Zhang Q. Hydrogen bond activated glycosylation under mild conditions. Chem Sci 2022; 13:1600-1607. [PMID: 35282639 PMCID: PMC8826775 DOI: 10.1039/d1sc05772c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy. A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.![]()
Collapse
Affiliation(s)
- Ke Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - XinXin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jinxi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Deyong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jiansong Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China .,Key Laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
17
|
Chen CY, Lin YW, Wang SW, Lin YC, Cheng YY, Ren CT, Wong CH, Wu CY. Synthesis of Azido-Globo H Analogs for Immunogenicity Evaluation. ACS CENTRAL SCIENCE 2022; 8:77-85. [PMID: 35106375 PMCID: PMC8796297 DOI: 10.1021/acscentsci.1c01277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 06/14/2023]
Abstract
Globo H (GH) is a tumor-associated carbohydrate antigen (TACA), and GH conjugations have been evaluated as potential cancer vaccines. However, like all carbohydrate-based vaccines, low immunogenicity is a major issue. Modifications of the TACA increase its immunogenicity, but the systemic modification on GH is challenging and the synthesis is cumbersome. In this study, we synthesized several azido-GH analogs for evaluation, using galactose oxidase to selectively oxidize C6-OH of the terminal galactose or N-acetylgalactosamine on lactose, Gb3, Gb4, and SSEA3 into C6 aldehyde, which was then transformed chemically to the azido group. The azido-derivatives were further glycosylated to azido-GH analogs by glycosyltransferases coupled with sugar nucleotide regeneration. These azido-GH analogs and native GH were conjugated to diphtheria toxoid cross-reactive material CRM197 for vaccination with C34 adjuvant in mice. Glycan array analysis of antisera indicated that the azido-GH glycoconjugate with azide at Gal-C6 of Lac (1-CRM197) elicited the highest antibody response not only to GH, SSEA3, and SSEA4, which share the common SSEA3 epitope, but also to MCF-7 cancer cells, which express these Globo-series glycans.
Collapse
Affiliation(s)
- Chiang-Yun Chen
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Wei Lin
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Szu-Wen Wang
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 106, Taiwan
| | - Yung-Chu Lin
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang-Ming University, Taipei 112, Taiwan
| | - Chien-Tai Ren
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 106, Taiwan
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chung-Yi Wu
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical
Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
18
|
Trabbic K, Kleski KA, Barchi JJ. A Stable Gold Nanoparticle-Based Vaccine for the Targeted Delivery of Tumor-Associated Glycopeptide Antigens. ACS BIO & MED CHEM AU 2021; 1:31-43. [PMID: 34927166 PMCID: PMC8675876 DOI: 10.1021/acsbiomedchemau.1c00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a novel antigen delivery system based on polysaccharide-coated gold nanoparticles (AuNPs) targeted to antigen presenting cells (APCs) expressing Dectin-1. AuNPs were synthesized de-novo using yeast-derived β-1,3-glucans (B13G) as the reductant and passivating agent in a microwave-catalyzed procedure yielding highly uniform and serum-stable particles. These were further functionalized with both a peptide and a specific glycosylated form from the tandem repeat sequence of mucin 4 (MUC4), a glycoprotein overexpressed in pancreatic tumors. The glycosylated sequence contained the Thomsen-Friedenreich disaccharide, a pan-carcinoma, Tumor-Associated Carbohydrate Antigen (TACA), which has been a traditional target for antitumor vaccine design. These motifs were prepared with a cathepsin B protease cleavage site (Gly-Phe-Leu-Gly), loaded on the B13G-coated particles and these constructs were examined for Dectin-1 binding, APC processing and presentation in a model in vitro system and for immune responses in mice. We showed that these particles elicit strong in vivo immune responses through the production of both high-titer antibodies and priming of antigen-recognizing T-cells. Further examination showed that a favorable antitumor balance of expressed cytokines was generated, with limited expression of immunosuppressive Il-10. This system is modular in that any range of antigens can be conjugated to our particles and efficiently delivered to APCs expressing Dectin-1.
Collapse
Affiliation(s)
- Kevin
R. Trabbic
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| | - Kristopher A. Kleski
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| | - Joseph J. Barchi
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
19
|
Lamarre M, Tremblay T, Bansept MA, Robitaille K, Fradet V, Giguère D, Boudreau D. A glycan-based plasmonic sensor for prostate cancer diagnosis. Analyst 2021; 146:6852-6860. [PMID: 34623365 DOI: 10.1039/d1an00789k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer affects thousands of men who undergo clinical screening tests every year. The main biomarker used for the diagnosis of prostate cancer, prostate specific antigen (PSA), presents limitations that justify investigating new biomarkers to improve reliability. Antibodies against the tumor-associated carbohydrate antigen (Tn), or TACA, develop early in carcinogenesis, making them an interesting alternative as a target for prostate cancer diagnostics. In this work, the Tn antigen was synthesized and immobilized on a surface plasmon resonance sensor coated with a polydopamine/polyethylene oxide mixed layer used both as an anchoring surface for Tn capture moieties and to minimize surface fouling. The sensor could be regenerated and reused at least 60 times without any significant loss in sensitivity. Anti-Tn antibodies were detected in the 0-10 nM concentration range with detection limits of 0.1 and 0.3 nM in spiked buffer solutions and diluted human blood serum samples, respectively. Finally, as a proof-of-concept, this carbohydrate-based sensor was used to successfully discriminate blood serum samples from prostate cancer-free and prostate cancer patients.
Collapse
Affiliation(s)
- Mathieu Lamarre
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| | - Thomas Tremblay
- Department of Chemistry, Université Laval, Québec, QC, Canada.
| | - Marc-Antoine Bansept
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Oncology Division, Quebec, QC, Canada
| | - Vincent Fradet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Centre, Oncology Division, Quebec, QC, Canada.,Faculty of Medicine, Department of Surgery, Université Laval, Québec, QC, Canada.,Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Denis Giguère
- Department of Chemistry, Université Laval, Québec, QC, Canada.
| | - Denis Boudreau
- Department of Chemistry, Université Laval, Québec, QC, Canada. .,Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, QC, Canada
| |
Collapse
|
20
|
Fuentes R, Aguinagalde L, Sacristán N, Fernández-Tejada A. Design, synthesis, and initial immunological evaluation of glycoconjugates based on saponin adjuvants and the Tn antigen. Chem Commun (Camb) 2021; 57:11382-11385. [PMID: 34647563 PMCID: PMC8552335 DOI: 10.1039/d1cc04459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
We report the first synthesis and immunological evaluation of a new glycoconjugate design based on streamlined saponin adjuvants and the Tn carbohydrate antigen. While the novel synthetic constructs induced moderate antibody responses in mice, the versatile chemical platform is amenable to further structure-activity optimizations for the development of self-adjuvanting glycoconjugate cancer vaccines.
Collapse
Affiliation(s)
- Roberto Fuentes
- Chemical Immunology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | - Leire Aguinagalde
- Chemical Immunology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | - Nagore Sacristán
- Chemical Immunology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain
| |
Collapse
|
21
|
Lin MH, Chang CW, Chiang TY, Dhurandhare VM, Wang CC. Thiocarbonyl as a Switchable Relay-Auxiliary Group in Carbohydrate Synthesis. Org Lett 2021; 23:7313-7318. [PMID: 34269593 DOI: 10.1021/acs.orglett.1c01968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A multifunctional O-phenyl thiocarbonyl (O(C═S)OPh) group was introduced in glycosylation reactions. This auxiliary group exhibits three features (1) C6-long-range participation effect, (2) relay activation, and (3) switchable promoter-controlled carbonylation, which enables the facile synthesis of both 6-deoxy glucoside and 6-alcohol glucoside. In addition, we successfully quantified the extent of the C6-acyl participation effect and developed its application toward the α-trisaccharide motif.
Collapse
|
22
|
Asín A, García-Martín F, Busto JH, Avenoza A, Peregrina JM, Corzana F. Structure-based Design of Anti-cancer Vaccines: The Significance of Antigen Presentation to Boost the Immune Response. Curr Med Chem 2021; 29:1258-1270. [PMID: 34375180 DOI: 10.2174/0929867328666210810152917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Immunotherapy, alone or in combination with other therapies, is widely used against cancer. Glycoprotein Mucin 1 (MUC1), which is overexpressed and aberrantly glycosylated in tumor cells, is one of the most promising candidates to engineer new cancer vaccines. In this context, the development of stable antigens that can elicit a robust immune response is mandatory. Here, we describe the design and in vivo biological evaluation of three vaccine candidates based on MUC1 glycopeptides that comprise unnatural elements in their structure. By placing the Tn antigen (GalNAcα-O-Ser/Thr) at the center of the design, the chemical modifications include changes to the peptide backbone, glycosidic linkage, and at the carbohydrate level. Significantly, the three vaccines elicit robust immune responses in mice and produce antibodies that can be recognized by several human cancer cells. In all cases, a link was stablished between the conformational changes induced by the new elements in the antigen presentation and the immune response induced in mice. According to our data, the development of effective MUC1-based vaccines should use surrogates that mimic the conformational space of aberrantly glycosylated MUC1 glycopeptides found in tumors.
Collapse
Affiliation(s)
- Alicia Asín
- Departamento de Química. Centro de Investigación en Síntesis Química. Universidad de La Rioja. 26006 Logroño, Spain
| | - Fayna García-Martín
- Departamento de Química. Centro de Investigación en Síntesis Química. Universidad de La Rioja. 26006 Logroño, Spain
| | - Jesús Hector Busto
- Departamento de Química. Centro de Investigación en Síntesis Química. Universidad de La Rioja. 26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química. Centro de Investigación en Síntesis Química. Universidad de La Rioja. 26006 Logroño, Spain
| | - Jesús Manuel Peregrina
- Departamento de Química. Centro de Investigación en Síntesis Química. Universidad de La Rioja. 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química. Centro de Investigación en Síntesis Química. Universidad de La Rioja. 26006 Logroño, Spain
| |
Collapse
|
23
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
24
|
Liao F, Wang H, Dao Y, Yuan K, Lu J, Shi J, Han Y, Dong S, Lu L. Synthesis and biological evaluation of a lipopeptide-based methamphetamine vaccine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Béraud E, Collignon A, Franceschi C, Olive D, Lombardo D, Mas E. Investigation of a new tumor-associated glycosylated antigen as target for dendritic cell vaccination in pancreatic cancer. Oncoimmunology 2021; 1:56-61. [PMID: 22720212 PMCID: PMC3376954 DOI: 10.4161/onci.1.1.18459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycoproteins, as valuable targets for dendritic cell (DC)-vaccination in cancers, remain an open question. Glycosylated structures, which are aberrantly modified during cancerisation, impact positively or negatively on glycoprotein immunogenicity. Here is presented an oncofetal glycovariant of bile-salt-dependent-lipase, expressed on human tumoral pancreas and efficiently processed by DC's, inducing T-lymphocyte activation.
Collapse
Affiliation(s)
- Evelyne Béraud
- INSERM; Marseille, France; Aix-Marseille Univ ; Centre de Recherche en Oncologie biologique et Oncopharmacologie; Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Chang CW, Lin MH, Wang CC. Statistical Analysis of Glycosylation Reactions. Chemistry 2020; 27:2556-2568. [PMID: 32939892 DOI: 10.1002/chem.202003105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Indexed: 12/27/2022]
Abstract
Chemical synthesis is one of the practical approaches to access carbohydrate-based natural products and their derivatives with high quality and in a large quantity. However, stereoselectivity during the glycosylation reaction is the main challenge because the reaction can generate both α- and β-glycosides. The main focus of the present article is the concept of recent mechanistic studies that have applied statistical analysis and quantitation for defining stereoselective changes during the reaction process. Based on experimental evidence, a detailed discussion associated with the mechanism and degree of influence affecting the stereoselective outcome of glycosylation is included.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.,Chemical Biology and Molecular Biophysics Program (Taiwan), International Graduate Program (TIGP), Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
27
|
Ghosh S, Trabbic KR, Shi M, Nishat S, Eradi P, Kleski KA, Andreana PR. Chemical synthesis and immunological evaluation of entirely carbohydrate conjugate Globo H-PS A1. Chem Sci 2020; 11:13052-13059. [PMID: 34123241 PMCID: PMC8163331 DOI: 10.1039/d0sc04595k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
An anticancer, entirely carbohydrate conjugate, Globo H-polysaccharide A1 (Globo H-PS A1), was chemically prepared and immunologically evaluated in C57BL/6 mice. Tumor associated carbohydrate antigen Globo H hexasaccharide was synthesized in an overall 7.8% yield employing a convergent [3 + 3] strategy that revealed an anomeric aminooxy group used for conjugation to oxidized PS A1 via an oxime linkage. Globo H-PS A1, formulated with adjuvants monophosphoryl lipid A and TiterMax® Gold. After immunization an antigen specific immune response was observed in ELISA with anti-Globo H IgG/IgM antibodies. Specificity of the corresponding antibodies was determined by FACS showing cell surface binding to Globo H-positive cancer cell lines MCF-7 and OVCAR-5. The anti-Globo H antibodies also exhibited complement-dependent cellular cytotoxicity against MCF-7 and OVCAR-5 cells.
Collapse
Affiliation(s)
- Samir Ghosh
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Kevin R Trabbic
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Mengchao Shi
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Sharmeen Nishat
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Pradheep Eradi
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Kristopher A Kleski
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Peter R Andreana
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| |
Collapse
|
28
|
Chang CW, Lin MH, Wu CH, Chiang TY, Wang CC. Mapping Mechanisms in Glycosylation Reactions with Donor Reactivity: Avoiding Generation of Side Products. J Org Chem 2020; 85:15945-15963. [DOI: 10.1021/acs.joc.0c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University Taipei 106, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
29
|
Jiang Y, Wen T, Yan R, Kim SR, Stowell SR, Wang W, Wang Y, An G, Cummings RD, Ju T. O-glycans on death receptors in cells modulate their sensitivity to TRAIL-induced apoptosis through affecting on their stability and oligomerization. FASEB J 2020; 34:11786-11801. [PMID: 32692906 DOI: 10.1096/fj.201900053rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in cells by signaling through the O-glycosylated death receptors (DR4 and DR5), but the sensitivity to TRAIL-induced apoptosis of cells varies, and the attributes of this phenomenon are complex. Human carcinoma cells often express truncated O-glycans, Tn (GalNAcα1-Ser/Thr), and Sialyl-Tn (Siaα2-6GalNAcα1-Ser/Thr, STn) on their surface glycoproteins, yet molecular mechanisms in terms of advantages for tumor cells to have these truncated O-glycans remain elusive. Normal extended O-glycan biosynthesis is regulated by a specific molecular chaperone Cosmc through assisting of the correct folding of Core 1 β3 Galactosyltransferase (T-synthase). Here, we use tumor cell lines harboring mutations in Cosmc, and therefore expressing Tn and STn antigens to study the role of O-glycans in TRAIL-induced apoptosis. Expression of Tn and STn in tumor cells attenuates their sensitivity to TRAIL treatment; when transfected with wild-type Cosmc, these tumor cells thus express normal extended O-glycans and become more sensitive to TRAIL treatment. Mechanistically, Tn/STn antigens impair homo-oligomerization and stability of DR4 and DR5. These results represent the first mechanistic insight into how O-glycan structures on cell surface modulate their sensitivity to apoptotic stimuli, suggesting expression of Tn/STn may offer tumor cell survival advantages through altering DR4 and/or DR5 activity.
Collapse
Affiliation(s)
- Yuliang Jiang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Tao Wen
- Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Yan
- Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Su-Ryun Kim
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sean R Stowell
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenyi Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Guangyu An
- Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
30
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Guo J, Jiang W, Li Q, Jaiswal M, Guo Z. Comparative immunological studies of tumor-associated Lewis X, Lewis Y, and KH-1 antigens. Carbohydr Res 2020; 492:107999. [PMID: 32272238 PMCID: PMC7261630 DOI: 10.1016/j.carres.2020.107999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
Tumor-associated carbohydrate antigens Lewis X (Lex), Lewis Y (Ley), and KH-1 are useful targets for cancer immunotherapy. In this regard, an insight into the structure-immunogenicity relationships of these antigens is important but this has not been systematically investigated yet. In the current study, Lex, Ley, and KH-1 antigens with a lactose unit at the reducing end as a spacer were synthesized and coupled with keyhole limpet hemocyanin (KLH) protein. Immunological evaluations of the resultant conjugates revealed that they all could elicit robust immune responses whilst the Ley conjugate could provoke the highest titers of total and IgG antibodies. The binding assays of their antisera to each antigen and to cancer cells showed that each antiserum had extensive cross-reaction with all three antigens as protein conjugates and strong but somewhat antigen-selective binding towards MCF-7 cancer cell. Moreover, none of these antisera had obvious binding to SKMEL-28 cancer cell that does not express Lex, Ley and KH-1. The results of assays of these antisera to mediate complement-dependent cytotoxicity (CDC) to MCF-7 and SKMEL-28 cancer cells were very similar to the results of binding assays. Thus, it was concluded that all three antigens could form effective conjugate vaccines whereas the Ley conjugate induced the most robust immune responses and the antiserum of Lex had the highest binding and cytotoxicity to target cancer cells. In addition, as the antibodies induced by each antigen had extensive cross-reaction with other two antigens, either Lex or Ley or the two combined can be utilized to formulate effective conjugate vaccines for cancer immunotherapy. Another paradigm-shifting discovery of this study is that the presentation of Lex, Ley, and KH-1 antigens on cancer cell can be different from that in synthetic conjugates, which should be taken into consideration during the design and optimization of related cancer vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, United States.
| |
Collapse
|
32
|
Pifferi C, Ruiz-de-Angulo A, Goyard D, Tiertant C, Sacristán N, Barriales D, Berthet N, Anguita J, Renaudet O, Fernández-Tejada A. Chemical synthesis and immunological evaluation of new generation multivalent anticancer vaccines based on a Tn antigen analogue. Chem Sci 2020; 11:4488-4498. [PMID: 34122907 PMCID: PMC8159477 DOI: 10.1039/d0sc00544d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.
Collapse
Affiliation(s)
- Carlo Pifferi
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France .,Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - David Goyard
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Claire Tiertant
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Nagore Sacristán
- Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain
| | - Nathalie Berthet
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain .,Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| | - Olivier Renaudet
- Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS 38000 Grenoble France
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, CIC bioGUNE Biscay Science and Technology Park, Building 801A 48160 Derio Spain .,Ikerbasque, Basque Foundation for Science Maria Diaz de Haro 13 48009 Bilbao Spain
| |
Collapse
|
33
|
Rashidijahanabad Z, Huang X. Recent advances in tumor associated carbohydrate antigen based chimeric antigen receptor T cells and bispecific antibodies for anti-cancer immunotherapy. Semin Immunol 2020; 47:101390. [PMID: 31982247 DOI: 10.1016/j.smim.2020.101390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/01/2020] [Indexed: 11/17/2022]
Abstract
Tumor associated carbohydrate antigens (TACAs) are a class of attractive antigens for the development of anti-cancer immunotherapy. Besides monoclonal antibodies and vaccines, chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs) targeting TACA are exciting directions to harness the power of the immune system to fight cancer. In this review, we focus on two TACAs, i.e., the GD2 ganglioside and the mucin-1 (MUC1) protein. The latest advances in CAR T cells and bispecific antibodies targeting these two antigens are presented. The roles of co-stimulatory molecules, structures of the sequences for antigen binding, methods for CAR and antibody construction, as well as strategies to enhance solid tumor penetration and reduce T cell exhaustion and death are discussed. Furthermore, approaches to reduce "on target, off tumor" side effects are introduced. With further development, CAR T cells and BsAbs targeting GD2 and MUC1 can become powerful agents to effectively treat solid tumor.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Epitopes/genetics
- Epitopes/immunology
- Gangliosides/antagonists & inhibitors
- Gangliosides/chemistry
- Gangliosides/immunology
- Humans
- Immunotherapy, Adoptive
- Mucin-1/immunology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/chemistry
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
35
|
Burygin GL, Abronina PI, Podvalnyy NM, Staroverov SA, Kononov LO, Dykman LA. Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:480-493. [PMID: 32274287 PMCID: PMC7113550 DOI: 10.3762/bjnano.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
A number of bacterial glycans are specific markers for the detection and the serological identification of microorganisms and are also widely used as antigenic components of vaccines. The use of gold nanoparticles as carriers for glyco-epitopes is becoming an important alternative to the traditional conjugation with proteins and synthetic polymers. In this study, we aimed to prepare and evaluate in vivo glyco-gold nanoparticles (glyco-GNPs) bearing the terminal-branched hexaarabinofuranoside fragment (Ara6) of arabinan domains of lipoarabinomannan and arabinogalactan, which are principal polysaccharides of the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. In particular, we were interested whether the antibodies generated against Ara6-GNPs would recognize the natural saccharides on the cell surface of different mycobacterial strains. Two synthetic Ara6 glycosides with amino-functionalized spacer aglycons differing in length and hydrophilicity were directly conjugated with spherical gold nanoparticles (d = 15 nm) to give two sets of glyco-GNPs, which were used for the immunization of rabbits. Dot assays revealed cross-reactions between the two obtained antisera with the hexaarabinofuranoside and the 2-aminoethyl aglycon used for the preparation of glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained suggest that glyco-GNPs are promising agents for the generation of anti-mycobacterial antibodies.
Collapse
Affiliation(s)
- Gennady L Burygin
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Department of Horticulture, Breeding, and Genetics, Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad 1, Saratov, 410012, Russia
| | - Polina I Abronina
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Nikita M Podvalnyy
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Sergey A Staroverov
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| | - Leonid O Kononov
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - Lev A Dykman
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
36
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
37
|
Li BH, Yao W, Yang H, Wu C, Xiong DC, Yin Y, Ye XS. Total synthesis of tumor-associated KH-1 antigen core nonasaccharideviaphoto-induced glycosylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00314j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
KH-1 antigen core nonasaccharide was efficiently assembled by photo-induced glycosylation.
Collapse
Affiliation(s)
- Bo-Han Li
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Hong Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Congying Wu
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yuxin Yin
- Institute of Systems Biomedicine
- Department of Pathology
- Beijing Key Laboratory of Tumor Systems Biology
- School of Basic Medical Sciences
- Peking University Health Science Center
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
38
|
Chen PG, Hu HG, Sun ZY, Li QQ, Zhang BD, Wu JJ, Li WH, Zhao YF, Chen YX, Li YM. Fully Synthetic Invariant NKT Cell-Dependent Self-Adjuvanting Antitumor Vaccines Eliciting Potent Immune Response in Mice. Mol Pharm 2019; 17:417-425. [DOI: 10.1021/acs.molpharmaceut.9b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu-Guang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Hong-Guo Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Zhan-Yi Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Qian-Qian Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Jun-Jun Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
- Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
39
|
Tateda N, Ajisaka K, Ishiguro M, Miyazaki T. Synthesis of 5a,5a'-dicarba-d-glucobioses from conformationally restricted carbaglucosyl triflates using S N2-type inversion with carbaglucosyl nucleophiles. Bioorg Med Chem 2019; 27:2345-2367. [PMID: 30606671 DOI: 10.1016/j.bmc.2018.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
Abstract
Novel carbohydrate mimics were designed which contain two 5a-carba-d-glucose residues, one each at reducing and nonreducing end, and thus these mimics are 5a,5a'-dicarba-d-glucobioses. Dicarbadisaccharides have attractive features such as stability against endogenous degradative enzymes and being resistant to glycation reactions such as the Maillard reaction. For the synthesis of dicarba-β-d-isomaltose derivatives, the carbaglucosyl triflate locked in 4C1 conformation was synthesized by protecting with butane-2,3-diacetal group or benzylidene group. Then, 5a,5a'-dicarba-β-d-maltose and 5a,5a'-dicarba-α,β-d-trehalose were synthesized by the SN2-type inversion reaction using 4,6-O-benzylidene carbaglucosyl triflate with 4-OH and 1-OH carba-β-d-glucose derivatives, respectively, and similarly 5a,5a'-dicarba-α-d-isomaltose with 6-OH carba-α-d-glucose derivative.
Collapse
Affiliation(s)
- Naoya Tateda
- Department of Applied Life Sciences, Graduate School of Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Graduate School of Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Masaji Ishiguro
- Department of Applied Life Sciences, Graduate School of Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| | - Tatsuo Miyazaki
- Department of Applied Life Sciences, Graduate School of Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| |
Collapse
|
40
|
Hossain F, Andreana PR. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals (Basel) 2019; 12:ph12020084. [PMID: 31167407 PMCID: PMC6631729 DOI: 10.3390/ph12020084] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells of diverse origins express extracellular tumor-specific carbohydrate antigens (TACAs) because of aberrant glycosylation. Overexpressed TACAs on the surface of tumor cells are considered biomarkers for cancer detection and have always been prioritized for the development of novel carbohydrate-based anti-cancer vaccines. In recent years, progress has been made in developing synthetic, carbohydrate-based antitumor vaccines to improve immune responses associated with targeting these specific antigens. Tumor cells also exhaust more energy for proliferation than normal cells, by consuming excessive amounts of glucose via overexpressed sugar binding or transporting receptors located in the cellular membrane. Furthermore, inspired by the Warburg effect, glycoconjugation strategies of anticancer drugs have gained considerable attention from the scientific community. This review highlights a small cohort of recent efforts which have been made in carbohydrate-based cancer treatments, including vaccine design and the development of glycoconjugate prodrugs, glycosidase inhibiting iminosugars, and early cancer diagnosis.
Collapse
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| | - Peter R Andreana
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
41
|
Goto K, Tamai H, Takeda Y, Tanaka HN, Mizuno T, Imamura A, Ishida H, Kiso M, Ando H. Total Synthesis of Sialyl Inositol Phosphosphingolipids CJP-2, CJP-3, and CJP-4 Isolated from Feather Star Comanthus japonica. Org Lett 2019; 21:4054-4057. [DOI: 10.1021/acs.orglett.9b01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kenta Goto
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hideki Tamai
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoh Takeda
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Takashi Mizuno
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
Compañón I, Guerreiro A, Mangini V, Castro-López J, Escudero-Casao M, Avenoza A, Busto JH, Castillón S, Jiménez-Barbero J, Asensio JL, Jiménez-Osés G, Boutureira O, Peregrina JM, Hurtado-Guerrero R, Fiammengo R, Bernardes GJL, Corzana F. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. J Am Chem Soc 2019; 141:4063-4072. [PMID: 30726084 DOI: 10.1021/jacs.8b13503] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors.
Collapse
Affiliation(s)
- Ismael Compañón
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal
| | - Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , 73010 Arnesano , Lecce , Italy
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI) , University of Zaragoza , BIFI-IQFR (CSIC), Fundación ARAID , 50018 Zaragoza , Spain
| | - Margarita Escudero-Casao
- Departament de Química Analítica i Química Orgànica, Facultat de Química , Universitat Rovira i Virgili , 43007 Tarragona , Spain
| | - Alberto Avenoza
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Jesús H Busto
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Facultat de Química , Universitat Rovira i Virgili , 43007 Tarragona , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park , Building 801A , 48170 Derio , Spain.,Ikerbasque , Basque Foundation for Science , Maria Diaz de Haro 13 , 48009 Bilbao , Spain.,Department of Organic Chemistry II, Faculty of Science & Technology , University of the Basque Country , 48940 Leioa , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC , 28006 Madrid , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain.,CIC bioGUNE , Bizkaia Technology Park , Building 801A , 48170 Derio , Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Facultat de Química , Universitat Rovira i Virgili , 43007 Tarragona , Spain
| | - Jesús M Peregrina
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI) , University of Zaragoza , BIFI-IQFR (CSIC), Fundación ARAID , 50018 Zaragoza , Spain
| | - Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , 73010 Arnesano , Lecce , Italy
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal.,Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , U.K
| | - Francisco Corzana
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| |
Collapse
|
43
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Tremblay T, Robert-Scott G, Bérubé C, Carpentier A, Voyer N, Giguère D. Synthesis of C-terminal glycopeptidesviaoxime resin aminolysis. Chem Commun (Camb) 2019; 55:13741-13744. [DOI: 10.1039/c9cc07481c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We developed a general solid-phase approach to complex C-terminal glycopeptides.
Collapse
Affiliation(s)
- Thomas Tremblay
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Gabrielle Robert-Scott
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Christopher Bérubé
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Antoine Carpentier
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Normand Voyer
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| | - Denis Giguère
- Département de Chimie and PROTEO
- Université Laval
- Faculté des sciences et de génie
- Québec
- Canada
| |
Collapse
|
45
|
Szekely T, Roy O, Dériaud E, Job A, Lo-Man R, Leclerc C, Taillefumier C. Design, Synthesis, and Immunological Evaluation of a Multicomponent Construct Based on a Glycotripeptoid Core Comprising B and T Cell Epitopes and a Toll-like Receptor 7 Agonist That Elicits Potent Immune Responses. J Med Chem 2018; 61:9568-9582. [PMID: 30351939 DOI: 10.1021/acs.jmedchem.8b00960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present here for the first time the synthesis and immunological evaluation of a fully synthetic three-component anticancer vaccine candidate that consists of a β-glycotripeptoid core mimicking a cluster of Tn at the surface of tumor cells (B epitope), conjugated to the OVA 323-339 peptide (T-cell epitope) and a Toll-like receptor 7 (TLR7) agonist for potent adjuvanticity. The immunological evaluation of this construct and of precursor components demonstrated the synergistic activity of the components within the conjugate to stimulate innate and adaptive immune cells (DCs, T-helper, and B-cells). Surprisingly, immunization of mice with the tricomponent GalNAc-based construct elicited a low level of anti-Tn IgG but elicited a very high level of antibodies that recognize the TLR7 agonist. This finding could represent a potential vaccine therapeutic approach for the treatment of some autoimmune diseases such as lupus.
Collapse
Affiliation(s)
- Thomas Szekely
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Olivier Roy
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Edith Dériaud
- Unité Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer , Institut Pasteur , 75015 Paris , France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Aurélie Job
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| | - Richard Lo-Man
- Unité Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer , Institut Pasteur , 75015 Paris , France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Claude Leclerc
- Unité Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer , Institut Pasteur , 75015 Paris , France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Claude Taillefumier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF , F-63000 Clermont-Ferrand , France
| |
Collapse
|
46
|
Affiliation(s)
- A. Krishna Prasad
- Pfizer Vaccines Research and Development, 401 N. Middletown Rd., Pearl River, New York 10965, United States
| | - Jin-hwan Kim
- Pfizer Vaccines Research and Development, 401 N. Middletown Rd., Pearl River, New York 10965, United States
| | - Jianxin Gu
- Pfizer Vaccines Research and Development, 401 N. Middletown Rd., Pearl River, New York 10965, United States
| |
Collapse
|
47
|
Yoshimura Y, Wakamatsu H, Natori Y, Saito Y, Minakawa N. Glycosylation reactions mediated by hypervalent iodine: application to the synthesis of nucleosides and carbohydrates. Beilstein J Org Chem 2018; 14:1595-1618. [PMID: 30013687 PMCID: PMC6037013 DOI: 10.3762/bjoc.14.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022] Open
Abstract
To synthesize nucleoside and oligosaccharide derivatives, we often use a glycosylation reaction to form a glycoside bond. Coupling reactions between a nucleobase and a sugar donor in the former case, and the reaction between an acceptor and a sugar donor of in the latter are carried out in the presence of an appropriate activator. As an activator of the glycosylation, a combination of a Lewis acid catalyst and a hypervalent iodine was developed for synthesizing 4'-thionucleosides, which could be applied for the synthesis of 4'-selenonucleosides as well. The extension of hypervalent iodine-mediated glycosylation allowed us to couple a nucleobase with cyclic allylsilanes and glycal derivatives to yield carbocyclic nucleosides and 2',3'-unsaturated nucleosides, respectively. In addition, the combination of hypervalent iodine and Lewis acid could be used for the glycosylation of glycals and thioglycosides to produce disaccharides. In this paper, we review the use of hypervalent iodine-mediated glycosylation reactions for the synthesis of nucleosides and oligosaccharide derivatives.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Hideaki Wakamatsu
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Yoshihiro Natori
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Yukako Saito
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aoba-ku, Sendai, 981-8558, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima, 770-8505, Japan
| |
Collapse
|
48
|
Anomeric O-Functionalization of Carbohydrates for Chemical Conjugation to Vaccine Constructs. Molecules 2018; 23:molecules23071742. [PMID: 30018207 PMCID: PMC6099650 DOI: 10.3390/molecules23071742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022] Open
Abstract
Carbohydrates mediate a wide range of biological interactions, and understanding these processes benefits the development of new therapeutics. Isolating sufficient quantities of glycoconjugates from biological samples remains a significant challenge. With advances in chemical and enzymatic carbohydrate synthesis, the availability of complex carbohydrates is increasing and developing methods for stereoselective conjugation these polar head groups to proteins and lipids is critically important for pharmaceutical applications. The aim of this review is to provide an overview of commonly employed strategies for installing a functionalized linker at the anomeric position as well as examples of further transformations that have successfully led to glycoconjugation to vaccine constructs for biological evaluation as carbohydrate-based therapeutics.
Collapse
|
49
|
Li Q, Guo Z. Recent Advances in Toll Like Receptor-Targeting Glycoconjugate Vaccines. Molecules 2018; 23:molecules23071583. [PMID: 29966261 PMCID: PMC6100623 DOI: 10.3390/molecules23071583] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/04/2023] Open
Abstract
Many malignant cell surface carbohydrates resulting from abnormal glycosylation patterns of certain diseases can serve as antigens for the development of vaccines against these diseases. However, carbohydrate antigens are usually poorly immunogenic by themselves, thus they need to be covalently coupled with immunologically active carrier molecules to be functional. The most well established and commonly used carriers are proteins. In recent years, the use of toll-like receptor (TLR) ligands to formulate glycoconjugate vaccines has gained significant attention because TLR ligands can serve not only as carrier molecules but also as built-in adjuvants to form fully synthetic and self-adjuvanting conjugate vaccines, which have several advantages over carbohydrate-protein conjugates and formulated mixtures with external adjuvants. This article reviews recent progresses in the development of conjugate vaccines based on TLR ligands. Two major classes of TLR ligands, lipopeptides and lipid A derivatives will be covered with more focus on monophosohoryl lipid A (MPLA) and related analogs, which are TLR4 ligands demonstrated to be able to provoke T cell-dependent, adaptive immune responses. Corresponding conjugate vaccines have shown promising application potentials to multiple diseases including cancer.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
50
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|