1
|
Sameni HR, Arab S, Doostmohammadi N, Bahraminasab M. Effect of calcium phosphate/bovine serum albumin coated Al 2O 3-Ti biocomposites on osteoblast response. BIOMED ENG-BIOMED TE 2024; 69:367-382. [PMID: 38258440 DOI: 10.1515/bmt-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVES The biological performance of aluminum oxide-titanium (Al2O3-Ti) composites requires special attention to achieve improved osteoblastic differentiation, and subsequent osseointegration/strong anchorage with the surrounding bone. Therefore, the aim of this study was to improve them by providing calcium phosphate (Ca-P)/bovine serum albumin (BSA) coating on their surfaces. METHODS Ca-P/BSA coatings were prepared on the surfaces of 75vol.%Ti composites (75Ti-BSA) and pure Ti (100Ti-BSA as a control). The surface characteristics, phase analysis, micro-hardness, BSA release profile and biological responses including cytotoxicity, cell viability, differentiation, mineralization, and cell adhesion were evaluated. RESULTS The results showed that lower cytotoxicity% and higher mitochondrial activity or viability % were associated with the samples with Ca-P/BSA coatings (particularly 75Ti-BSA having 21.3% cytotoxicity, 111.4% and 288.6% viability at day 1 and 7, respectively). Furthermore, the Ca-P/BSA coating could highly enhance the differentiation of pre-osteoblast cells into osteoblasts in 75Ti-BSA group (ALP concentration of 4.8 ng/ml). However, its influence on cell differentiation in 100Ti-BSA group was negligible. Similar results were also obtained from mineralization assay. The results on cell adhesion revealed that the Ca-P/BSA coated samples differently interacted with MC3T3-E1 cells; enlarged flat cells on 75Ti-BSA vs more spindle-shaped cells on 100Ti-BSA. CONCLUSIONS Ca-P/BSA coated Al2O3-Ti provided promising biological performance, superior to that of uncoated composites. Therefore, they have the potential to improve implant osseointegration.
Collapse
Affiliation(s)
- Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nesa Doostmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Huang B, Li JM, Zang XM, Wang M, Pan W, Zhang KD, He H, Tan QG, Miao AJ. Cell-excreted proteins mediate the interactions of differently sized silica nanoparticles during cellular uptake. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133894. [PMID: 38452668 DOI: 10.1016/j.jhazmat.2024.133894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Exposure to different types of nanoparticles (NPs) results in their deposition in human bodies. While most studies have examined the cellular uptake of only one type of NP at a time, how the dynamics of NP uptake may change in the presence of other types of NPs remains unclear. We therefore investigated the interplay of two differently sized SiO2 NPs during their uptake by A549 human lung carcinoma cells. Both NPs contained a CdSeTe core, which was labeled with different Cd isotopes to differentiate between them. Our study showed that the uptake of one size of SiO2 NPs either increased or decreased with the concentration of the other size of SiO2 NPs. This variation in uptake was attributable to the concentration-dependent aggregation of SiO2 NPs, as determined by the amount of cell-excreted proteins adsorbed on the NP surface. Further, the effects of the protein corona on the attachment of SiO2 NPs to the cell surface and uptake competition between differently sized SiO2 NPs also played important roles. Cell-excreted proteins were then analyzed by proteomics. Overall, the complex interactions between coexisting NPs of different physicochemical properties and cell-excreted proteins should be considered during bio-applications and bio-safety evaluations of NPs.
Collapse
Affiliation(s)
- Bin Huang
- Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Jia-Ming Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Xiao-Mei Zang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Ke-Da Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Huan He
- Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China.
| |
Collapse
|
3
|
Zhu H, Lin M, Li Y, Duan K, Hu J, Chen C, Yu Z, Lee BH. LSPR sensing for in situ monitoring the Ag dissolution of Au@Ag core-shell nanoparticles in biological environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123885. [PMID: 38245969 DOI: 10.1016/j.saa.2024.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Silver nanoparticles (AgNPs) are extensively used as an antibacterial agent, and monitoring the dissolution behavior of AgNPs in native biological environments is critical in both optimizing their performance and regulating their safety. However, current assessment methods rely on sophisticated analytical tools that are off-site and time-consuming with potential underestimations, due to complicated sample preparation. Although localized surface plasmon resonance (LSPR) sensing offers a facile method for the detection of AgNP dissolution, it is limited by low sensitivity and poor nanoparticle stability in native biological environments. Herein, we constructed a highly sensitive and stable LSPR sensor using gold-silver core-shell nanoparticles (Au@AgNPs), in combination with polymeric stabilizing agents, for the direct measurement of the Ag shell dissolution in native biological media. The high sensitivity was attributed to the acute and large LSPR shift generated by bimetallic nanoparticles. The sensor was used for the real-time monitoring of the Ag dissolution of Au@AgNPs during their co-culture with both bacteria and fibroblast cells. The media pH was found to dominate the Ag dissolution process, where Au@AgNPs exhibited bactericidal effects in the bacteria environment with relatively low pH, but they showed little toxicity towards fibroblast cells at pH 7.4. The minimum inhibition concentration of Au@AgNPs for bacterial growth was found similar to that of AgNO3 in terms of released Ag amount. Thus, stabilized Au@AgNPs not only allow the in-situ monitoring of Ag dissolution via LSPR sensing but also constitute an effective antibacterial agent with controlled toxicity, holding great potential for future biomedical and healthcare applications.
Collapse
Affiliation(s)
- Hu Zhu
- Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong 525000, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Kairui Duan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Jiajun Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Chunbo Chen
- Maoming People's Hospital, 101 Weimin Road, Maoming, Guangdong 525000, China.
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
4
|
Krupnik L, Avaro J, Liebi M, Anaraki NI, Kohlbrecher J, Sologubenko A, Handschin S, Rzepiela AJ, Appel C, Totu T, Blanchet CE, Alston AEB, Digigow R, Philipp E, Flühmann B, Silva BFB, Neels A, Wick P. Iron-carbohydrate complexes treating iron anaemia: Understanding the nano-structure and interactions with proteins through orthogonal characterisation. J Control Release 2024; 368:566-579. [PMID: 38438093 DOI: 10.1016/j.jconrel.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a plethora of physicochemical characterisation data and clinical studies are available for these products, evidence-based correlation between physicochemical properties of iron-carbohydrate complexes and clinical outcome has not fully been elucidated yet. Studies on other metal oxide NPs suggest that early interactions between NPs and blood upon IV injection are key to understanding how differences in physicochemical characteristics of iron-carbohydrate complexes cause variance in clinical outcomes. We therefore investigated the core-ligand structure of two clinically relevant iron-carbohydrate complexes, iron sucrose (IS) and ferric carboxymaltose (FCM), and their interactions with two structurally different human plasma proteins, human serum albumin (HSA) and fibrinogen, using a combination of cryo-scanning transmission electron microscopy (cryo-STEM), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). Using this orthogonal approach, we defined the nano-structure, individual building blocks and surface morphology for IS and FCM. Importantly, we revealed significant differences in the surface morphology of the iron-carbohydrate complexes. FCM shows a localised carbohydrate shell around its core, in contrast to IS, which is characterised by a diffuse and dynamic layer of carbohydrate ligand surrounding its core. We hypothesised that such differences in carbohydrate morphology determine the interaction between iron-carbohydrate complexes and proteins and therefore investigated the NPs in the presence of HSA and fibrinogen. Intriguingly, IS showed significant interaction with HSA and fibrinogen, forming NP-protein clusters, while FCM only showed significant interaction with fibrinogen. We postulate that these differences could influence bio-response of the two formulations and their clinical outcome. In conclusion, our study provides orthogonal characterisation of two clinically relevant iron-carbohydrate complexes and first hints at their interaction behaviour with proteins in the human bloodstream, setting a prerequisite towards complete understanding of the correlation between physicochemical properties and clinical outcome.
Collapse
Affiliation(s)
- Leonard Krupnik
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Jonathan Avaro
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Marianne Liebi
- Photon Science Division, PSI Paul Scherrer Institute, Villigen CH-5232, Switzerland; Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Neda Iranpour Anaraki
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering, PSI Paul Scherrer Institute, Villigen CH-5232, Switzerland
| | - Alla Sologubenko
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrzej J Rzepiela
- Scientific Center for Optical and Electron Microscopy, ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Christian Appel
- Photon Science Division, PSI Paul Scherrer Institute, Villigen CH-5232, Switzerland
| | - Tiberiu Totu
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; ETH Zurich, Department of Health Sciences and Technology (D-HEST), CH-8093 Zurich, Switzerland; SIB, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Clement E Blanchet
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, Hamburg 22603, Germany
| | | | | | - Erik Philipp
- CSL Vifor, Flughofstrasse 61, CH-8152 Glattbrugg, Switzerland
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, CH-8152 Glattbrugg, Switzerland
| | - Bruno F B Silva
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
5
|
Nhan J, Strebel N, Virah Sawmy K, Yin J, St-Pierre JP. Characterization of Calcium- and Strontium-Polyphosphate Particles Toward Drug Delivery into Articular Cartilage. Macromol Biosci 2024; 24:e2300345. [PMID: 37777870 DOI: 10.1002/mabi.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Drug delivery into articular cartilage poses many challenges due in part to its lack of vasculature. While intra-articular injections are effective for the local administration of drugs, small molecules are rapidly cleared from the synovial fluid. As such, there is a need to develop effective drug delivery strategies to improve the residence times of bioactive molecules in the joint and elicit a sustained therapeutic effect. In this study, calcium- and strontium-polyphosphate particles are synthesized and characterized as potential drug carriers into articular cartilage. Physicochemical characterization reveals that the particles exhibit a spherical morphology, have a negative zeta potential, and are nanoscale in size. Biological characterization in chondrocytes confirms cellular uptake of the particles and demonstrates both size and concentration-dependent cytotoxicity at high concentrations. Furthermore, treatment of chondrocytes with these particles results in a reduction in cell proliferation and metabolic activity, confirming biological effects. Finally, incubation with cartilage tissue explants suggests successful uptake, despite the particles exhibiting a negative surface charge. Therefore, from the results of this study, these polyphosphate-based particles have potential as a drug carrier into articular cartilage and warrant further development.
Collapse
Affiliation(s)
- Jordan Nhan
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Nicolas Strebel
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Khushnouma Virah Sawmy
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jordan Yin
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
6
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
7
|
Radzikowska-Büchner E, Flieger W, Pasieczna-Patkowska S, Franus W, Panek R, Korona-Głowniak I, Suśniak K, Rajtar B, Świątek Ł, Żuk N, Bogucka-Kocka A, Makuch-Kocka A, Maciejewski R, Flieger J. Antimicrobial and Apoptotic Efficacy of Plant-Mediated Silver Nanoparticles. Molecules 2023; 28:5519. [PMID: 37513392 PMCID: PMC10383343 DOI: 10.3390/molecules28145519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Phytogenically synthesised nanoparticle (NP)-based drug delivery systems have promising potential in the field of biopharmaceuticals. From the point of view of biomedical applications, such systems offer the small size, high surface area, and possible synergistic effects of NPs with embedded biomolecules. This article describes the synthesis of silver nanoparticles (Ag-NPs) using extracts from the flowers and leaves of tansy (Tanacetum vulgare L.), which is known as a remedy for many health problems, including cancer. The reducing power of the extracts was confirmed by total phenolic and flavonoid content and antioxidant tests. The Ag-NPs were characterised by various analytical techniques including UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, and a dynamic light scattering (DLS) system. The obtained Ag-NPs showed higher cytotoxic activity than the initial extracts against both human cervical cancer cell lines HeLa (ATCC CCL-2) and human melanoma cell lines A375 and SK-MEL-3 by MTT assay. However, the high toxicity to Vero cell culture (ATCC CCL-81) and human fibroblast cell line WS-1 rules out the possibility of their use as anticancer agents. The plant-mediated Ag-NPs were mostly bactericidal against tested strains with MBC/MIC index ≤4. Antifungal bioactivity (C. albicans, C. glabrata, and C. parapsilosis) was not observed for aqueous extracts (MIC > 8000 mg L-1), but Ag-NPs synthesised using both the flowers and leaves of tansy were very potent against Candida spp., with MIC 15.6 and 7.8 µg mL-1, respectively.
Collapse
Affiliation(s)
| | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie Skłodowska University, Pl. Maria Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Natalia Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Elango J, Zamora-Ledezma C, Alexis F, Wu W, Maté-Sánchez de Val JE. Protein Adsorption, Calcium-Binding Ability, and Biocompatibility of Silver Nanoparticle-Loaded Polyvinyl Alcohol (PVA) Hydrogels Using Bone Marrow-Derived Mesenchymal Stem Cells. Pharmaceutics 2023; 15:1843. [PMID: 37514030 PMCID: PMC10384843 DOI: 10.3390/pharmaceutics15071843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Several approaches have evolved to facilitate the exploration of hydrogel systems in biomedical research. In this sense, poly(vinyl alcohol) (PVA) has been widely used in hydrogel (HG) fabrication for several therapeutic applications. The biological properties of PVA hydrogels (PVA-HGs) are highly dependent on their interaction with protein receptors and extracellular matrix (mainly calcium) deposition, for which there is not enough evidence from existing research yet. Thus, for the first time, the functional properties, like protein and mineral interactions, related to the proliferation of mesenchymal stem cells (MSCs) by silver nanoparticle (AgNP)-loaded PVA hydrogels (AgNPs-PVA-HGs) were investigated in the present study. The UV absorption spectrum and TEM microscopic results showed a maximum absorbance of synthesized AgNPs at 409 nm, with an average particle size of 14.5 ± 2.5 nm, respectively. The functional properties, such as the calcium-binding and the protein adsorption of PVA-HG, were accelerated by incorporating AgNPs; however, the swelling properties of the HGs were reduced by AgNPs, which might be due to the masking of the free functional groups (hydroxyl groups of PVA) by AgNPs. SEM images showed the presence of AgNPs with a more porous structure in the HGs. The proliferative effect of MSCs increased over culture time from day 1 to day 7, and the cell proliferative effect was upregulated by HGs with more pronounced AgNPs-PVA-HG. In addition, both HGs did not produce any significant cytotoxicity in the MSCs. The histological (bright light and H&E staining) and fluorescence microscopic images showed the presence of a cytoskeleton and the fibrillar structure of the MSCs, and the cells adhered more firmly to all HGs. More fibrillar bipolar and dense fibrillar structures were seen in the day 1 and day 7 cultures, respectively. Interestingly, the MSCs cultured on AgNPs-PVA-HG produced extracellular matrix deposition on day 7. Accordingly, the present results proved the biocompatibility of AgNPs-PVA-HG as a suitable system for culturing mammalian stem cells for regenerative tissue applications.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - José Eduardo Maté-Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
9
|
Filimon A, Onofrei MD, Bargan A, Stoica I, Dunca S. Bioactive Materials Based on Hydroxypropyl Methylcellulose and Silver Nanoparticles: Structural-Morphological Characterization and Antimicrobial Testing. Polymers (Basel) 2023; 15:polym15071625. [PMID: 37050239 PMCID: PMC10096613 DOI: 10.3390/polym15071625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The progress achieved in recent years in the biomedical field justifies the objective evaluation of new techniques and materials obtained by using silver in different forms as metallic silver, silver salts, and nanoparticles. Thus, the antibacterial, antiviral, antifungal, antioxidant, and anti-inflammatory activity of silver nanoparticles (AgNPs) confers to newly obtained materials characteristics that make them ideal candidates in a wide spectrum of applications. In the present study, the use of hydroxypropyl methyl cellulose (HPMC) in the new formulation, by embedding AgNPs with antibacterial activity, using poly(N-vinylpyrrolidone) (PVP) as a stabilizing agent was investigated. AgNPs were incorporated in HPMC solutions, by thermal reduction of silver ions to silver nanoparticles, using PVP as a stabilizer; a technique that ensures the efficiency and selectivity of the obtained materials. The rheological properties, morphology, in vitro antimicrobial activity, and stability/catching of Ag nanoparticles in resulting HPMC/PVP-AgNPs materials were evaluated. The obtained rheological parameters highlight the multifunctional roles of PVP, focusing on the stabilizing effect of new formulations but also the optimization of some properties of the studied materials. The silver amount was quantified using the spectroscopy techniques (energy-dispersive X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX)), while formation of the AgNPs was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Also, the morphological examination (Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM)) by means of the texture roughness parameters has evidenced favorable characteristics for targeted applications. Antibacterial activity was tested against Escherichia coli and Staphylococcus aureus and was found to be substantially improved was silver was added in the studied systems.
Collapse
Affiliation(s)
- Anca Filimon
- Polycondensation and Thermostable Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Mihaela Dorina Onofrei
- Polycondensation and Thermostable Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Alexandra Bargan
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Iuliana Stoica
- Atomic Force Microscopy Laboratory, Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Simona Dunca
- Department of Microbiology, Biology Faculty, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Bvd., 700506 Iasi, Romania
| |
Collapse
|
10
|
He L, Xu F, Li Y, Jin H, Lo PC. Cupric-ion-promoted fabrication of oxygen-replenishing nanotherapeutics for synergistic chemo and photodynamic therapy against tumor hypoxia. Acta Biomater 2023; 162:57-71. [PMID: 36944404 DOI: 10.1016/j.actbio.2023.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Mixing a glutathione (GSH)-responsive carboxy zinc(II) phthalocyanine (ZnPc*) and CuSO4·5H2O in water with or without the presence of the anticancer drug SN38 resulted in the formation of self-assembled nanotherapeutics labeled as ZnPc*/Cu/SN38@NP and ZnPc*/Cu@NP, respectively. The Cu2+ ions not only promoted the self-assembly of the carboxy phthalocyanine through metal complexation, but also catalyzed the transformation of H2O2 to oxygen via a catalase-like reaction, rendering an oxygen-replenishing property to the nanosystems. Both nanosystems exhibited high stability in aqueous media, but the nanoparticles disassembled gradually in an acidic or GSH-enriched environment and inside human colorectal adenocarcinoma HT29 cells, releasing the encapsulated therapeutic components. The disassembly process together with the activation by the intracellular GSH led to relaxation of the intrinsic quenching of the nanophotosensitizers and restoration of the photoactivities of ZnPc*. Under a hypoxic condition, ZnPc*/Cu/SN38@NP could attenuate the intracellular hypoxia level and maintain the photodynamic activity due to its Cu2+-promoted oxygen-replenishing ability. The photodynamic effect of ZnPc* and the anticancer effect of SN38 worked cooperatively, causing substantial apoptotic cell death. The dual therapeutic actions could also effectively inhibit the tumor growth in HT29 tumor-bearing nude mice without initiating notable adverse effects to the mice. STATEMENT OF SIGNIFICANCE: The oxygen-dependent nature of photodynamic therapy generally reduces its efficacy against tumor hypoxia, which is a common characteristic of advanced solid tumors and usually leads to resistance toward various anticancer therapies. We report herein a facile approach to assemble a glutathione-responsive carboxy phthalocyanine-based photosensitizer and an anticancer drug in aqueous media, in which Cu(II) ions were used to promote the self-assembly through metal complexation and catalyze the conversion of H2O2 to oxygen through a catalase-like reaction, making the resulting nanoparticles possessing an oxygen-replenishing property that could promote the photodynamic effect against hypoxic cancer cells and tumors. The use of Cu(II) ions to achieve the aforementioned dual functions in the fabrication of advanced nano-photosensitizing systems has not been reported.
Collapse
Affiliation(s)
- Lin He
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Feijie Xu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongxin Li
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
11
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
12
|
Yagublu V, Karimova A, Hajibabazadeh J, Reissfelder C, Muradov M, Bellucci S, Allahverdiyev A. Overview of Physicochemical Properties of Nanoparticles as Drug Carriers for Targeted Cancer Therapy. J Funct Biomater 2022; 13:196. [PMID: 36278665 PMCID: PMC9590029 DOI: 10.3390/jfb13040196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The advent of nanotechnology has brought about revolutionary innovations in biological research techniques and medical practice. In recent years, various "smart" nanocarriers have been introduced to deliver therapeutic agents specifically to the tumor tissue in a controlled manner, thereby minimizing their side effects and reducing both dosage and dosage frequency. A large number of nanoparticles have demonstrated initial success in preclinical evaluation but modest therapeutic benefits in the clinical setting, partly due to insufficient delivery to the tumor site and penetration in tumor tissue. Therefore, a precise understanding of the relationships betweenthe physicochemical properties of nanoparticles and their interaction with the surrounding microenvironment in the body is extremely important for achieving higher concentrations and better functionality in tumor tissues. This knowledge would help to effectively combine multiple advantageous functions in one nanoparticle. The main focus of the discussion in this review, therefore, will relate to the main physicochemical properties of nanoparticles while interacting within the body and their tuning potential for increased performance.
Collapse
Affiliation(s)
- Vugar Yagublu
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Aynura Karimova
- Nanoresearch Laboratory, Baku State University, AZ 1148 Baku, Azerbaijan
| | | | - Christoph Reissfelder
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Mustafa Muradov
- Nanoresearch Laboratory, Baku State University, AZ 1148 Baku, Azerbaijan
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| | - Adil Allahverdiyev
- Vali Akhundov National Scientific Research Medical Prophylactic Institute, AZ 1065 Baku, Azerbaijan
| |
Collapse
|
13
|
Diez-Escudero A, Carlsson E, Andersson B, Järhult JD, Hailer NP. Trabecular Titanium for Orthopedic Applications: Balancing Antimicrobial with Osteoconductive Properties by Varying Silver Contents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41751-41763. [PMID: 36069272 PMCID: PMC9501801 DOI: 10.1021/acsami.2c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Periprosthetic joint infection (PJI) and implant loosening are the most common complications after joint replacement surgery. Due to their increased surface area, additively manufactured porous metallic implants provide optimal osseointegration but they are also highly susceptible to bacterial colonization. Antibacterial surface coatings of porous metals that do not inhibit osseointegration are therefore highly desirable. The potential of silver coatings on arthroplasty implants to inhibit PJI has been demonstrated, but the optimal silver content and release kinetics have not yet been defined. A tight control over the silver deposition coatings can help overcome bacterial infections while reducing cytotoxicity to human cells. In this regard, porous titanium sputtered with silver and titanium nitride with increasing silver contents enabled controlling the antibacterial effect against common PJI pathogens while maintaining the metabolic activity of human primary cells. Electron beam melting additively manufactured titanium alloys, coated with increasing silver contents, were physico-chemically characterized and investigated for effects against common PJI pathogens. Silver contents from 7 at % to 18 at % of silver were effective in reducing bacterial growth and biofilm formation. Staphylococcus epidermidis was more susceptible to silver ions than Staphylococcus aureus. Importantly, all silver-coated titanium scaffolds supported primary human osteoblasts proliferation, differentiation, and mineralization up to 28 days. A slight reduction of cell metabolic activity was observed at earlier time points, but no detrimental effects were found at the end of the culture period. Silver release from the silver-coated scaffolds also had no measurable effects on primary osteoblast gene expression since similar expression of genes related to osteogenesis was observed regardless the presence of silver. The investigated silver-coated porous titanium scaffolds may thus enhance osseointegration while reducing the risk of biofilm formation by the most common clinically encountered pathogens.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Elin Carlsson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Brittmarie Andersson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Josef D. Järhult
- Zoonosis
Science Center, Department of Medical Sciences, Uppsala University, Uppsala 751 85, Sweden
| | - Nils P. Hailer
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
14
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
15
|
Martin LMA, Gan N, Wang E, Merrill M, Xu W. Materials, surfaces, and interfacial phenomena in nanoplastics toxicology research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118442. [PMID: 34748888 PMCID: PMC8823333 DOI: 10.1016/j.envpol.2021.118442] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
In response to the growing worldwide plastic pollution problem, the field of nanoplastics research is attempting to determine the risk of exposure to nanoparticles amidst their ever-increasing presence in the environment. Since little is known about the attributes of environmental nanoplastics (concentration, composition, morphology, and size) due to fundamental limitations in detection and quantification of smaller plastic particles, researchers often improvise by engineering nanoplastic particles with various surface modifications as models for laboratory toxicological testing. Polystyrene and other commercially available or easily synthesized polymer materials functionalized with surfactants or fluorophores are typically used for these studies. How surfactants, additives, fluorophores, the addition of surface functional groups for conjugation, or other changes to surface attributes alter toxicological profiles remains unclear. Additionally, the limited polymers used in laboratory models do not mimic the vast range of polymer types comprising environmental pollutants. Nanomaterials are tricky materials to investigate due to their high surface area, high surface energies, and their propensity to interact with molecules, proteins, and biological probes. These unique properties can often invalidate common laboratory assays. Extreme care must be taken to ensure that results are not artefactual. We have gathered zeta potential values for various polystyrene nanoparticles with different functionalization, in different solvents, from the reported literature. We also discuss the effects of surface engineering and solvent properties on interparticle interactions, agglomeration, particle-protein interactions, corona formation, nano-bio interfaces, and contemplate how these parameters might confound results. Various toxicological exemplars are critically reviewed, and the relevance and shortfalls of the most popular models used in nanoplastics toxicity studies published in the current literature are considered.
Collapse
Affiliation(s)
- Leisha M A Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Nin Gan
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Erica Wang
- Department of Mechanical Engineering, Texas A&M University, Corpus Christi, TX, United States
| | - Mackenzie Merrill
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States.
| |
Collapse
|
16
|
Valdeperez D, Wutke N, Ackermann LM, Parak WJ, Klapper M, Pelaz B. Colloidal stability of polymer coated zwitterionic Au nanoparticles in biological media. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Yu SJ, Li QC, Shan WY, Hao ZN, Li P, Liu JF. Heteroaggregation of different surface-modified polystyrene nanoparticles with model natural colloids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147190. [PMID: 33895519 DOI: 10.1016/j.scitotenv.2021.147190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
This study investigated heteroaggregation of three surface-functionalized polystyrene nanoparticles (PSNPs), i.e. negatively charged unfunctionalized nanoparticles (Bare-PS) and carboxylated nanoparticles (COOH-PS), and positively charged amino-functionalized nanoparticles (NH2-PS), with two model natural colloids, positively charged hematite and negatively charged kaolin, respectively. Heteroaggregation was conducted at a constant natural colloid concentration and variable NP/colloid concentration ratios. Electrostatic interaction was the main mechanism driving the formation of heteroaggregates. In binary systems containing hematite and Bare-PS/COOH-PS, a charge neutralization - charge inverse mechanism was observed with the increase of PSNP concentration. At NP/hemetite concentration ratios much smaller or larger than the full charge neutralization point, the primary heteroaggregates were stable, while full charge neutralization induced the formation of large secondary heteroaggregates. Large aggregates were not observed in suspensions containing kaolin and NH2-PS, as highly positively charged NH2-PS reversed surface charges of kaolin at extremely low concentrations. Heteroaggregation between PSNPs and natural colloids with the same charge is unfavorable due to strong electrostatic repulsion. In the presence of electrolytes, homoaggregation and heteroaggregation both occurred, and homoaggregation of hematite played a key role when the concentration of PSNPs was low. The presence of Suwannee River natural organic matter (SRNOM) could modify surface charges of nanoparticles, and thus affect heteroaggregation behaviors of the binary suspension. When SRNOM and electrolytes were both present, whether SRNOM inducing or hindering the stability of the binary system was a combined effect of NP/colloid concentration ratios, SRNOM concentrations, electrolyte types and ionic strength. Mechanisms extensively reported in homoaggregation such as steric hindrance and cation bridging effects between SRNOM and Ca2+ also stand for heteroaggregation. These results highlight the critical role of surface modification on the environmental behaviors of NPs, and will underpin our understanding of the fate and transport of NPs in the aquatic environment.
Collapse
Affiliation(s)
- Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Qing-Cun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Yu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Neng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Peng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Espeche Turbay MB, Rey V, Dorado RD, Sosa MC, Borsarelli CD. Silver nanoparticle-protein interactions and the role of lysozyme as an antagonistic antibacterial agent. Colloids Surf B Biointerfaces 2021; 208:112030. [PMID: 34419807 DOI: 10.1016/j.colsurfb.2021.112030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/07/2021] [Indexed: 11/30/2022]
Abstract
The photoreductive synthesis and antibacterial activity of silver nanoparticles (AgNP) prepared in the presence of bovine serum albumin (BSA) and lysozyme (LZ) were evaluated. AgNP@BSA showed similar antibacterial activity to those stabilized with citrate (AgNP@CIT) and to an AgNO3 solution, suggesting the releases of Ag+ as the mechanism of death. In contrast, AgNP@LZ solutions showed no activity, although LZ behaves as a moderately antibacterial peptide. Furthermore, the addition of LZ to the AgNP@CIT or AgNP@BSA solutions induced their agglomeration and suppressed their original antibacterial efficacy. This antagonistic antibacterial effect exerted by LZ on AgNPs is associated with electrostatic interactions exerted by LZ. Specific metal-LZ interactions produce a harder protein corona on AgNP@LZ that retains Ag+, while LZ acts as a glue for AgNP@CIT or AgNP@LZ due to its opposite electrical charge, besides strong binding to Ag+avoiding the bactericide effect. Therefore, bactericidal effects of AgNP in biological media may be modulated by specific protein interactions.
Collapse
Affiliation(s)
- M Beatriz Espeche Turbay
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina; ICQ - Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina.
| | - Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina; ICQ - Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina
| | - Rita D Dorado
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Marcelo C Sosa
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina
| | - Claudio D Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET, Universidad Nacional de Santiago del Estero (UNSE), RN9, km 1125, G4206XCP, Santiago del Estero, Argentina; ICQ - Facultad de Agronomía y Agroindustrias, UNSE, Av. Belgrano (S) 1912, Santiago del Estero, Argentina.
| |
Collapse
|
19
|
Li S, Wang W, Zhang Q, Yan B. Co-exposures of TiO 2 nanoparticles and cadmium ions at non-lethal doses aggravates liver injury in mice with ConA-induced hepatitis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103669. [PMID: 33964399 DOI: 10.1016/j.etap.2021.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The wide applications of titanium dioxide nanoparticles (TNP) and ubiquitous cadmium (Cd) pollution increase the chances of their co-existence in the environment and also pose potential health risks to humans. However, toxicological understanding of effects of co-exposures of TNP and Cd to mammals is still lacking. In this study, non-lethal doses of TNP and CdCl2 were intravenously co-administered to healthy or Concanavalin A (ConA)-induced acute hepatitis mice. Co-exposures of TNP and CdCl2 increased the accumulation of Cd2+ in the liver of hepatitis mice, which was 1.42-fold higher than that of healthy mice. Co-exposures also caused liver damage only in hepatitis mice on the basis of histopathological and biochemical evidence. Further study showed that co-exposure upregulated hepatic oxidative stress, which further induced autophagy and apoptosis only in the liver of hepatitis mice. This finding underlines the potential toxicological consequences of co-exposures of TNP and CdCl2 in hepatitis sufferers.
Collapse
Affiliation(s)
- Shuaishuai Li
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenwei Wang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Zhang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China.
| | - Bing Yan
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Opršal J, Knotek P, Zickler GA, Sigg L, Schirmer K, Pouzar M, Geppert M. Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105869. [PMID: 34082272 DOI: 10.1016/j.aquatox.2021.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.
Collapse
Affiliation(s)
- Jakub Opršal
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Petr Knotek
- University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, 53210 Pardubice, Czech Republic
| | - Gregor A Zickler
- University of Salzburg, Department of Chemistry and Physics of Materials, 5020 Salzburg, Austria
| | - Laura Sigg
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Miloslav Pouzar
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 53002 Pardubice, Czech Republic
| | - Mark Geppert
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; University of Salzburg, Department of Biosciences, 5020 Salzburg, Austria.
| |
Collapse
|
21
|
Zhao J, Li Y, Wang X, Xia X, Shang E, Ali J. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116926. [PMID: 33751945 DOI: 10.1016/j.envpol.2021.116926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Suspended sediment (SS) is ubiquitous in natural waters and plays a key role in the fate of engineered nanomaterials. In this study, the effect of SS on the aggregation, settling, and dissolution of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) was investigated under environmentally relevant conditions. The heteroaggregation of AgNPs with SS was not observed at low ionic strength (≤0.01 M) due to high electrostatic repulsion and steric forces. At higher NaCl concentrations (0.1 and 0.3 M), PVP-AgNPs were found to attach onto the SS surface, and the formation of AgNP-SS heteroaggregates strongly promoted settling of PVP-AgNPs due to the overwhelming gravity force. PVP-AgNP dissolution was reduced after the addition of sediment to ultrapure water because the presence of sediment-associated dissolved organic matter (SS-DOM). The formation of an AgCl layer on PVP-AgNP surface in 0.01 M NaCl solution resulted in the minor effect of SS on AgNP dissolution. After addition of SS, the dissolved silver concentrations of PVP-AgNP increased in 0.1 and 0.3 M NaCl solution. The interactions of SS-DOM with AgNPs under different NaCl concentrations interfered the dissolution of AgNPs in sediment-laden water. This study provides new insight into the fate of AgNPs in sediment-laden water under various environmental conditions.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, Hebei, 061100, China
| | - Jawad Ali
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
22
|
Bhargava A, Dev A, Mohanbhai SJ, Pareek V, Jain N, Choudhury SR, Panwar J, Karmakar S. Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144797. [PMID: 33578167 DOI: 10.1016/j.scitotenv.2020.144797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Surface functionalization on silver nanoparticles greatly affects the dynamics of protein corona formation. In the present study, the implications of protein pre-coating on corona formation and nanoparticle's physiological stability, cellular uptake and toxicity were studied on similar sized alkaline protease coated nanoparticles of biological and chemical origin along with the uncoated nanoparticle as compared to the albumin coated nanoparticles. All four nanoparticle types invited serum protein adsorption on their surface. However, the presence of protein pre-coating on nanoparticle surface significantly reduced the extent of further protein binding. Moreover, corona formation on pristine nanoparticles significantly improved their stability in the biological medium. The effect was found to be diluted in protein pre-coated nanoparticles with due exception. Results obtained in the cell-based experiment suggested that the nanoparticles binding to the cell, its uptake, and toxicity in different cell lines can be directly linked to their physiological stability owing to corona formation.
Collapse
Affiliation(s)
- Arpit Bhargava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Atul Dev
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Navin Jain
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India.
| |
Collapse
|
23
|
Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The Antimicrobial and Anti-Inflammatory Effects of Silver Nanoparticles Synthesised from Cotyledon orbiculata Aqueous Extract. NANOMATERIALS 2021; 11:nano11051343. [PMID: 34065254 PMCID: PMC8160699 DOI: 10.3390/nano11051343] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Cotyledon orbiculata, commonly known as pig’s ear, is an important medicinal plant of South Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses, inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles, particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The AgNPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secretion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and anti-inflammation properties.
Collapse
Affiliation(s)
- Caroline Tyavambiza
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa;
| | - Abdulrahman Mohammed Elbagory
- Chemistry Department, Cape Peninsula University of Technology, P.O Box 1906, Bellville, Cape Town 7535, South Africa;
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (A.M.M.); (M.M.)
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (A.M.M.); (M.M.)
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa; (A.M.M.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7535, South Africa;
- Correspondence: ; Tel.: +27-21-959-6251
| |
Collapse
|
24
|
Lutz J, Albrecht K, Groll J. Thioether‐Polymer Coating for Colloidal Stabilization of Silver Nanoparticles. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Johanna Lutz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| | - Krystyna Albrecht
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| |
Collapse
|
25
|
Mabrouk M, Elkhooly TA, Amer SK. Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles. J Genet Eng Biotechnol 2021; 19:57. [PMID: 33860859 PMCID: PMC8052398 DOI: 10.1186/s43141-021-00153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bio-nanotechnology is considered as one of the low-cost approaches that have been utilized in production of nanomaterials. The current research aimed at investigating the influence of different types of Actinomycete strains on the final properties of silver nanoparticles (AgNPs) such as size, shape, polydispersity, and antibacterial properties. For this purpose, the following techniques were employed UV spectrophotometer, SDS-PAGE electrophoresis, TEM, FTIR, antibacterial agar diffusion test, and Zetasizer. RESULTS It was found that among 34 Streptomyces isolates collected from the soil, Streptomyces spiralis and Streptomyces rochei were able to reduce silver nitrate into sliver nanoparticles. The diversity and molecular weights of extracellular proteins secreted by these stains were different as proved by SDS-PAGE technique. This consequently resulted in differences in polydispersity of AgNPs which indicate that the sizes of AgNPs were highly dependent on the amount, molecular sizes, and diversity of extracellular matrix proteins of the microorganism. CONCLUSION This article might give an insight about the importance of molecular sizes of biomacromolecules such as proteins on the physical properties of biogenic synthesized nanoparticles.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.),- Dokki, Giza, P.O.12622 Egypt
| | - Tarek A. Elkhooly
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.),- Dokki, Giza, P.O.12622 Egypt
- Biochemistry Department, Faculty of Medicine, Delta University for Science and Technology, Mansoura, Gamasa, Egypt
| | - Shaimaa K. Amer
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B 2021; 9:307-313. [PMID: 33289752 DOI: 10.1039/d0tb02267e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Designing the homogeneous assembly of the bio-nano interface to fine-tune the interactions between the nanoprobes and biological systems is of prime importance to improve the antimicrobial efficiency of nanomedicines. In this work, highly luminescent silver nanoclusters with the homogeneous conjugation of an antimicrobial peptide (referred to as Dpep-Ag NCs) were achieved via the reduction-decomposition-reduction process as a single package. The as-designed Dpep-Ag NCs inherited the two distinctive features of bactericides from the Ag+ species and the antimicrobial peptide of Dpep, and exhibited enhanced bacterial killing efficiency compared with other control groups including BSA-capped Ag NCs and the original antimicrobial peptide bactenecin (Opep)-protected Ag nanoparticles (Opep-Ag NPs). The ultrasmall size feature of Dpep-Ag NCs combined with the positively charged bactericidal tail allow a better interface and interaction with the cell membrane owing to the selective targeting of lipopolysaccharides in the Gram-negative bacteria and electrostatic interaction, facilitating the membrane permeability. Dpep-Ag NCs restrained the E. coli growth visibly and outperformed commercial Ag NPs (30 nm) with reduced (ca. 100-fold) minimal inhibitory concentration. The analysis of infected wound sizes and tissues treated with Dpep-Ag NCs in a murine model reveal obvious differences in the healing effect compared with the other counterparts, demonstrating its antibacterial efficiency in practical application.
Collapse
Affiliation(s)
- Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Haishuang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
27
|
Pourhoseini S, Enos RT, Murphy AE, Cai B, Lead JR. Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:282-294. [PMID: 33842185 PMCID: PMC8008093 DOI: 10.3762/bjnano.12.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in medical applications due to their antibacterial and antiviral properties. Despite the extensive study of AgNPs, their toxicity and their effect on human health is poorly understood, as a result of issues such as poor control of NP properties and lack of proper characterization. The aim of this study was to investigate the combined characterization, bio-uptake, and toxicity of well-characterized polyvinylpyrrolidone (PVP)-coated AgNPs in exposure media during exposure time using primary human cells (peripheral blood mononuclear cells (PBMCs)). AgNPs were synthesized in-house and characterized using a multimethod approach. Results indicated the transformation of NPs in RPMI medium with a change in size and polydispersity over 24 h of exposure due to dissolution and reprecipitation. No aggregation of NPs was observed in the RPMI medium over the exposure time (24 h). A dose-dependent relationship between PBMC uptake and Ag concentration was detected for both AgNP and AgNO3 treatment. There was approximately a two-fold increase in cellular Ag uptake in the AgNO3 vs the NP treatment. Cytotoxicity, using LDH and MTS assays and based on exposure concentrations was not significantly different when comparing NPs and Ag ions. Based on differential uptake, AgNPs were more toxic after normalizing toxicity to the amount of cellular Ag uptake. Our data highlights the importance of correct synthesis, characterization, and study of transformations to obtain a better understanding of NP uptake and toxicity. Statistical analysis indicated that there might be an individual variability in response to NPs, although more research is required.
Collapse
Affiliation(s)
- Sahar Pourhoseini
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, United States
| | - Angela E Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, United States
| | - Bo Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, United States
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
28
|
Lee J, Chae KJ. A systematic protocol of microplastics analysis from their identification to quantification in water environment: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124049. [PMID: 33265057 DOI: 10.1016/j.jhazmat.2020.124049] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 06/12/2023]
Abstract
With microplastics (MPs) being detected in aquatic environments, numerous studies revealed that they caused severe environmental issues, including damage to ecosystems and human health. MPs transport persistent organic pollutants by adsorbing them, and in nanoplastics this phenomenon is exacerbated by increased surface area. Despite their environmental risk, systematic protocol for qualitative and quantitative analysis are yet to be established in environmental analytical chemistry. Current analytical technologies on MP identification have technological limits with regard to detecting small sized particles (<1 µm), underestimation of MPs with organic contaminants, and physico-chemically altered particles by weathering and photo degradation. According to the published works, MPs are spread in living organisms through the food web, and are even detected in bottled water. To determine its eco-toxicity and removal by biodegradation, its accuracy, reliability, and reproducibility should be ensured by establishing a systematic protocol of MP identification. This review compares procedures, applicability, and limitations of Fourier transform infrared spectroscopy, Raman spectroscopy, and thermo-analytical methods for identifying MPs. Finally, it suggests systematic protocols for MPs analysis.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea.
| |
Collapse
|
29
|
Ilić K, Hartl S, Galić E, Tetyczka C, Pem B, Barbir R, Milić M, Vinković Vrček I, Roblegg E, Pavičić I. Interaction of Differently Coated Silver Nanoparticles With Skin and Oral Mucosal Cells. J Pharm Sci 2021; 110:2250-2261. [PMID: 33539871 DOI: 10.1016/j.xphs.2021.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium. This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP. Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.
Collapse
Affiliation(s)
- Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Emerik Galić
- Faculty of Agrobiotechnical Sciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
30
|
Mahana A, Guliy OI, Mehta SK. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111662. [PMID: 33396172 DOI: 10.1016/j.ecoenv.2020.111662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoparticles (MNPs) are employed in a variety of medical and non-medical applications. Over the past two decades, there has been substantial research on the impact of metallic nanoparticles on algae and cyanobacteria, which are at the base of aquatic food webs. In this review, the current status of our understanding of mechanisms of uptake and toxicity of MNPs and metal ions released from MNPs after dissolution in the surrounding environment were discussed. Also, the trophic transfer of MNPs in aquatic food webs was analyzed in this review. Approximately all metallic nanoparticles cause toxicity in algae. Predominantly, MNPs are less toxic compared to their corresponding metal ions. There is a sufficient evidence for the trophic transfer of MNPs in aquatic food webs. Internalization of MNPs is indisputable in algae, however, mechanisms of their transmembrane transport are inadequately known. Most of the toxicity studies are carried out with solitary species of MNPs under laboratory conditions rarely found in natural ecosystems. Oxidative stress is the primary toxicity mechanism of MNPs, however, oxidative stress seems a general response predictable to other abiotic stresses. MNP-specific toxicity in an algal cell is yet unknown. Lastly, the mechanism of MNP internalization, toxicity, and excretion in algae needs to be understood carefully for the risk assessment of MNPs to aquatic biota.
Collapse
Affiliation(s)
- Abhijeet Mahana
- Laboratory of Algal Biology, Department of Botany, Mizoram University, Aizawl 796004, India
| | - Olga I Guliy
- Leading Researcher Microbial Physiology Lab., Institute of Biochemistry & Physiology of Plants & Microorganisms, Russian Academy of Sciences, Entuziastov av., 13, 410049 Saratov, Russia
| | - Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, Mizoram University, Aizawl 796004, India.
| |
Collapse
|
31
|
Hsiao TC, Chuang HC, Lin JC, Cheng TJ, Chou LT. Effect of particle morphology on performance of an electrostatic air-liquid interface cell exposure system for nanotoxicology studies. Nanotoxicology 2020; 15:433-445. [PMID: 33378224 DOI: 10.1080/17435390.2020.1863499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Particle morphology can affect the performance of an electrostatic precipitator air-liquid interface (ESP-ALI) cell exposure system and the resulting cell toxicity. In this study, three types of monodisperse aerosols - spherical sucrose particles, nonspherical align soot aggregates, and nanosilver aggregates/agglomerates - were selected to evaluate the collection efficiency at flow rates ranging from 0.3 to 1.5 lpm. To quantify the particle morphology, the fractal dimensions (Df) of the tested aerosols were characterized. The penetration of fine particles (dp = 100-250 nm) under different operating conditions was correlated with a characteristic exponential curve using the dimensionless drift velocity (Vc/Vavg,r) as the scaling parameter. For nanoparticles (NPs, dp <100 nm) with different particle morphologies, the particle penetrations in the ESP-ALI were similar, but their diffusion losses were not negligible. In contrast, for fine particles, the collection efficiency of soot nanoaggregates (Df = 2.29) was higher than that of spherical sucrose particles. This difference might be due to the simultaneous influences of the electric field-induced and flow field-induced alignment. Furthermore, based on Zhibin and Guoquan's Deutsch model, a quadratic equation was applied to fit the experimental data and to predict the performance of the ESP-ALI.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Chi Lin
- Graduate Institute of Environmental Engineering, National Central University, Jhongli, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Li-Ti Chou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Mulens-Arias V, Balfourier A, Nicolás-Boluda A, Carn F, Gazeau F. Endocytosis-driven gold nanoparticle fractal rearrangement in cells and its influence on photothermal conversion. NANOSCALE 2020; 12:21832-21849. [PMID: 33104150 DOI: 10.1039/d0nr05886f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells. Statistical analysis revealed that the cluster size and endolysosome size are correlated but do not depend on the size of AuNPs unless larger preformed aggregates of AuNPs are internalized. Smaller AuNPs are confined in greater numbers in loose aggregates covering a higher fraction of the endolysosomes compared to the largest AuNPs. The fractal dimensions of intracellular clusters increased with the particle size, regardless of the cell type. We thus analyzed how these intracellular structure parameters of AuNPs affect their optical absorption and photothermal properties. We observed that a 2nd plasmon resonance band was shifted to the near-infrared region when the nanoparticle size and fractal dimensions of the intracellular cluster increased. This phenomenon of intracellular plasmon coupling is not directly correlated to the size of the intralysosomal cluster or the number of AuNPs per cluster but rather to the compacity of the cluster and the size of the individual AuNPs. The intracellular plasmon-coupling phenomenon translates to an efficient heating efficiency with the excitation of the three cell types at 808 nm, transforming the NIR-transparent canonical AuNPs with sizes below 30 nm into NIR-absorbing clusters in the tumor microenvironment. Harnessing the spontaneous clustering of spherical AuNPs by cells might be a more valuable strategy for theranostic purposes than deploying complex engineering to derive NIR-absorbent nanostructures out of their environment. Our paper sheds light on AuNP intracellular reorganization and proposes a general method to link their intracellular fates to their in situ physical properties exploited in medical applications.
Collapse
Affiliation(s)
- Vladimir Mulens-Arias
- Laboratoire Matière et Systèmes Complexes, UMR 7075, CNRS and Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
| | | | | | | | | |
Collapse
|
33
|
Luengo Y, Sot B, Salas G. Combining Ag and γ-Fe 2O 3 properties to produce effective antibacterial nanocomposites. Colloids Surf B Biointerfaces 2020; 194:111178. [PMID: 32531715 DOI: 10.1016/j.colsurfb.2020.111178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
The antibacterial activity of hybrid γ-Fe2O3/Ag nanocomposites against the bacterial pathogens E. coli (Gram-negative) and S. aureus (Gram-positive) has been studied. Silver is a well-known bactericidal agent and γ-Fe2O3 nanoparticles release heat when they are exposed to alternating magnetic fields. The combination of both properties to fight infections has not been previously explored. The nanocomposites were synthesized through reduction of silver nitrate in the presence of pre-synthesized superparamagnetic γ-Fe2O3 nanoparticles. Changing systematically the ratio of γ-Fe2O3 and silver precursor and the temperature of the reaction allowed obtaining superparamagnetic nanocomposites with different Ag contents and particle sizes. The antibacterial activity of the samples was tested, and the minimum inhibitory concentrations and minimum bactericidal concentrations of the nanocomposites were determined to compare the microbicidal activity of the samples. It was found that it is related with the release of silver ions from the nanocomposites. Finally, we studied the combination of the bactericidal effect of silver and magnetic hyperthermia finding a synergetic effect between them when plates containing E. coli or S. aureus bacteria with γ-Fe2O3/Ag nanocomposites were subjected to an alternating magnetic field. This effect is related with an increase in the release of silver ions due to that heat dissipation.
Collapse
Affiliation(s)
- Yurena Luengo
- IMDEA Nanociencia, C/ Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Begoña Sot
- IMDEA Nanociencia, C/ Faraday 9, Cantoblanco, 28049, Madrid, Spain; Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Spain.
| | - Gorka Salas
- IMDEA Nanociencia, C/ Faraday 9, Cantoblanco, 28049, Madrid, Spain; Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Spain.
| |
Collapse
|
34
|
Salih M, Omolo CA, Devnarain N, Elrashedy AA, Mocktar C, Soliman MES, Govender T. Supramolecular self-assembled drug delivery system (SADDs) of vancomycin and tocopherol succinate as an antibacterial agent: in vitro, in silico and in vivo evaluations. Pharm Dev Technol 2020; 25:1090-1108. [PMID: 32684052 DOI: 10.1080/10837450.2020.1797786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study self-assembled drug delivery system (SADDs) composed of a hydrophobic d-α-tocopherol succinate (TS) and a hydrophilic vancomycin (VCM) were formulated, and its potential for enhancing the antibacterial activity of VCM against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) were explored. The SADDs were synthesized via supramolecular complexation, then characterized for in silico, in vitro and in vivo studies. In silico studies confirmed the self-assembly of VCM/TS into NPs. The size, surface charge and drug loading of the SADDs was ˂100 nm, -27 mV and 68%, respectively. The SADDs were non-hemolytic and biosafe. A sustained release of VCM from SADDs was noted, with 52.2% release after 48 hr. The in vitro antibacterial test showed a twofold decrease in Minimum inhibitory concentration (MIC) against SA and MRSA, and a significantly higher reduction in MRSA biofilms compared to bare VCM. Further, in silico studies confirmed strong and stable binding of TS to MRSA efflux pumps. The in vivo study using mice skin infection models showed a 9.5-fold reduction in bacterial load after treatment with SADDs, in comparison with bare VCM. These findings affirmed that VCM/TS NPs as a promising novel nano-delivery for treating bacterial infections.
Collapse
Affiliation(s)
- Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A Elrashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
Abstract
Bioactive core–shell nanoparticles (CSNPs) offer the unique ability for protein/enzyme functionality in non-native environments. For many decades, researchers have sought to develop synthetic materials which mimic the efficiency and catalytic power of bioactive macromolecules such as enzymes and proteins. This research studies a self-assembly method in which functionalized, polymer-core/protein-shell nanoparticles are prepared in mild conditions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were utilized to analyze the size and distribution of the CSNPs. The methods outlined in this research demonstrate a mild, green chemistry synthesis route for CSNPs which are highly tunable and allow for enzyme/protein functionality in non-native conditions.
Collapse
|
36
|
Stojkovska J, Zvicer J, Obradovic B. Preclinical functional characterization methods of nanocomposite hydrogels containing silver nanoparticles for biomedical applications. Appl Microbiol Biotechnol 2020; 104:4643-4658. [DOI: 10.1007/s00253-020-10521-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/04/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
|
37
|
Skіba M, Pivovarov A, Vorobyova V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Cen J, Zheng B, Yang Y, Wu J, Mao Z, Ling J, Han G. Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in-situ reduction and NTA polymerization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Yu S, Shen M, Li S, Fu Y, Zhang D, Liu H, Liu J. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113302. [PMID: 31597113 DOI: 10.1016/j.envpol.2019.113302] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The intentional production and degradation of plastic debris may result in the formation of nanoplastics. Currently, the scarce information on the environmental behaviors of nanoplastics hinders accurate assessment of their potential risks. Herein, the aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes was investigated to shed some light on the fate of nanoplastics in the aquatic environment. Three monodisperse nanoparticles including unmodified nanoparticles (PS-Bare), carboxylated nanoparticles (PS-COOH) and amino modified nanoparticles (PS-NH2), as well as one polydisperse nanoparticles that formed by laser ablation of polystyrene films (PS-Laser) were used as models to understand the effects of surface groups and morphology. Results showed that aggregation kinetics of negatively charged PS-Bare and PS-COOH obeyed the DLVO theory in NaCl and CaCl2 solutions. The presence of Suwannee river natural organic matters (SRNOM) suppressed the aggregation of PS-Bare and PS-COOH in monovalent electrolytes by steric hindrance. However, in divalent electrolytes, their stability was enhanced at low concentrations of SRNOM (below 5 mg C L-1), while became worse at high concentrations of SRNOM (above 5 mg C L-1) due to the interparticle bridging effect caused by Ca2+ and carboxyl groups of SRNOM. The cation bridging effect was also observed for PS-laser in the presence of high concentrations of divalent electrolytes and SRNOM. The adsorption of SRNOM could neutralize or even reverse surface charges of positively charged PS-NH2 at high concentrations, thus enhanced or inhibited the aggregation of PS-NH2. No synergistic effect of Ca2+ and SRNOM was observed on the aggregation of PS-NH2, probably due to the steric repulsion imparted by the surface modification. Our results highlight that surface charge and surface modification significantly influence aggregation behaviors of nanoplastics in aquatic systems.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Mohai Shen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Shasha Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Yueju Fu
- Hebei Provincial Key Laboratory of Optoelectronic Information Materials, College of Physics Science and Technology, Hebei University, Hebei 071002, China
| | - Dan Zhang
- Hebei Provincial Key Laboratory of Optoelectronic Information Materials, College of Physics Science and Technology, Hebei University, Hebei 071002, China
| | - Huayi Liu
- Hebei Provincial Key Laboratory of Optoelectronic Information Materials, College of Physics Science and Technology, Hebei University, Hebei 071002, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China.
| |
Collapse
|
40
|
Garcia-Velasco N, Irizar A, Urionabarrenetxea E, Scott-Fordsmand JJ, Soto M. Selection of an optimal culture medium and the most responsive viability assay to assess AgNPs toxicity with primary cultures of Eisenia fetida coelomocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109545. [PMID: 31446174 DOI: 10.1016/j.ecoenv.2019.109545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Earthworm immune cells (coelomocytes) have become a target system in ecotoxicology due to their sensitivity against a wide range of pollutants, including silver nanoparticles (AgNPs). Presently, in vitro approaches (viability assays in microplate, flow cytometry, cell sorting) with primary cultures of Eisenia fetida coelomocytes have been successfully used to test the toxicity and the dissimilar response of cell subpopulations (amoebocytes and eleocytes) after PVP-PEI coated AgNPs and AgNO3 exposures. In order to obtain reliable data and to accurately assess toxicity with coelomocytes, first an optimal culture medium and the most responsive assay were determined. AgNPs posed a gradual decrease in coelomocytes viability, establishing the LC50 value in RPMI-1640 medium at 6 mg/l and discarding that the observed cytotoxicity was attributable to its coating agent PVP-PEI. Exposure to AgNPs caused selective cytotoxicity in amoebocytes, which correlated with the Ag concentrations measured in sorted amoebocytes and reinforced the idea of dissimilar sensitivities among amoebocytes and eleocytes. Silver nano and ionic forms exerted similar toxicity in coelomocytes. The in vitro approaches with coelomocytes of E. fetida performed in this study have the capacity to predict impairments caused by pollutants at longer exposure levels and thus, provide rapid and valuable information for eco(nano)toxicology.
Collapse
Affiliation(s)
- N Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| | - A Irizar
- Department of Bioscience - Soil Fauna Ecology and Ecotoxicology, Vejlsøvej 25. Building M3.14, 8600, Silkeborg, Denmark
| | - E Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - J J Scott-Fordsmand
- Department of Bioscience - Soil Fauna Ecology and Ecotoxicology, Vejlsøvej 25. Building M3.14, 8600, Silkeborg, Denmark
| | - M Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| |
Collapse
|
41
|
Coglitore D, Janot JM, Balme S. Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Adv Colloid Interface Sci 2019; 270:278-292. [PMID: 31306853 DOI: 10.1016/j.cis.2019.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
This review gives an overview of protein adsorption at solid/liquid interface. Compared to the other ones, we have focus on three main questions with the point of view of the protein. The first question is related to the kinetic and especially the using of Langmuir model to describe the protein adsorption. The second question is about the concept of hard and soft protein. In this part, we report the protein structural modification induced by adsorption regarding their intrinsic structure. This allows formulating of a new concept to classify the protein to predict their behavior at solid/liquid interface. The last question is related to the protein corona. We give an overview about the soft/hard corona and attempt to make correlation with the concept of hard/soft protein.
Collapse
|
42
|
Breisch M, Grasmik V, Loza K, Pappert K, Rostek A, Ziegler N, Ludwig A, Heggen M, Epple M, Tiller JC, Schildhauer TA, Köller M, Sengstock C. Bimetallic silver-platinum nanoparticles with combined osteo-promotive and antimicrobial activity. NANOTECHNOLOGY 2019; 30:305101. [PMID: 30959494 DOI: 10.1088/1361-6528/ab172b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP.
Collapse
Affiliation(s)
- Marina Breisch
- BG University Hospital Bergmannsheil Bochum/Surgical Research, Ruhr University Bochum, Buerkle-de-la-Camp-Platz 1, D-44789 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nadhe SB, Singh R, Wadhwani SA, Chopade BA. Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans. J Appl Microbiol 2019; 127:445-458. [PMID: 31074075 DOI: 10.1111/jam.14305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
AIMS To synthesize silver nanoparticles (AgNPs) with cell free extract of Acinetobacter sp. and evaluate antifungal activity against planktonic and biofilm of Candida. Also, to study mechanism of antifungal action of AgNPs. METHODS AND RESULT Acinetobacter spp were screened for synthesis of AgNPs. Physio-chemical parameters were optimized to obtained monodispersed nanoparticles. Optimized nanoparticles were characterized using spectroscopic, microscopic and diffraction techniques. Antifungal and biofilm disruption activity of AgNPs (10 ± 5 nm) were investigated against C. albicans. Mechanism of antifungal activity of nanosilver was deduced by growth curve, reactive oxygen species generation, thiol interaction and microscopic analysis. Acinetobacter sp. GWRFH 45 gave maximum synthesis of AgNPs. At optimized condition monodispersed, spherical nanoparticles were obtained which were crystalline with negative surface charge. AgNPs exhibited antifungal activity against planktonic cells and biofilm of Candida. AgNPs showed synergistic effect with amphotericin B as well as fluconazole against biofilm disruption. AgNPs were found to affect growth of Candida, generate reactive oxygen species and disrupt cellular morphology. CONCLUSIONS Cell free extract of A. calcoaceticus GWRFH 45 has ability to synthesize AgNPs. AgNPs alone and in combination with drugs have potential to inhibit C. albicans. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of bacteriogenic AgNPs used in combination with antifungal drugs against Candida.
Collapse
Affiliation(s)
- S B Nadhe
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - R Singh
- Department of Biotechnology, SIES College of Arts Science and Commerce, Mumbai, Maharashtra, India
| | - S A Wadhwani
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - B A Chopade
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India.,Dr. Babasaheb Ambedkar, Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
44
|
Rodriguez-Quijada C, de Puig H, Sánchez-Purrà M, Yelleswarapu C, Evans JJ, Celli JP, Hamad-Schifferli K. Protease Degradation of Protein Coronas and Its Impact on Cancer Cells and Drug Payload Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14588-14596. [PMID: 30977626 DOI: 10.1021/acsami.9b00928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of matrix metalloproteinases (MMPs) on preformed protein coronas around spherical gold nanoparticles (AuNPs) was studied. Protein coronas of different compositions (human serum, human serum albumin, and collagen IV) were formed around AuNPs and characterized. The protease MMP-9 had different effects on the corona depending on the corona composition, resulting in different changes to the corona hydrodynamic diameter ( DH). When incubated with PANC-1 cells, the corona showed evidence of both increases as well as decreases in DH. Varying the composition of the corona influenced the MMP-9 activity. Furthermore, the corona was influenced not only by the protease activity of the MMP-9 but also by its ability to exchange with proteins in the preformed corona. This exchange could also occur with proteins in the media. Thus, the net effect of the MMP-9 was a combination of the MMP-9 protease activity and also exchange. Time scales for the exchange varied depending on the nature that make up the protein corona (weakly vs strongly bound corona proteins). Mass spectrometry was used to probe the protein corona composition and supported the exchange and degradation model. Together, these results indicate that the mechanism of protease activity on AuNP coronas involves both rearrangement and exchange, followed by degradation.
Collapse
Affiliation(s)
| | - Helena de Puig
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | | | | | - Kimberly Hamad-Schifferli
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
45
|
Persaud I, Shannahan JH, Raghavendra AJ, Alsaleh NB, Podila R, Brown JM. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:77-86. [PMID: 30529623 PMCID: PMC6331260 DOI: 10.1016/j.ecoenv.2018.11.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 05/30/2023]
Abstract
Prior research has demonstrated cells exposed to silver nanoparticles (AgNPs) undergo endoplasmic reticulum (ER) stress leading to cellular apoptosis and toxicity, however, the fundamental mechanism underlying AgNP-induced ER stress is unknown. We hypothesize the biophysical interactions between AgNPs and adsorbed proteins lead to misfolded proteins to elicit an ER stress response. Our investigation examined rat aortic endothelial cells (RAEC) exposed to 20 or 100 nm AgNPs with or without a biocorona (BC) consisting of bovine serum albumin (BSA), high density lipoprotein (HDL) or fetal bovine serum (FBS) to form a complex BC. The presence of a BC consisting of BSA or FBS proteins significantly reduced uptake of 20 nm and 100 nm AgNPs in RAEC. Western blot analysis indicated robust activation of the IREα and PERK pathways in RAEC exposed to 20 nm despite the reduction in uptake by the presence of a BC. This was not observed for the 100 nm AgNPs. Hyperspectral darkfield microscopy qualitatively confirmed that the preformed BC was maintained following uptake by RAEC. Transmission electron microscopy demonstrated a size dependent effect on the sub-cellular localization of AgNPs. Overall, these results suggest that AgNP size, surface area and BC formation governs the induction of ER stress and alterations in intracellular trafficking.
Collapse
Affiliation(s)
- Indushekhar Persaud
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA; Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 29625, USA
| | - Nasser B Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA; Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 29625, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
46
|
Montalvo-Quiros S, Aragoneses-Cazorla G, Garcia-Alcalde L, Vallet-Regí M, González B, Luque-Garcia JL. Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: insights into the action mechanisms using quantitative proteomics. NANOSCALE 2019; 11:4531-4545. [PMID: 30806414 PMCID: PMC6667342 DOI: 10.1039/c8nr07667g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An approach for safely delivering AgNPs to cancer cells and the evaluation of the affected cellular mechanism are presented. The use of mesoporous silica nanoparticles (MSNs) as nanovehicles decorated with transferrin (Tf, targeting agent) provides a nanoplatform for the nucleation and immobilization of AgNPs (MSNs-Tf-AgNPs). We performed the physico-chemical characterization of the nanosystems and evaluated their therapeutic potential using bioanalytical strategies to estimate the efficiency of the targeting, the degree of cellular internalization in two cell lines with different TfR expression, and the cytotoxic effects of the delivered AgNPs. In addition, cellular localization of the nanosystems in cells has been evaluated by a transmission electron microscopy analysis of ultrathin sections of human hepatocarcinoma (HepG2) cells exposed to MSNs-Tf-AgNPs. The in vitro assays demonstrate that only the nanosystem functionalized with Tf is able to transport the AgNPs inside the cells which overexpress transferrin receptors. Therefore, this novel nanosystem is able to deliver AgNPs specifically to cancer cells overexpressing Tf receptors and offers the possibility of a targeted therapy using reduced doses of silver nanoparticles as cytotoxic agents. Then, a quantitative proteomic experiment validated through the analysis of gene expression has been performed to identify the molecular mechanisms of action associated with the chemotherapeutic potential of the MSNs-Tf-AgNP nanocarriers.
Collapse
Affiliation(s)
- Sandra Montalvo-Quiros
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Formulation Optimization of Chitosan-Stabilized Silver Nanoparticles Using In Vitro Antimicrobial Assay. J Pharm Sci 2018; 108:1007-1016. [PMID: 30244012 DOI: 10.1016/j.xphs.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
Antimicrobial resistance at the infected site is a serious medical issue that increases patient morbidity and mortality. Silver has antibacterial activity associated with some dose-dependent toxicity. Silver nanoparticles, due to larger surface area, have antibacterial properties, which make them useful in the treatment of infections. Chitosan-stabilized silver nanoparticles (CH-AgNP) were formulated and evaluated for minimal inhibitory concentration and minimal bactericidal concentration testing against Staphylococcus aureus ATCC 29213, S aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, and 20 methicillin-resistant S aureus isolates. Minimum biofilm eradication concentration study was used to evaluate the biofilm reduction, and in vitro antimicrobial checkerboard assays were performed. The effective optimum ratio of AgNP:chitosan solution was 1:4. Minimal inhibitory concentration and minimal bactericidal concentration ranges of CH-AgNP were 4 to 14 times lower compared to AgNP alone against methicillin-resistant S aureus isolates. Minimum biofilm eradication concentration values of CH-AgNP for ATCC PA-01, P aeruginosa isolate 1, and P aeruginosa isolate 2 were found to be >84.59 μg/mL, 42.29 μg/mL, and 21.15 μg/mL, respectively. Thus, CH-AgNP is a potential formulation for wound treatment and management of infected sites associated with antimicrobial resistance.
Collapse
|
48
|
Barbalinardo M, Caicci F, Cavallini M, Gentili D. Protein Corona Mediated Uptake and Cytotoxicity of Silver Nanoparticles in Mouse Embryonic Fibroblast. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801219. [PMID: 30058105 DOI: 10.1002/smll.201801219] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Indexed: 05/06/2023]
Abstract
Medical applications of nanoparticles (NPs) require understanding of their interactions with living systems in order to control their physiological response, such as cellular uptake and cytotoxicity. When NPs are exposed to biological fluids, the adsorption of extracellular proteins on the surface of NPs, creating the so-called protein corona, can critically affect their interactions with cells. Here, the effect of surface coating of silver nanoparticles (AgNPs) on the adsorption of serum proteins (SPs) and its consequence on cellular uptake and cytotoxicity in mouse embryonic fibroblasts are shown. In particular, citrate-capped AgNPs are internalized by cells and show a time- and dose-dependent toxicity, while the passivation of the NP surface with an oligo(ethylene glycol) (OEG)-alkanethiol drastically reduces their uptake and cytotoxicity. The exposure to growth media containing SPs reveals that citrate-capped AgNPs are promptly coated and stabilized by proteins, while the AgNPs resulting from capping with the OEG-alkanethiol are more resistant to adsorption of proteins onto their surface. Using NIH-3T3 cultured in serum-free, the key role of the adsorption of SPs onto surface of NPs is shown as only AgNPs with a preformed protein corona can be internalized by the cells and, consequently, carry out their inherent cytotoxic activity.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129, Bologna, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/b, 35121, Padova, Italy
| | - Massimiliano Cavallini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129, Bologna, Italy
| | - Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
49
|
Coglitore D, Giamblanco N, Kizalaité A, Coulon PE, Charlot B, Janot JM, Balme S. Unexpected Hard Protein Behavior of BSA on Gold Nanoparticle Caused by Resveratrol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8866-8874. [PMID: 30001624 DOI: 10.1021/acs.langmuir.8b01365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The understanding of the interactions between nanomaterials, biomolecules, and polyphenols is fundamental in food chemistry, toxicology, and new emerging fields, such as nanomedicine. Here, we investigated the effect of the resveratrol, a principal actor in drug-delivery application on the interaction between bovine serum albumin (BSA), employed as a vector for the delivery of polyphenol drugs, and gold nanoparticle (gNP), the most promising tool in theranostic applications. Through a combination of experimental techniques, which includes an initial evaluation by dynamic light scattering and surface plasmon resonance spectroscopy, we were able to evaluate the evolution of the gold nanoparticle aggregation with increasing ionic strength and the consequences of the BSA and resveratrol addition. To investigate the mechanisms of the interactions, we pursued at the single-molecule level using solid-state nanopore and fluorescence correlation spectroscopy. Our results show that without resveratrol, the BSA is adsorbed on the gNP in water or saline solution. In the presence of resveratrol, the BSA is normally absorbed on gNP in water, but the salt addition leads to its desorption. The resveratrol clearly plays a fundamental role, changing the protein behavior and making the BSA adsorption a reversible process in the presence of salt.
Collapse
Affiliation(s)
- Diego Coglitore
- Institut Européen des Membranes, UMR 5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon , 34090 Montpellier , France
| | - Nicoletta Giamblanco
- Institut Européen des Membranes, UMR 5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon , 34090 Montpellier , France
| | - Agné Kizalaité
- Institut Européen des Membranes, UMR 5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon , 34090 Montpellier , France
| | - Pierre Eugene Coulon
- Laboratoire des Solides Irradiés, École Polytechnique , Université Paris-Saclay , Route de Saclay , 91128 Palaiseau Cedex, France
| | - Benoit Charlot
- Institut d'Electronique et des Systèmes , Université de Montpellier , 34095 Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR 5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon , 34090 Montpellier , France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR 5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon , 34090 Montpellier , France
| |
Collapse
|
50
|
Loza K, Epple M. Silver nanoparticles in complex media: an easy procedure to discriminate between metallic silver nanoparticles, reprecipitated silver chloride, and dissolved silver species. RSC Adv 2018; 8:24386-24391. [PMID: 35539215 PMCID: PMC9082037 DOI: 10.1039/c8ra04500c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/01/2018] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles undergo oxidative dissolution in water upon storage. This occurs in pure water as well as in more complex media, including natural environments, biological tissues, and cell culture media. However, the dissolution leads to the reprecipitation of silver chloride as chloride is present in almost all relevant environments. The discrimination between dissolved silver species (ions and silver complexes) and dispersed (solid) species does not take this into account because all solid species (metallic silver and silver chloride) are isolated together. By applying a chemical separation procedure, we show that it is possible to quantify silver, silver chloride, and dissolved silver species after immersion into a typical cell culture medium (DMEM + 10% FCS). During the dissolution of metallic silver nanoparticles, about half of the dissolved silver is reprecipitated as solid silver chloride, i.e. the mere analysis of the soluble silver species does not reflect the true situation. The separation protocol is suitable for all chloride-containing media in the presence or in the absence of biomolecules.
Collapse
Affiliation(s)
- Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen Universitaetsstr. 5-7 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen Universitaetsstr. 5-7 45117 Essen Germany
| |
Collapse
|