1
|
Zhang Z, Cui Z, Zhang J, Zheng H, Zhou Z, Wu Z, Wang Z, Fu B. Remineralizing effects of hydroxypropyl methylcellulose film-loaded amorphous calcium phosphate nanoprecursors on enamel artificial caries lesions. J Mech Behav Biomed Mater 2024; 151:106408. [PMID: 38244421 DOI: 10.1016/j.jmbbm.2024.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVES This study was to investigate hydroxypropyl methylcellulose (HPMC) film as a carrier for amorphous fluorinated calcium phosphate (AFCP) nanoprecursors to continuously deliver biomimetic remineralization of enamel artificial caries lesions (ACL). MATERIALS AND METHODS The AFCP/HPMC films were comprised of 25 wt% AFCP nanoparticles and 75 wt% HPMC. They were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and biocompatibility tests. Forty enamel ACL were prepared and randomly divided into four groups (n = 10): The enamel surfaces were covered with a pure HPMC film, Tooth Mousse Plus (contains 10% CPP-ACP and 0.2% NaF), and AFCP/HPMC film, or without any things (serving as negative control). Subsequently, all samples were alternatively kept in artificial saliva and a modified pH-cycling before they were characterized by Micro-CT, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance (ATR)-FTIR, XRD, and nanoindentation. RESULTS After the enamel ACL was challenged by pH cycling, Tooth Mousse Plus and AFCP/HPMC film groups exhibited less lesion depth and mineral loss than the negative control and pure HPMC film groups. Additionally, the AFCP/HPMC film group revealed a highest remineralization rate of 55.34 ± 3.10 % among the all groups (p < 0.001). The SEM findings showed that the enamel ACL were densely deposited with minerals in the AFCP/HPMC film group, and the EDX results suggested a higher content of fluorine in the remineralized tissues. In particular, the AFCP/HPMC film group exhibited the best nanomechanical performance after 2 weeks of pH cycling (p < 0.05), with the hardness (H) restored from 0.29 ± 0.19 to 2.69 ± 0.70 GPa, and elastic modulus (Er) restored from 10.77 ± 5.30 to 68.83 ± 12.72 GPa. CONCLUSION The AFCP/HPMC film might be used as a promising strategy for arresting or reversing incipient enamel caries lesions.
Collapse
Affiliation(s)
- Zhixin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China; Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Zihan Cui
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jianping Zhang
- Department of Orthopaedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, 363000, Fujian, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Biomimetic Construction of the Enamel-like Hierarchical Structure. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Effects of an orthodontic primer containing amorphous fluorinated calcium phosphate nanoparticles on enamel white spot lesions. J Mech Behav Biomed Mater 2023; 137:105567. [PMID: 36379092 DOI: 10.1016/j.jmbbm.2022.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The study investigated the effects of an orthodontic primer containing amorphous fluorinated calcium phosphate (AFCP) nanoparticles on enamel white spot lesions (WSLs). MATERIALS AND METHODS The AFCP nanoparticles were prepared and incorporated into Transbond XT Primer. Thirty-two human enamel slices were highly polished and randomly divided into four groups: no part covered (control), half covered with a primer containing 0 wt%, 25 wt%, and 35 wt% AFCP. Subsequently, samples were challenged by a modified pH-cycling and characterized by color measurement, micro-computed tomography, and scanning electron microscope (SEM). The bonding properties of the primers containing AFCP were assessed using shear bond strength test, and the mouse fibroblasts (L929) were employed to evaluate the cytotoxicity. RESULTS When the enamel was challenged by pH cycling, 25 wt% and 35 wt% AFCP groups exhibited less color change (ΔE) and less mineral loss than the control and 0 wt% AFCP groups. The SEM images showed that the original microstructural integrity and mineral deposition rate of the enamel surface were better in the 25 wt% and 35 wt% AFCP groups. In particular, the 35 wt% AFCP group exhibited the best performance after 3 weeks of pH cycling. The shear bond strength and cell viability revealed no significant difference among the tested groups (P > 0.05). CONCLUSION Using the primer containing 35 wt% AFCP might be a promising strategy for preventing the occurrence and development of WSLs during orthodontic treatment.
Collapse
|
4
|
Bonchev A, Simeonov M, Shestakova P, Vasileva R, Titorenkova R, Apostolov A, Dyulgerova E, Vassileva E. Bioinspired Remineralization of Artificial Caries Lesions Using PDMAEMA/Carbomer/Calcium Phosphates Hybrid Microgels. Gels 2022; 8:gels8100681. [PMID: 36286182 PMCID: PMC9601719 DOI: 10.3390/gels8100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Dental caries remains one of the most prevalent bacterium-caused chronic diseases affecting both adults and children worldwide. The development of new materials for enhancing its remineralization is one of the most promising approaches in the field of advanced dental materials as well as one of the main challenges in non-invasive dentistry. The aim of the present study is to develop novel hybrid materials based on (PDMAEMA)/Carbomer 940 microgels with in situ deposited calcium phosphates (CaP) and to reveal their potential as a remineralization system for artificial caries lesions. To this purpose, novel PDMAEMA/Carbomer 940 microgels were obtained and their core–shell structure was revealed by transmission electron microscopy (TEM). They were successfully used as a matrix for in situ calcium phosphate deposition, thus giving rise to novel hybrid microgels. The calcium phosphate phases formed during the deposition process were studied by X-ray diffraction and infrared spectroscopy, however, due to their highly amorphous nature, the nuclear magnetic resonance (NMR) was the method that was able to provide reliable information about the formed inorganic phases. The novel hybrid microgels were used for remineralization of artificial caries lesions in order to prove their ability to initiate their remineralization. The remineralization process was followed by scanning electron microscopy (SEM), X-ray diffraction, infrared and Raman spectroscopies and all these methods confirmed the successful enamel rod remineralization upon the novel hybrid microgel application. Thus, the study confirmed that novel hybrid microgels, which could ensure a constant supply of calcium and phosphate ions, are a viable solution for early caries treatment.
Collapse
Affiliation(s)
- Alexander Bonchev
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Radosveta Vasileva
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Rositsa Titorenkova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Elena Dyulgerova
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
5
|
Dalir Abdolahinia E, Ilbeygi Taher S, Abdali Dehdezi P, Ataei A, Azizi M, Afra N, Afshar Fard S, Sharifi S. Strategies and Challenges in the Treatment of Dental Enamel. Cells Tissues Organs 2022; 212:485-498. [PMID: 35780769 DOI: 10.1159/000525790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Enamel tissue, the hardest body tissue, which covers the outside of the tooth shields the living tissue, but it erodes and disintegrates in the acidic environment of the oral cavity. On the one hand, mature enamel is cell-free and, if damaged, does not regenerate. Tooth sensitivity and decay are caused by enamel loss. On the other hand, the tissue engineering approach is challenging because of the unique structure of tooth enamel. To develop an exemplary method for dental enamel rebuilding, accurate knowledge of the structure of tooth enamel, knowing how it is created and how proteins interact in its structure, is critical. Furthermore, novel techniques in tissue engineering for using stem cells to develop enamel must be established. This article aims to discuss current attempts to regenerate enamel using synthetic materials methods, recent advances in enamel tissue engineering, and the prospects of enamel biomimetics to find unique insights into future possibilities for repairing enamel tissue, perhaps the most fascinating of all tooth tissues.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Atefe Ataei
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Azizi
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Mohabatpour F, Chen X, Papagerakis S, Papagerakis P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci 2022; 10:3062-3087. [PMID: 35543379 DOI: 10.1039/d2bm00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dental enamel is the hardest tissue in the human body, providing external protection for the tooth against masticatory forces, temperature changes and chemical stimuli. Once enamel is damaged/altered by genetic defects, dental caries, trauma, and/or dental wear, it cannot repair itself due to the loss of enamel producing cells following the tooth eruption. The current restorative dental materials are unable to replicate physico-mechanical, esthetic features and crystal structures of the native enamel. Thus, development of alternative approaches to repair and regenerate enamel defects is much needed but remains challenging due to the structural and functional complexities involved. This review paper summarizes the clinical aspects to be taken into consideration for the development of optimal therapeutic approaches to tackle dental enamel defects. It also provides a comprehensive overview of the emerging acellular and cellular approaches proposed for enamel remineralization and regeneration. Acellular approaches aim to artificially synthesize or re-mineralize enamel, whereas cell-based strategies aim to mimic the natural process of enamel development given that epithelial cells can be stimulated to produce enamel postnatally during the adult life. The key issues and current challenges are also discussed here, along with new perspectives for future research to advance the field of regenerative dentistry.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, S7N 5A9, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0 W8, SK, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| |
Collapse
|
7
|
Xing H, Yang F, Sun S, Pan P, Wang H, Wang Y, Chen J. Green efficient ultrasonic-assisted extraction of abalone nacre water-soluble organic matrix for bioinspired enamel remineralization. Colloids Surf B Biointerfaces 2022; 212:112336. [PMID: 35051793 DOI: 10.1016/j.colsurfb.2022.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Reconstructing enamel-like hydroxyapatite structures on damaged teeth remains a great challenge in the materials science and dentistry due to its highly ordered hierarchical microstructure. Inspired by the mineralization of mollusk nacre in nature, abalone nacre water-soluble organic matrix (WSM) was isolated successfully though an ultrasonic-assisted water extraction (UWE) strategy with nondestructive activity and high-quality extraction for simulating the process of tooth hard tissue mineralization. Results showed that the UWE strategy significantly increased the protein yield from 7.60% to 9.60% and improved the polysaccharide yield from 2.59% to 3.34%, respectively, indicating its excellent extraction efficiency of WSM. Noteworthily, the smallest averaged particle size (~155 nm) of WSM were obtained at an ultrasound time of 6 h, whereas the highest absolute values (~ -32 mV) of zeta potential was produced. Moreover, it was proved that WSM could induce the growth of enamel-like hydroxyapatite crystals to further facilitate biomimetic remineralization of the demineralized enamel and restore its continuous and smooth surface structure in vitro. Besides, the hardness (4.37 ± 0.07 GPa) and modulus of elasticity (84.80 ± 1.49 GPa) of the WSM-repaired enamel was similar to that of native enamel, indicating superior mechanical properties after repair. Herein, it provides a promising green, efficient strategy for the remineralization of damaged enamel and high value utilization of waste abalone shells.
Collapse
Affiliation(s)
- Huaran Xing
- Marine College, Shandong University, Weihai 264209, China
| | - Faming Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Shengjun Sun
- Shandong Provincial Key Laboratory of Oral Biomedicine, College of Stomatology, Shandong University, Jinan 250021, China.
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Hongbo Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China.
| |
Collapse
|
8
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
9
|
Zhang Z, Shi Y, Zheng H, Zhou Z, Wu Z, Shen D, Wang Y, Zhang Y, Wang Z, Fu B. A Hydroxypropyl Methylcellulose Film Loaded with AFCP Nanoparticles for Inhibiting Formation of Enamel White Spot Lesions. Int J Nanomedicine 2021; 16:7623-7637. [PMID: 34815669 PMCID: PMC8605885 DOI: 10.2147/ijn.s335549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This study investigated the effects of mineralizing film consisting of hydroxypropyl methylcellulose (HPMC) and amorphous fluorinated calcium phosphate (AFCP) nanoparticles on enamel white spot lesions (WSLs). Material and Methods The AFCP nanoparticles and mineralizing film were prepared via nanoprecipitation and solvent evaporation, respectively. They were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectrometry (ICP-AES), and fluoride ion selective electrode. Thirty-two human enamel slices (4 mm × 4 mm × 1.5 mm) were highly polished and randomly assigned to four groups: negative control (no treatment); pure HPMC film; mineralizing film; GC Tooth Mousse Plus® (contains 10% CPP-ACP and 0.2% NaF). Subsequently, samples were challenged by a modified pH-cycling and characterized by color measurement, Micro-CT, SEM/EDX, and nanoindentation. Results The mineralizing film could sustain release of Ca, P and F ions over 24 h and maintain AFCP nanoparticles in metastable state over 8~12 h. During 4 weeks of pH cycling, the mineralizing film group exhibited least color change (∆E), mineral loss and lesion depth (120 ± 10 µm) among four groups (p < 0.05). SEM findings revealed that the porosities among enamel crystals increased in negative control and pure HPMC film groups after pH cycling, whereas in mineralizing film group, the original microstructure of enamel was well conserved and mineral deposits were detected between enamel prisms. Mineralizing film group demonstrated a least reduction of nanomechanical properties such as elastic modulus of 77.02 ± 6.84 GPa and hardness of 3.62 ± 0.57 GPa (p < 0.05). Conclusion The mineralizing film might be a promising strategy for prevention and management of WSLs via inhibiting enamel demineralization and promoting enamel remineralization.
Collapse
Affiliation(s)
- Zhixin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Dongni Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Yiru Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Yizhou Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| |
Collapse
|
10
|
Wong HM, Zhang YY, Li QL. An enamel-inspired bioactive material with multiscale structure and antibacterial adhesion property. Bioact Mater 2021; 7:491-503. [PMID: 34466748 PMCID: PMC8379364 DOI: 10.1016/j.bioactmat.2021.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Conventional dental materials lack of the hierarchical architecture of enamel that exhibits excellent intrinsic-extrinsic mechanical properties. Moreover, restorative failures frequently occur due to physical and chemical mismatch between artificial materials and native dental hard tissue followed by recurrent caries which is caused by sugar-fermenting, acidogenic bacteria invasion of the defective cite. In order to resolve the limitations of the conventional dental materials, the aim of this study was to establish a non-cell-based biomimetic strategy to fabricate a novel bioactive material with enamel-like structure and antibacterial adhesion property. The evaporation-based, bottom-up and self-assembly method with layer-by-layer technique were used to form a large-area fluorapatite crystal layer containing antibacterial components. The multilayered structure was constructed by hydrothermal growth of the fluorapatite crystal layer and highly conformal adsorption to the crystal surface of a polyelectrolyte matrix film. Characterization and mechanical assessment demonstrated that the synthesized bioactive material resembled the native enamel in chemical components, mechanical properties and crystallographic structure. Antibacterial and cytocompatibility evaluation demonstrated that this material had the antibacterial adhesion property and biocompatibility. In combination with the molecular dynamics simulations to reveal the effects of variables on the crystallization mechanism, this study brings new prospects for the synthesis of enamel-inspired materials. A simple chemistry approach was offered to synthesize a enamel-like material without using cells or proteins. A macroscopic bioactive material resembled the native enamel with the antibacterial adhension propery was fabricated. Combining experiments and molecular dynamics simulations revealed effects of variables on the crystallization mechanism.
Collapse
Affiliation(s)
- Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Yu Yuan Zhang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Quan Li Li
- Collage and Hospital of Stomatology, Anhui Medical University, No. 69, Meishan Road, Heifei, China
| |
Collapse
|
11
|
Fang Z, Guo M, Zhou Q, Li Q, Wong HM, Cao CY. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins. Int J Biol Macromol 2021; 183:2131-2141. [PMID: 34111481 DOI: 10.1016/j.ijbiomac.2021.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/15/2023]
Abstract
Enamel regeneration currently -is limited by our inability to duplicate artificially its complicated and well-aligned hydroxyapatite structure. The initial formation of enamel occurs in enamel organs where the ameloblasts secret enamel extracellular matrix formed a unique gel-like microenvironment. The enamel extracellular matrix is mainly composed by amelogenin and non-amelogenin. In this study, an innovative strategy was proposed to regenerate enamel-like tissue by constructing a microenvironment using biomimetic enamel matrix proteins (biomimetic EMPs) composed of modified leucine-rich amelogenin peptide (mLRAP) and non-amelogenin analog (NAA). Impressively, the regenerated enamel in this biomimetic EMPs on etched enamel surface produced prismatic structures, and showed similar mechanical properties to natural enamel. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that regenerated crystal was hydroxyapatite. Molecular dynamics simulation analysis showed the binding energy between mLRAP and NAA were electrostatic forces and Van der Walls. These results introduced a promising strategy to induce crystal growth of enamel-like hydroxyapatite for biomimetic reproduction of materials with complicated hierarchical microstructures.
Collapse
Affiliation(s)
- Zehui Fang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Mengxi Guo
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qingli Zhou
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Chris Ying Cao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
12
|
Bazina F, Brouxhon SM, Graham UM, Kyrkanides S. Serotonin contributes to the in vitro production of a biomimetic enamel-like material from reprogrammed oral epithelial keratinocytes. Orthod Craniofac Res 2021; 24:494-501. [PMID: 33540478 DOI: 10.1111/ocr.12475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the role of serotonin in the development of a biomimetic enamel-like material in vitro. SETTING AND SAMPLE POPULATION Immortalized murine oral keratinocytes raised from adult mouse mucosa were cultured in vitro. In addition, specimens incorporating molar tooth buds harvested from mice were included in our studies. MATERIALS AND METHODS We used cell-based scaffold-free tissue engineering to assemble three-dimensional (3D) organoids into complex tissue constructs that closely emulate the complexity of adult enamel. We also analysed mouse molar specimens using immunohistochemistry for serotonin expression as well as its cognate receptor. RESULTS TGF-β1-reprogrammed murine oral keratinocytes formed organoids that laid down an amelogenin-rich protein matrix when grown as three-dimensional (3D) cultures in the presence of serotonin. Following mineralization, the newly formed crystals were densified under pressure and vacuum to produce a biomimetic enamel-like material that demonstrated parallel alignment of hydroxyapatite crystals with some interspaced residual organoid matter into enamel prism-like structures conferring size, mechanical properties comparable to tooth enamel, including light translucency. Serotonin expression was localized by immunohistochemistry proximal to the enamel organ of developing molar buds. Moreover, serotonin HTRb2 receptor expression was localized on ameloblasts within the enamel organ proximal to the area where serotonin was immunolocalized. CONCLUSIONS Our results demonstrate that serotonin is inductive in the development of a biomimetic enamel-like material from reprogrammed oral epithelial keratinocytes in vitro. The facileness of harvesting adult somatic cells together with the versatility of our approach offers exciting opportunities to address regenerative challenges linked to lost enamel.
Collapse
Affiliation(s)
- Fayrouz Bazina
- Ph.D. Program in Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sabine M Brouxhon
- Department of Physiology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | - Stephanos Kyrkanides
- Department of Oral Health Science, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
14
|
Wang S, Zhang L, Chen W, Jin H, Zhang Y, Wu L, Shao H, Fang Z, He X, Zheng S, Cao CY, Wong HM, Li Q. Rapid regeneration of enamel-like-oriented inorganic crystals by using rotary evaporation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111141. [PMID: 32600729 DOI: 10.1016/j.msec.2020.111141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Enamel, the hardest tissue in the human body, has excellent mechanical properties, mainly due to its highly ordered spatial structure. Fabricating enamel-like structure is still a challenge today. In this work, a simple and highly efficient method was introduced, using the silk fibroin as a template to regulate calcium- and phosphate- supersaturated solution to regenerate enamel-like hydroxyapatite crystals on various substrates (enamel, dentin, titanium, and polyethylene) under rotary evaporation. The enamel-like zinc oxide nanorod array structure was also successfully synthesized using the aforementioned method. This strategy provides a new approach to design and fabricate mineral crystals with particular orientation coatings for materials.
Collapse
Affiliation(s)
- Shengrui Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Le Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Wendy Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Huimin Jin
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ya Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zehui Fang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China.
| | - Quanli Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
15
|
In vitro remineralization of enamel white spot lesions with a carrier-based amorphous calcium phosphate delivery system. Clin Oral Investig 2019; 24:2079-2089. [DOI: 10.1007/s00784-019-03073-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/12/2019] [Indexed: 11/27/2022]
|
16
|
Mozaffari MS, Emami G, Khodadadi H, Baban B. Stem cells and tooth regeneration: prospects for personalized dentistry. EPMA J 2019; 10:31-42. [PMID: 30984312 PMCID: PMC6459449 DOI: 10.1007/s13167-018-0156-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Over the last several decades, a wealth of information has become available regarding various sources of stem cells and their potential use for regenerative purposes. Given the intense debate regarding embryonic stem cells, much of the focus has centered around application of adult stem cells for regenerative engineering along with other relevant aspects including use of growth factors and scaffolding materials. The more recent discovery of tooth-derived stem cells has sparked much interest in their application to regenerative dentistry to treat and alleviate the most prevalent oral diseases-i.e., dental caries and periodontal diseases. Also exciting is the advent of induced pluripotent stem cells, which provides the means of using patient-derived somatic cells for their creation, and their eventual application for generation of the dental complex. Thus, evolving developments in the field of regenerative dentistry indicate the prospect of constructing "custom-made" tooth and supporting structures thereby fostering the realization of "personalized dentistry." On the other hand, others have explored the possibility of augmenting endogenous regenerative capacity through utilization of small molecules to regulate molecular signaling mechanisms that mediate regeneration of tooth structure. This review is focused on these aspects of regenerative dentistry in view of their relevance to personalized dentistry.
Collapse
Affiliation(s)
- Mahmood S. Mozaffari
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Golnaz Emami
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences; CL-2134, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| |
Collapse
|
17
|
Elsharkawy S, Mata A. Hierarchical Biomineralization: from Nature's Designs to Synthetic Materials for Regenerative Medicine and Dentistry. Adv Healthc Mater 2018; 7:e1800178. [PMID: 29943412 DOI: 10.1002/adhm.201800178] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/08/2018] [Indexed: 12/28/2022]
Abstract
Biomineralization is a highly dynamic, yet controlled, process that many living creatures employ to develop functional tissues such as tooth enamel, bone, and others. A major goal in materials science is to create bioinspired functional structures based on the precise organization of building blocks across multiple length scales. Therefore, learning how nature has evolved to use biomineralization could inspire new ways to design and develop synthetic hierarchical materials with enhanced functionality. Toward this goal, this review dissects the current understanding of structure-function relationships of dental enamel and bone using a materials science perspective and discusses a wide range of synthetic technologies that aim to recreate their hierarchical organization and functionality. Insights into how these strategies could be applied for regenerative medicine and dentistry are also provided.
Collapse
Affiliation(s)
- Sherif Elsharkawy
- Institute of Bioengineering; Queen Mary University of London; London E1 4NS UK
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
- Institute of Dentistry; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
| | - Alvaro Mata
- Institute of Bioengineering; Queen Mary University of London; London E1 4NS UK
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
| |
Collapse
|
18
|
Protein disorder–order interplay to guide the growth of hierarchical mineralized structures. Nat Commun 2018; 9:2145. [PMID: 29858566 PMCID: PMC5984621 DOI: 10.1038/s41467-018-04319-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/18/2018] [Indexed: 01/05/2023] Open
Abstract
A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder–order interplay using elastin-like recombinamers to program organic–inorganic interactions into hierarchically ordered mineralized structures. The materials comprise elongated apatite nanocrystals that are aligned and organized into microscopic prisms, which grow together into spherulite-like structures hundreds of micrometers in diameter that come together to fill macroscopic areas. The structures can be grown over large uneven surfaces and native tissues as acid-resistant membranes or coatings with tuneable hierarchy, stiffness, and hardness. Our study represents a potential strategy for complex materials design that may open opportunities for hard tissue repair and provide insights into the role of molecular disorder in human physiology and pathology. There is evidence that disordered proteins play a role in the mineralization process. Here, the authors report on the development of elastin-like recombinant protein membranes using disordered-ordered interplay to investigate and guide mineralization.
Collapse
|
19
|
Mukherjee K, Ruan Q, Nutt S, Tao J, De Yoreo JJ, Moradian-Oldak J. Peptide-Based Bioinspired Approach to Regrowing Multilayered Aprismatic Enamel. ACS OMEGA 2018; 3:2546-2557. [PMID: 29623301 PMCID: PMC5879487 DOI: 10.1021/acsomega.7b02004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/22/2018] [Indexed: 05/28/2023]
Abstract
The gradual discovery of functional domains in native enamel matrix proteins has enabled the design of smart bioinspired peptides for tooth enamel mimetics and repair. In this study, we expanded upon the concept of biomineralization to design smaller amelogenin-inspired peptides with conserved functional domains for clinical translation. The synthetic peptides displayed a characteristic nanostructured scaffold reminiscent of 'nanospheres' seen in the enamel matrix and effectively controlled apatite nucleation in vitro resulting in the formation of smaller crystallites. Following application of the peptides to sectioned human molar teeth, a robust, oriented, synthetic aprismatic enamel was observed after 7 days of incubation in situ. There was a two-fold increase in the hardness and modulus of the regrown enamel-like apatite layers and an increase in the attachment of the tooth-regrown layer interface compared to control samples. Repeated peptide applications generated multiple enamel-like hydroxyapatite (HAP) layers of limited thickness produced by epitaxial growth in which c-axis oriented nanorods evolved on the surface of native enamel. We conclude that peptide analogues with active domains can effectively regulate the orientation of regenerated HAP layers to influence functional response. Moreover, this enamel biofabrication approach demonstrates the peptide-mediated growth of multiple microscale HAP arrays of organized microarchitecture with potential for enamel repair.
Collapse
Affiliation(s)
- Kaushik Mukherjee
- Center
for Craniofacial Molecular Biology, Division of Biomedical Sciences,
Herman Ostrow School of Dentistry, University
of Southern California, 2250 Alcazar Street, 90033 Los Angeles, United States
| | - Qichao Ruan
- Center
for Craniofacial Molecular Biology, Division of Biomedical Sciences,
Herman Ostrow School of Dentistry, University
of Southern California, 2250 Alcazar Street, 90033 Los Angeles, United States
| | - Steven Nutt
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, 3651 Watt Way, 90089 Los Angeles, United States
| | - Jinhui Tao
- Physical
Sciences Division, Pacific Northwest National
Laboratory, 902 Battelle
Blvd, 99352 Richland, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Pacific Northwest National
Laboratory, 902 Battelle
Blvd, 99352 Richland, United States
| | - Janet Moradian-Oldak
- Center
for Craniofacial Molecular Biology, Division of Biomedical Sciences,
Herman Ostrow School of Dentistry, University
of Southern California, 2250 Alcazar Street, 90033 Los Angeles, United States
| |
Collapse
|
20
|
Abstract
The human body has difficulty repairing damaged dental enamel, an acellular hard tissue. Researchers have sought feasible biomimicry strategies to repair enamel defects; however, few have been successfully translated to clinical applications. In this study, we propose a new method for achieving rapid enamel mineralization under a near-physiological environment. Through treatment with a laser and chelating agents, 15 μm crystals could be grown compactly on an enamel substrate in less than 20 min. The compact crystal layer had similar structure as native enamel prisms and high elastic modulus. This layer also had the potential for further remineralization in saliva. The benefit of using laser can not only speed up the mineralization, but also control the crystal growth precisely where in need. A mechanism for how laser and chelating agents synergistically function is also proposed. This strategy offers a possibility for enamel-biomimicking repair in dental clinics.
Collapse
|
21
|
Bifunctional dentifrice: Amorphous polyphosphate a regeneratively active sealant with potent anti- Streptococcus mutans activity. Dent Mater 2017; 33:753-764. [DOI: 10.1016/j.dental.2017.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
|
22
|
Han M, Li QL, Cao Y, Fang H, Xia R, Zhang ZH. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci Rep 2017; 7:41955. [PMID: 28167823 PMCID: PMC5294398 DOI: 10.1038/srep41955] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits' incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.
Collapse
Affiliation(s)
- Min Han
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Quan-Li Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ying Cao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hui Fang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Rong Xia
- Department of Stomatology, the Second Hospital affiliated to Anhui Medical University, Hefei, 230601, China
| | - Zhi-Hong Zhang
- Department of Stomatology, the Hospital of Anhui Province, Hefei, 230001, China
| |
Collapse
|
23
|
Ding C, Chen Z, Li J. From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomater Sci 2017; 5:1435-1449. [DOI: 10.1039/c7bm00247e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the bioinspired strategies for hard tissue repair, ranging from molecule-induced mineralization, to microscale assembly to macroscaffold fabrication.
Collapse
Affiliation(s)
- Chunmei Ding
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Zhuoxin Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
24
|
Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S. Nanomaterials for Tissue Engineering In Dentistry. NANOMATERIALS 2016; 6:nano6070134. [PMID: 28335262 PMCID: PMC5224610 DOI: 10.3390/nano6070134] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The tissue engineering (TE) of dental oral tissue is facing significant changes in clinical treatments in dentistry. TE is based on a stem cell, signaling molecule, and scaffold triad that must be known and calibrated with attention to specific sectors in dentistry. This review article shows a summary of micro- and nanomorphological characteristics of dental tissues, of stem cells available in the oral region, of signaling molecules usable in TE, and of scaffolds available to guide partial or total reconstruction of hard, soft, periodontal, and bone tissues. Some scaffoldless techniques used in TE are also presented. Then actual and future roles of nanotechnologies about TE in dentistry are presented.
Collapse
Affiliation(s)
- Manila Chieruzzi
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Pagano
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Silvia Moretti
- Department of Experimental Medicine-University of Perugia Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| | - Roberto Pinna
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Egle Milia
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Luigi Torre
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Eramo
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
25
|
Abstract
Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
26
|
Abstract
Biomimetic mineralisation is an alternative restorative methodology that imitates the natural process of mineralisation. We aimed to systematically review the laboratory methods on the biomimetic mineralisation of demineralised enamel. A search in the PubMed, ScienceDirect, and ISI Web of Science databases was performed. Clinical trials, reviews, non-English articles, animal teeth, non-tooth substrates, and irrelevant studies were excluded. After screening the titles and abstracts of initially searched articles, 20 papers remained for full-text analysis. Eight articles were identified from the references of the remaining papers. A total of 28 studies were included in this systematic review. We found that protein or protein analogues were used to mimic the function of natural protein in 23 studies. Bioactive components inspired by mussel, an agarose hydrogel model, a glycerine-enriched gelatine technique, and ethylenediaminetetraacetic acid, were also used for biomimetic mineralisation of enamel. These laboratory studies reported success in the biomimetic mineralisation of enamel. Potential further research on the biomimetic mineralisation of enamel was discussed.
Collapse
|
27
|
Wang Y, Lin K, Wu C, Liu X, Chang J. Preparation of hierarchical enamel-like structures from nano- to macro-scale, regulated by inorganic templates derived from enamel. J Mater Chem B 2015; 3:65-71. [DOI: 10.1039/c4tb01476f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We, for the first time, prepared enamel like apatite with cross-arranged hierarchical structure by using natural enamel as template.
Collapse
Affiliation(s)
- Yueyue Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Xiaoguo Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
28
|
Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J Mater Chem B 2015. [DOI: 10.1039/c5tb00163c and 21=21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mature tooth enamel is acellular and does not regenerate itself.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology
- Herman Ostrow School of Dentistry
- University of Southern California
- Los Angeles
- USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology
- Herman Ostrow School of Dentistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
29
|
Guo T, Li Y, Cao G, Zhang Z, Chang S, Czajka-Jakubowska A, Nör JE, Clarkson BH, Liu J. Fluorapatite-modified scaffold on dental pulp stem cell mineralization. J Dent Res 2014; 93:1290-5. [PMID: 25139361 PMCID: PMC4462802 DOI: 10.1177/0022034514547914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 01/09/2023] Open
Abstract
In previous studies, fluorapatite (FA) crystal-coated surfaces have been shown to stimulate the differentiation and mineralization of human dental pulp stem cells (DPSCs) in two-dimensional cell culture. However, whether the FA surface can recapitulate these properties in three-dimensional culture is still unknown. This study examined the differences in behavior of human DPSCs cultured on electrospun polycaprolactone (PCL) NanoECM nanofibers with or without the FA crystals. Under near-physiologic conditions, the FA crystals were synthesized on the PCL nanofiber scaffolds. The FA crystals were evenly distributed on the scaffolds. DPSCs were cultured on the PCL+FA or the PCL scaffolds for up to 28 days. Scanning electron microscope images showed that DPSCs attached well to both scaffolds after the initial seeding. However, it appeared that more multicellular aggregates formed on the PCL+FA scaffolds. After 14 days, the cell proliferation on the PCL+FA was slower than that on the PCL-only scaffolds. Interestingly, even without any induction of mineralization, from day 7, the upregulation of several pro-osteogenic molecules (dmp1, dspp, runx2, ocn, spp1, col1a1) was detected in cells seeded on the PCL+FA scaffolds. A significant increase in alkaline phosphatase activity was also seen on FA-coated scaffolds compared with the PCL-only scaffolds at days 14 and 21. At the protein level, osteocalcin expression was induced only in the DPSCs on the PCL+FA surfaces at day 21 and then significantly enhanced at day 28. A similar pattern was observed in those specimens stained with Alizarin red and Von Kossa after 21 and 28 days. These data suggest that the incorporation of FA crystals within the three-dimensional PCL nanofiber scaffolds provided a favorable extracellular matrix microenvironment for the growth, differentiation, and mineralization of human DPSCs. This FA-modified PCL nanofiber scaffold shows promising potential for future bone, dental, and orthopedic regenerative applications.
Collapse
Affiliation(s)
- T Guo
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Y Li
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xian, Shaanxi, China
| | - G Cao
- Department of Stomatology, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Z Zhang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - A Czajka-Jakubowska
- Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Poznan, Poland
| | - J E Nör
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - B H Clarkson
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J Liu
- Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Chen M, Yang J, Li J, Liang K, He L, Lin Z, Chen X, Ren X, Li J. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater 2014; 10:4437-46. [PMID: 24879313 DOI: 10.1016/j.actbio.2014.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022]
Abstract
In the bioinspired repair process of tooth enamel, it is important to simultaneously mimic the organic-matrix-induced biomineralization and increase the binding strength at the remineralization interface. In this work, a fourth-generation polyamidoamine dendrimer (PAMAM) is modified by dimethyl phosphate to obtain phosphate-terminated dendrimer (PAMAM-PO3H2) since it has a similar dimensional scale and peripheral functionalities to that of amelogenin, which plays important role in the natural development process of enamel. Its phosphate group has stronger affinity for calcium ion than carboxyl group and can simultaneously provide strong hydroxyapatite (HA)-binding capability. The MTT assay demonstrates the low cytotoxicity of PAMAM-PO3H2. Adsorption tests indicate that PAMAM-PO3H2 can be tightly adsorbed on the human tooth enamel. Scanning electron microscopy and X-ray diffraction are used to analyze the remineralization process. After being incubated in artificial saliva for 3weeks, there is a newly generated HA layer of 11.23μm thickness on the acid-etched tooth enamel treated by PAMAM-PO3H2, while the thickness for the carboxyl-terminated one (PAMAM-COOH) is only 6.02μm. PAMAM-PO3H2 can regulate the remineralization process to form ordered new crystals oriented along the Z-axis and produce an enamel prism-like structure that is similar to that of natural tooth enamel. The animal experiment also demonstrates that PAMAM-PO3H2 can induce significant HA regeneration in the oral cavity of rats. Thus PAMAM-PO3H2 shows great potential as a biomimetic restorative material for human tooth enamel.
Collapse
|
31
|
Jayasudha, Baswaraj, H K N, K B P. Enamel regeneration - current progress and challenges. J Clin Diagn Res 2014; 8:ZE06-9. [PMID: 25386548 DOI: 10.7860/jcdr/2014/10231.4883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/05/2014] [Indexed: 01/07/2023]
Abstract
Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration.
Collapse
Affiliation(s)
- Jayasudha
- Reader, Department of Pedodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| | - Baswaraj
- Reader, Department of Orthodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| | - Navin H K
- Reader, Department of Pedodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| | - Prasanna K B
- Senior Lecturer, Department of Pedodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| |
Collapse
|
32
|
Ruan Q, Moradian-Oldak J. Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. J Vis Exp 2014. [PMID: 25046057 DOI: 10.3791/51606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Biomimetic enamel reconstruction is a significant topic in material science and dentistry as a novel approach for the treatment of dental caries or erosion. Amelogenin has been proven to be a critical protein for controlling the organized growth of apatite crystals. In this paper, we present a detailed protocol for superficial enamel reconstruction by using a novel amelogenin-chitosan hydrogel. Compared to other conventional treatments, such as topical fluoride and mouthwash, this method not only has the potential to prevent the development of dental caries but also promotes significant and durable enamel restoration. The organized enamel-like microstructure regulated by amelogenin assemblies can significantly improve the mechanical properties of etched enamel, while the dense enamel-restoration interface formed by an in situ regrowth of apatite crystals can improve the effectiveness and durability of restorations. Furthermore, chitosan hydrogel is easy to use and can suppress bacterial infection, which is the major risk factor for the occurrence of dental caries. Therefore, this biocompatible and biodegradable amelogenin-chitosan hydrogel shows promise as a biomaterial for the prevention, restoration, and treatment of defective enamel.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California;
| |
Collapse
|
33
|
Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater 2013; 9:7289-97. [PMID: 23571002 PMCID: PMC3669649 DOI: 10.1016/j.actbio.2013.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/04/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
Abstract
Biomimetic reconstruction of tooth enamel is a significant topic of study in materials science and dentistry as a novel approach to the prevention, restoration, and treatment of defective enamel. We have developed a new amelogenin-containing chitosan hydrogel for enamel reconstruction that works through amelogenin supramolecular assembly, stabilizing Ca-P clusters and guiding their arrangement into linear chains. These amelogenin Ca-P composite chains further fuse with enamel crystals and eventually evolve into enamel-like co-aligned crystals, anchored to the natural enamel substrate through a cluster growth process. A dense interface between the newly grown layer and natural enamel was formed and the enamel-like layer improved the hardness and elastic modulus compared with etched enamel. We anticipate that this chitosan hydrogel will provide effective protection against secondary caries because of its pH-responsive and antimicrobial properties. Our studies introduce an amelogenin-containing chitosan hydrogel as a promising biomaterial for enamel repair and demonstrate the potential of applying protein-directed assembly to biomimetic reconstruction of complex biomaterials.
Collapse
Affiliation(s)
- Qichao Ruan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuzheng Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiudong Yang
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Steven Nutt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Liu S, Yin Y, Chen H. PEO-assisted precipitation of human enamel-like fluorapatite films for tooth whitening. CrystEngComm 2013. [DOI: 10.1039/c3ce40388b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Abstract
The purpose of this review is to highlight recent nanotechnological developments for remineralization of incipient caries lesions as well as biomimetic strategies for enamel synthesis based on the application of nanotechnology. Analysis of in vitro data indicates that apatite nanoparticles might be effective in reversing lesion progression in the outer but not in the deeper part of early caries lesions. To control caries-induced demineralization, investigators have developed calcium and phosphate or fluoride ion-releasing nanofillers, enabling resin composites to release ions, if the pH decreases under in vitro conditions. Extensive in vitro investigations of apatite crystallization have been performed to mimic the hierarchical topology of natural enamel. Strategies for formation of highly organized biomineralized structures include oriented aggregation of nanocrystallites or the assembly of apatite nanoparticles mediated by organic scaffolds. Despite all these promising in vitro experiments, the effectiveness of such strategies for the control of demineralization processes as well as for caries therapy still needs validation by clinical studies.
Collapse
Affiliation(s)
- M. Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - C. Hannig
- Clinic of Operative Dentistry, Medical Faculty, Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
36
|
Abstract
Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principels of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties and the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth.
Collapse
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
37
|
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. BIOMATTER 2011; 1:121-64. [PMID: 23507744 PMCID: PMC3549886 DOI: 10.4161/biom.18790] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
38
|
Wei J, Wang J, Shan W, Liu X, Ma J, Liu C, Fang J, Wei S. Development of fluorapatite cement for dental enamel defects repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1607-1614. [PMID: 21553155 DOI: 10.1007/s10856-011-4327-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/20/2011] [Indexed: 05/30/2023]
Abstract
In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.
Collapse
Affiliation(s)
- Jie Wei
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang H, Sun K, Li A, Wang W, Chui P. Size-controlled synthesis and characterization of fluorapatite nanocrystals in the presence of gelatin. POWDER TECHNOL 2011. [DOI: 10.1016/j.powtec.2011.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Fan Y, Nelson JR, Alvarez JR, Hagan J, Berrier A, Xu X. Amelogenin-assisted ex vivo remineralization of human enamel: Effects of supersaturation degree and fluoride concentration. Acta Biomater 2011; 7:2293-302. [PMID: 21256987 PMCID: PMC3074030 DOI: 10.1016/j.actbio.2011.01.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions, and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by field emission-scanning electron microscopy, attenuated total reflection-Fourier transformed infrared and X-ray diffraction. The concentration of fluoride and the supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP)=10.2±2.0 with 1.5±0.5 mg l(-1) fluoride and 40±10 μg ml(-1) amelogenin, pH 6.8±0.4. A phase diagram summarizes the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management.
Collapse
Affiliation(s)
- Yuwei Fan
- Department of Comprehensive Dentistry and Biomaterials, School of Dentistry, Louisiana State University Health Science Center, New Orleans, 70119, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Huang GTJ. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed) 2011; 3:788-800. [PMID: 21196351 PMCID: PMC3289134 DOI: 10.2741/e286] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cementum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filling with an artificial rubber-like material is employed to treat the infection -- commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcomes of current advancements and challenges in this line of research are discussed.
Collapse
Affiliation(s)
- George T-J Huang
- Boston University, Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA.
| |
Collapse
|