1
|
Santhoshkumar P, Ramu D, Mahalakshmi L, Moses JA. 3D printed edible electronics: Components, fabrication approaches and applications. Biosens Bioelectron 2025; 272:117059. [PMID: 39752889 DOI: 10.1016/j.bios.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases. These edible devices include different components, such as sensors, actuators, and other electronic elements, all made from edible ingredients such as sugars, proteins, polysaccharides, polymers, and others. Among the different fabrication approaches, 3D printing can provide reliable solutions to specific requirements. The concept of EEs has the potential to transform healthcare, providing more convenient, less invasive alternatives and personalized, customizable products for patients that beat traditional manufacturing methods. While the potential is enormous, there are critical challenges, notably ensuring the long-term stability, and regulatory and safety of these devices within the human body. Accordingly, a detailed understanding of the underlying concepts, fabrication approaches, design considerations, and action in the body/application range has been presented. As an evolving field, there is ample scope for research and multiple challenges must be addressed; these are elaborated towards the concluding sections of this article.
Collapse
Affiliation(s)
- P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Dheetchanya Ramu
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - L Mahalakshmi
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
2
|
Ye H, Kwon HJ, Ryu KY, Wu K, Park J, Babita G, Kim I, Yang C, Kong H, Kim SH. Surface engineering of high- k polymeric dielectric layers with a fluorinated organic crosslinker for use in flexible-platform electronics. NANOSCALE ADVANCES 2024; 6:4119-4127. [PMID: 39114159 PMCID: PMC11302166 DOI: 10.1039/d3na01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/20/2024] [Indexed: 08/10/2024]
Abstract
High-k polymeric layers were prepared by combining various functional groups and were applied as gate dielectrics for practical organic field-effect transistors (OFETs). Crosslinking of the polymeric layers through UV-assisted organic azide fluorine-based crosslinkers induced dramatic improvements in the electrical performance of the OFET, such as field-effect mobility and bias-stress stability. Our synthesis and manufacturing method can be a useful technique for ensuring device operation stability and electrical property enhancement. With this analysis, we further applied our polymer-dielectric OFETs to flexible-platform-based electronic components, including unit OFETs and simple logic devices (NOT, NAND, and NOR gates). The outcomes of this research and development suggest a suitable method for the low-cost mass production of large-area flexible and printable devices, using a printing-based approach to replace current processes.
Collapse
Affiliation(s)
- Heqing Ye
- School of Flexible Electronics (SoFE), Henan Institute of Flexible Electronics (HIFE), Henan University 379 Mingli Road Zhengzhou 450046 China
- School of Chemical Engineering, Konkuk University Seoul 05029 Korea
| | - Hyeok-Jin Kwon
- Department of Industrial Chemistry, Pukyong National University Busan 48513 Republic of Korea
| | - Ka Yeon Ryu
- Department of Chemistry, Research Institute of Nature Science, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Kaibin Wu
- School of Chemical Engineering, Konkuk University Seoul 05029 Korea
| | - Jeongwan Park
- Department of Chemistry, Research Institute of Nature Science, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Giri Babita
- Department of Chemistry, Research Institute of Nature Science, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Inae Kim
- Advanced Nano-Surface & Wearable Electronics Research Laboratory, Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology Incheon 21999 Korea
| | - Chanwoo Yang
- Advanced Nano-Surface & Wearable Electronics Research Laboratory, Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology Incheon 21999 Korea
| | - Hoyoul Kong
- Department of Chemistry, Research Institute of Nature Science, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University Seoul 05029 Korea
| |
Collapse
|
3
|
Can A, Deneme I, Demirel G, Usta H. Solution-Processable Indenofluorenes on Polymer Brush Interlayer: Remarkable N-Channel Field-Effect Transistor Characteristics under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41666-41679. [PMID: 37582254 PMCID: PMC10485804 DOI: 10.1021/acsami.3c07365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
The development of solution-processable n-type molecular semiconductors that exhibit high electron mobility (μe ≥ 0.5 cm2/(V·s)) under ambient conditions, along with high current modulation (Ion/Ioff ≥ 106-107) and near-zero turn on voltage (Von) characteristics, has lagged behind that of other semiconductors in organic field-effect transistors (OFETs). Here, we report the design, synthesis, physicochemical and optoelectronic characterizations, and OFET performances of a library of solution-processable, low-LUMO (-4.20 eV) 2,2'-(2,8-bis(3-alkylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile small molecules, β,β'-Cn-TIFDMTs, having varied alkyl chain lengths (n = 8, 12, 16). An intriguing correlation is identified between the solid-isotropic liquid transition enthalpies and the solubilities, indicating that cohesive energetics, which are tuned by alkyl chains, play a pivotal role in determining solubility. The semiconductors were spin-coated under ambient conditions on densely packed (grafting densities of 0.19-0.45 chains/nm2) ultrathin (∼3.6-6.6 nm) polystyrene-brush surfaces. It is demonstrated that, on this polymer interlayer, thermally induced dispersive interactions occurring over a large number of methylene units between flexible alkyl chains (i.e., zipper effect) are critical to achieve a favorable thin-film crystallization with a proper microstructure and morphology for efficient charge transport. While C8 and C16 chains show a minimal zipper effect upon thermal annealing, C12 chains undergo an extended interdigitation involving ∼6 methylene units. This results in the formation of large crystallites having lamellar stacking ((100) coherence length ∼30 nm) in the out-of-plane direction and highly favorable in-plane π-interactions in a slipped-stacked arrangement. Uninterrupted microstructural integrity (i.e., no face-on (010)-oriented crystallites) was found to be critical to achieving high mobilities. The excellent crystallinity of the C12-substituted semiconductor thin film was also evident in the observed crystal lattice vibrations (phonons) at 58 cm-1 in low-frequency Raman scattering. Two-dimensional micrometer-sized (∼1-3 μm), sharp-edged plate-like grains lying parallel with the substrate plane were observed. OFETs fabricated by the current small molecules showed excellent n-channel behavior in ambient with μe values reaching ∼0.9 cm2/(V·s), Ion/Ioff ∼ 107-108, and Von ≈ 0 V. Our study not only demonstrates one of the highest performing n-channel OFET devices reported under ambient conditions via solution processing but also elucidates significant relationships among chemical structures, molecular properties, self-assembly from solution into a thin film, and semiconducting thin-film properties. The design rationales presented herein may open up new avenues for the development of high-electron-mobility novel electron-deficient indenofluorene and short-axis substituted donor-acceptor π-architectures via alkyl chain engineering and interface engineering.
Collapse
Affiliation(s)
- Ayse Can
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Ibrahim Deneme
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| | - Gokhan Demirel
- Bio-inspired
Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | - Hakan Usta
- Department
of Nanotechnology Engineering, Abdullah
Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
4
|
Della Ciana M, Kovtun A, Summonte C, Candini A, Cavalcoli D, Gentili D, Nipoti R, Albonetti C. Native Silicon Oxide Properties Determined by Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12430-12451. [PMID: 37608587 DOI: 10.1021/acs.langmuir.3c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈1013 to ≈1019 cm-3. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si. The surface was investigated using the contact angle, thermal desorption, and atomic force microscopy measurements which provided information on surface energy, cleanliness, and morphology, respectively. Thickness was measured with ellipsometry and chemical composition with X-ray photoemission spectroscopy. Electrostatic charges within the oxide layer and at the Si interface were studied with Kelvin probe microscopy. Some properties such as thickness, showed an abrupt change, while others, including silanol concentration and Si intermediate-oxidation states, presented maxima at a critical doping concentration of ≈2.1 × 1015 cm-3. Additionally, two electrostatic contributions were found to originate from silanols present on the surface and the net charge distributed within the oxide layer. Lastly, surface roughness was also found to depend upon dopant concentration, showing a minimum at the same critical dopant concentration. These findings were reproduced for oxide layers regrown in a clean room after chemical etching of the native ones.
Collapse
Affiliation(s)
- Michele Della Ciana
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129 Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche - Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), via P. Gobetti 101, 40129 Bologna, Italy
| | - Caterina Summonte
- Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM), via P. Gobetti 101, 40129 Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche - Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), via P. Gobetti 101, 40129 Bologna, Italy
| | - Daniela Cavalcoli
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Denis Gentili
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129 Bologna, Italy
| | - Roberta Nipoti
- Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM), via P. Gobetti 101, 40129 Bologna, Italy
| | - Cristiano Albonetti
- Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
5
|
Pattadar D, Zheng L, Robb AJ, Beery D, Yang W, Hanson K, Scott Saavedra S. Molecular Orientation of -PO 3H 2 and -COOH Functionalized Dyes on TiO 2, Al 2O 3, ZrO 2, and ITO: A Comparative Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:2705-2715. [PMID: 36908684 PMCID: PMC9996377 DOI: 10.1021/acs.jpcc.2c08632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Modification of transparent metal oxide (MOx) surfaces with organic monolayers is widely employed to tailor the properties of interfaces in organic electronic devices, and MOx substrates modified with light-absorbing chromophores are a key component of dye-sensitized solar cells (DSSCs). The effects of an organic modifier on the performance of a MOx-based device are frequently assessed by performing experiments on model monolayer|MOx interfaces, where an "inert" MOx (e.g., Al2O3) is used as a control for an "active" MOx (e.g., TiO2). An underlying assumption in these studies is that the structure of the MOx-monolayer complex is similar between different metal oxides. The validity of this assumption was examined in the present study. Using UV-Vis attenuated total reflection spectroscopy, we measured the mean dipole tilt angle of 4,4'-(anthracene-9,10-diyl)bis(4,1-phenylene)diphosphonic acid (A1P) adsorbed on indium tin oxide (ITO), TiO2, ZrO2, and Al2O3. When the surface roughness of the MOx substrate and the surface coverage (𝛤) of the A1P film were constant, the molecular orientation of A1P was the same on these substrates. The study was extended to 4,4'-(anthracene-9,10-diyl)bis(4,1-phenylene)dicarboxylic acid (A1C) adsorbed on the same group of MOx substrates. The mean tilt angle of A1C and A1P films on ITO was the same, which is likely due the intermolecular interactions resulting from the high and approximately equal 𝛤 of both films. Comparing A1C films at the same 𝛤 on TiO2 and Al2O3 having the same surface roughness, there was no difference in the mean tilt angle. MD simulations of A1C and A1P on TiO2 produced nearly identical tilt angle distributions, which supports the experimental findings. This study provides first experimental support for the assumption that the structure of the MOx-modifer film is the same on an "active" substrate vs. a "inert" control substrate.
Collapse
Affiliation(s)
- Dhruba Pattadar
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Lianqing Zheng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Alex J. Robb
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Drake Beery
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Wei Yang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - S. Scott Saavedra
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
6
|
Nuić L, Panić B, Pereković LK, Rakić IŠ, Kralj M, Mihanović A, Vančik H, Biljan I. Polymerization of aromatic dinitroso derivatives initiated by nitroso-terminated monolayer on Au(111) surface: Insights from ellipsometry, AFM and nano-FTIR spectroscopy. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
Tarekegn EN, Seyedi M, Luzinov I, Harrell WR. Poly(3-hexylthiophene)-Based Organic Thin-Film Transistors with Virgin Graphene Oxide as an Interfacial Layer. Polymers (Basel) 2022; 14:polym14235061. [PMID: 36501455 PMCID: PMC9736656 DOI: 10.3390/polym14235061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
We fabricated and characterized poly(3-hexylthiophene-2, 5-diyl) (P3HT)-based Organic thin-film transistors (OTFTs) containing an interfacial layer made from virgin Graphene Oxide (GO). Previously chemically modified GO and reduced GO (RGO) were used to modify OTFT interfaces. However, to our knowledge, there are no published reports where virgin GO was employed for this purpose. For the sake of comparison, OTFTs without modification were also manufactured. The structure of the devices was based on the Bottom Gate Bottom Contact (BGBC) OTFT. We show that the presence of the GO monolayer on the surface of the OTFT's SiO2 dielectric and Au electrode surface noticeably improves their performance. Namely, the drain current and the field-effect mobility of OTFTs are considerably increased by modifying the interfaces with the virgin GO deposition. It is suggested that the observed enhancement is connected to a decrease in the contact resistance of GO-covered Au electrodes and the particular structure of the P3HT layer on the dielectric surface. Namely, we found a specific morphology of the organic semiconductor P3HT layer, where larger interconnecting polymer grains are formed on the surface of the GO-modified SiO2. It is proposed that this specific morphology is formed due to the increased mobility of the P3HT segments near the solid boundary, which was confirmed via Differential Scanning Calorimetry measurements.
Collapse
Affiliation(s)
- Eyob N. Tarekegn
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
| | - Mastooreh Seyedi
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- Correspondence: (I.L.); (W.R.H.)
| | - William R. Harrell
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
- Correspondence: (I.L.); (W.R.H.)
| |
Collapse
|
8
|
Borchert JW, Weitz RT, Ludwigs S, Klauk H. A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104075. [PMID: 34623710 PMCID: PMC11468869 DOI: 10.1002/adma.202104075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
To take full advantage of recent and anticipated improvements in the performance of organic semiconductors employed in organic transistors, the high contact resistance arising at the interfaces between the organic semiconductor and the source and drain contacts must be reduced significantly. To date, only a small portion of the accumulated research on organic thin-film transistors (TFTs) has reported channel-width-normalized contact resistances below 100 Ωcm, well above what is regularly demonstrated in transistors based on inorganic semiconductors. A closer look at these cases and the relevant literature strongly suggests that the most significant factor leading to the lowest contact resistances in organic TFTs so far has been the control of the thin-film morphology of the organic semiconductor. By contrast, approaches aimed at increasing the charge-carrier density and/or reducing the intrinsic Schottky barrier height have so far played a relatively minor role in achieving the lowest contact resistances. Herein, the possible explanations for these observations are explored, including the prevalence of Fermi-level pinning and the difficulties in forming optimized interfaces with organic semiconductors. An overview of the research on these topics is provided, and potential device-engineering solutions are discussed based on recent advancements in the theoretical and experimental work on both organic and inorganic semiconductors.
Collapse
Affiliation(s)
- James W. Borchert
- 1st Institute of PhysicsGeorg August University of GöttingenFriedrich‐Hund‐Platz 137077GöttingenGermany
| | - R. Thomas Weitz
- 1st Institute of PhysicsGeorg August University of GöttingenFriedrich‐Hund‐Platz 137077GöttingenGermany
| | - Sabine Ludwigs
- IPOC ‐ Functional PolymersInstitute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Hagen Klauk
- Max Planck Institute for Solid State ResearchHeisenbergstraße 170569StuttgartGermany
| |
Collapse
|
9
|
Park M, Kang CM, Park S, Jo H, Roh J. Effect of Variations in the Alkyl Chain Lengths of Self-Assembled Monolayers on the Crystalline-Phase-Mediated Electrical Performance of Organic Field-Effect Transistors. ACS OMEGA 2021; 6:33639-33644. [PMID: 34926911 PMCID: PMC8675033 DOI: 10.1021/acsomega.1c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Self-assembled monolayers (SAMs) of organic molecules are frequently employed to improve the electrical performance of organic field-effect transistors (OFETs). However, the relationship between SAM properties and OFET performance has not been fully explored, leading to an incomplete understanding of the system. This study investigates the effect of the SAM alkyl chain length on the crystalline phase of pentacene films and OFET performance. Two types of SAMs-with alkyl chain lengths of 10 (decyltrichlorosilane, DTS) and 22 (docosyltrichlorosilane, DCTS)-were examined, and variations in the performance of pentacene-based OFETs with the nature of the SAM treatment were observed. Despite the similar surface morphologies of the pentacene films, field-effect mobility in the DCTS-treated OFET was twice that in the DTS-treated OFET. To find the reason underlying the dependence of the OFET's electrical performance on the SAM alkyl chain length, X-ray diffraction measurements were conducted, followed by a phase analysis of the pentacene films. Bulk and thin-film phases were observed to coexist in the pentacene film grown on DTS, indicating several structural defects in the film; this can help explain the dependence of the OFET electrical performance on the SAM alkyl chain length, mediated by the different crystalline phases of pentacene.
Collapse
Affiliation(s)
- Myeongjin Park
- Department
of Electrical and Computer Engineering, Inter-University Semiconductor
Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic
of Korea
| | - Chan-mo Kang
- Reality
Display Research Section, Electronics and
Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic
of Korea
| | - Sangwook Park
- Department
of Electrical Engineering, Pusan National
University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic
of Korea
| | - Hyeona Jo
- Department
of Electrical Engineering, Pusan National
University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic
of Korea
| | - Jeongkyun Roh
- Department
of Electrical Engineering, Pusan National
University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic
of Korea
| |
Collapse
|
10
|
Alkyne-Functionalized Cyclooctyne on Si(001): Reactivity Studies and Surface Bonding from an Energy Decomposition Analysis Perspective. Molecules 2021; 26:molecules26216653. [PMID: 34771062 PMCID: PMC8586998 DOI: 10.3390/molecules26216653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
The reactivity and bonding of an ethinyl-functionalized cyclooctyne on Si(001) is studied by means of density functional theory. This system is promising for the organic functionalization of semiconductors. Singly bonded adsorption structures are obtained by [2 + 2] cycloaddition reactions of the cyclooctyne or ethinyl group with the Si(001) surface. A thermodynamic preference for adsorption with the cyclooctyne group in the on-top position is found and traced back to minimal structural deformation of the adsorbate and surface with the help of energy decomposition analysis for extended systems (pEDA). Starting from singly bonded structures, a plethora of reaction paths describing conformer changes and consecutive reactions with the surface are discussed. Strongly exothermic and exergonic reactions to doubly bonded structures are presented, while small reaction barriers highlight the high reactivity of the studied organic molecule on the Si(001) surface. Dynamic aspects of the competitive bonding of the functional groups are addressed by ab initio molecular dynamics calculations. Several trajectories for the doubly bonded structures are obtained in agreement with calculations using the nudged elastic band approach. However, our findings disagree with the experimental observations of selective adsorption by the cyclooctyne moiety, which is critically discussed.
Collapse
|
11
|
Sattari-Esfahlan SM, Lee EC, Kim CH. Synergistic Effects of Self-Assembled Monolayers in Solution-Processed 6,13-Bis(triisopropylsilylethynyl)Pentacene Transistors. Chemphyschem 2021; 22:1706-1711. [PMID: 34101321 DOI: 10.1002/cphc.202100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Organic semiconductors are highly interface-sensitive, and therefore chemical functionalization using self-assembled monolayers (SAMs) is often adopted to tailor their properties. This study clarifies the synergistic effects of electrode and dielectric SAMs on the behavior of solution-processed organic field-effect transistors (OFETs). Utilization of a self-consistent device model enables a physically robust treatment of the measured electrical characteristics of the OFETs, thus providing highly reliable materials, interface, morphology, and transport parameters. These parameters are further extended and correlated to build a comprehensive picture on trap energy and injection-transport relationship, finally revealing a set of fundamental insights into chemically modified OFETs.
Collapse
Affiliation(s)
- S M Sattari-Esfahlan
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Eun-Cheol Lee
- Department of Physics, Gachon University, Seognam, 13120, Republic of Korea
| | - Chang-Hyun Kim
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
12
|
Luy JN, Molla M, Pecher L, Tonner R. Efficient hierarchical models for reactivity of organic layers on semiconductor surfaces. J Comput Chem 2021; 42:827-839. [PMID: 33617671 DOI: 10.1002/jcc.26503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023]
Abstract
Computational modeling of organic interface formation on semiconductors poses a challenge to a density functional theory-based description due to structural and chemical complexity. A hierarchical approach is presented, where parts of the interface are successively removed in order to increase computational efficiency while maintaining the necessary accuracy. First, a benchmark is performed to probe the validity of this approach for three model reactions and five dispersion corrected density functionals. Reaction energies are generally well reproduced by generalized gradient approximation-type functionals but accurate reaction barriers require the use of hybrid functionals. Best performance is found for the model system that does not explicitly consider the substrate but includes its templating effects. Finally, this efficient model is used to provide coverage dependent reaction energies and suggest synthetic principles for the prevention of unwanted growth termination reactions for organic layers on semiconductor surfaces.
Collapse
Affiliation(s)
- Jan-Niclas Luy
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, Leipzig, Germany
| | - Mahlet Molla
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Pecher
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ralf Tonner
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, Leipzig, Germany
| |
Collapse
|
13
|
Bhowal R, Balaraman AA, Ghosh M, Dutta S, Dey KK, Chopra D. Probing Atomistic Behavior To Unravel Dielectric Phenomena in Charge Transfer Cocrystals. J Am Chem Soc 2020; 143:1024-1037. [DOI: 10.1021/jacs.0c11459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rohit Bhowal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Anina Anju Balaraman
- Materials Science Division, Council of Scientific and Industrial Research, National Aerospace Laboratories, Kodihalli, Bengaluru 560017, Karnataka, India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Soma Dutta
- Materials Science Division, Council of Scientific and Industrial Research, National Aerospace Laboratories, Kodihalli, Bengaluru 560017, Karnataka, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
14
|
Wang X, Wei M, Li X, Shao S, Ren Y, Xu W, Li M, Liu W, Liu X, Zhao J. Large-Area Flexible Printed Thin-Film Transistors with Semiconducting Single-Walled Carbon Nanotubes for NO 2 Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51797-51807. [PMID: 33141551 DOI: 10.1021/acsami.0c13824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Development of large-area, low-cost, low-voltage, low-power consumption, flexible high-performance printed carbon nanotube thin-film transistors (TFTs) is helpful to promote their future applications in sensors and biosensors, wearable electronics, and the Internet of things. In this work, low-voltage, flexible printed carbon nanotube TFTs with a large-area and low-cost fabrication process were successfully constructed using ultrathin (∼3.6 nm) AlOx thin films formed by plasma oxidation of aluminum as dielectrics and screen-printed silver electrodes as contact electrodes. The as-prepared bottom-gate/bottom-contact carbon nanotube TFTs exhibit a low leakage current (∼10-10 A), a high charge carrier mobility (up to 9.9 cm2 V-1 s-1), high on/off ratios (higher than 105), and small subthreshold swings (80-120 mV/dec) at low operation voltages (from -1.5 to 1 V). At the same time, printed carbon nanotube TFTs showed a high response (ΔR/R = 99.6%) to NO2 gas even at 16 ppm with a faster response and recovery speed (∼8 s, exposure to 0.5 ppm NO2), a lower detection limit (0.069 ppm NO2), and a low power consumption (0.86 μW, exposure to 16 ppm NO2) at a gate voltage of 0.2 V at room temperature. Moreover, the printed carbon nanotube devices exhibited excellent mechanical flexibility and bias stress stability after 12,000 bending cycles at a radius of 5 mm and a bias stress test for 7200 s at a gate voltage of ±1 V, which originated from the ultrathin and compact AlOx dielectric and the super adhesion force between screen-printed silver electrodes and polyethylene terephthalate substrates.
Collapse
Affiliation(s)
- Xin Wang
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Miaomiao Wei
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Xiaoqian Li
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Shuangshuang Shao
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Yunfei Ren
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Wenjing Xu
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Min Li
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Jianwen Zhao
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China
| |
Collapse
|
15
|
Zheng L, He W, Spampinato V, Franquet A, Sergeant S, Gendt SD, Armini S. Area-Selective Atomic Layer Deposition of TiN Using Trimethoxy(octadecyl)silane as a Passivation Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13144-13154. [PMID: 33104359 DOI: 10.1021/acs.langmuir.0c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Area-selective deposition (ASD) offers tremendous advantages when compared with conventional patterning processes, such as the possibility of achieving three-dimensional features in a bottom-up additive fashion. Recently, ASD is gaining more and more attention from IC manufacturers and equipment and material suppliers. Through combination of self-assembled monolayer (SAM) surface passivation of the nongrowth substrate area and atomic layer deposition (ALD) on the growth area, ASD selective to the growth area can be achieved. With the purpose of screening SAM precursors to provide optimal passivation performance on SiO2, various siloxane precursors with different terminal groups and alkyl chains were investigated. Additionally, the surface dependence and growth inhibition of TiN ALD on -NH2, -CF3, and -CH3 terminations is investigated. We demonstrated the methyl termination of the SAM precursor combined with a C18 alkyl chain plays an important role in broadening the ALD selectivity window by suppressing precursor adsorption. Owing to the high surface coverage, excellent thermal stability and longer carbon chain length, an optimized trimethoxy(octadecyl)silane (TMODS) film deposited from liquid phase was able to provide a selectivity higher than 0.99 up to 20 nm ALD film deposited on hydroxyl-terminated Si oxide. The approach followed in this work can allow extending the ASD process window, and it is relevant for a wide variety of applications.
Collapse
Affiliation(s)
- Li Zheng
- Interuniversity Microelectronics Centre, Kapeldreef 75, B-3001 Leuven, Belgium
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Alexis Franquet
- Interuniversity Microelectronics Centre, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Stefanie Sergeant
- Interuniversity Microelectronics Centre, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Stefan De Gendt
- Interuniversity Microelectronics Centre, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Silvia Armini
- Interuniversity Microelectronics Centre, Kapeldreef 75, B-3001 Leuven, Belgium
| |
Collapse
|
16
|
Higashino T, Kuribara K, Toda N, Uemura S, Tachibana H, Azumi R. Direct Preparation of Mixed Self-assembled Monolayers Based on Common-substructure-tailored Phosphonic Acids for Fine Control of Surface Wettability. CHEM LETT 2020. [DOI: 10.1246/cl.200460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiki Higashino
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazunori Kuribara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoya Toda
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Sei Uemura
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroaki Tachibana
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Azumi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
17
|
Gapin A, Idriss H, Blanc S, Billon L, Delville MH, Bousquet A, Lartigau-Dagron C. Low band-gap polymer brushes: Influence of the end-group on the morphology of core-shell nanoparticles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Un H, Wang J, Pei J. Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900375. [PMID: 31637154 PMCID: PMC6794634 DOI: 10.1002/advs.201900375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/02/2019] [Indexed: 05/20/2023]
Abstract
Over the past three decades, the mobility of organic field-effect transistors (OFETs) has been improved from 10-5 up to over 10 cm2 V-1 s-1, which reaches or has already satisfied the requirements of demanding applications. However, pronounced nonideal behaviors in current-voltage characteristics are commonly observed, which indicates that the reported mobilities may not truly reflect the device properties. Herein, a comprehensive understanding of the origins of several observed nonidealities (downward, upward, double-slope, superlinear, and humped transfer characteristics) is summarized, and how to extract comparatively reliable mobilities from nonideal behaviors in OFETs is discussed. Combining an overview of the ideal and state-of-the-art OFETs, considerable possible approaches are also provided for future OFETs.
Collapse
Affiliation(s)
- Hio‐Ieng Un
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter of Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter of Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter of Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
19
|
Länger C, Heep J, Nikodemiak P, Bohamud T, Kirsten P, Höfer U, Koert U, Dürr M. Formation of Si/organic interfaces using alkyne-functionalized cyclooctynes-precursor-mediated adsorption of linear alkynes versus direct adsorption of cyclooctyne on Si(0 0 1). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:034001. [PMID: 30523882 DOI: 10.1088/1361-648x/aaefc3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adsorption of ethynyl-cyclopropyl-cyclooctyne (ECCO), an alkyne-functionalized cyclooctyne, on Si(0 0 1) was studied by means of x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Together, XPS and STM results clearly indicate chemoselective adsorption of ECCO on Si(0 0 1) via a [2+2] cycloaddition of the strained triple bond of cyclooctyne without reaction of the ethynyl group. The results are compared to the adsorption of acetylene on Si(0 0 1): C2H2 adsorbs on Si(0 0 1) via a precursor-mediated reaction channel as it was shown by means of temperature dependent measurements of the sticking probability as well as by means of STM experiments at variable temperature. On the other hand, cyclooctyne adsorbs on Si(0 0 1) via a direct reaction channel. This qualitative difference in the reaction pathways of the two functionalities leads to the observed chemoselective adsorption of ECCO via the strained triple bond of cyclooctyne. As the ethynyl group stays intact, monolayers of ECCO on Si(0 0 1) form a well defined interface between the silicon substrate and further organic molecular layers which can be attached to the ethynyl functionality.
Collapse
Affiliation(s)
- C Länger
- Institut für Angewandte Physik, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Morphology and optoelectronic characteristics of organic field-effect transistors based on blends of polylactic acid and poly(3-hexylthiophene). Polym J 2018. [DOI: 10.1038/s41428-018-0087-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Khim D, Luzio A, Bonacchini GE, Pace G, Lee MJ, Noh YY, Caironi M. Uniaxial Alignment of Conjugated Polymer Films for High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705463. [PMID: 29582485 DOI: 10.1002/adma.201705463] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/28/2017] [Indexed: 06/08/2023]
Abstract
Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm2 V-1 s-1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.
Collapse
Affiliation(s)
- Dongyoon Khim
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Alessandro Luzio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milano, Italy
| | - Giorgio Ernesto Bonacchini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, P.zza L. da Vinci 32, 20133, Milan, Italy
| | - Giuseppina Pace
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milano, Italy
| | - Mi-Jung Lee
- School of Advanced Materials Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 136-712, Republic of Korea
| | - Yong-Young Noh
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milano, Italy
| |
Collapse
|
22
|
Nishinaga S, Mori H, Nishihara Y. Synthesis and Transistor Application of Bis[1]benzothieno[6,7-d:6′,7′-d′]benzo[1,2-b:4,5-b′]dithiophenes. J Org Chem 2018; 83:5506-5515. [DOI: 10.1021/acs.joc.8b00483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuhei Nishinaga
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Stredansky M, Sala A, Fontanot T, Costantini R, Africh C, Comelli G, Floreano L, Morgante A, Cossaro A. On-surface synthesis of a 2D boroxine framework: a route to a novel 2D material? Chem Commun (Camb) 2018; 54:3971-3973. [DOI: 10.1039/c8cc01372a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis of a 2D boroxine covalent framework is described, which exhibits promising morphological and electronic properties.
Collapse
Affiliation(s)
- Matus Stredansky
- Dipartimento di Fisica
- Universitá di Trieste
- via A. Valerio 2
- I-34127 Trieste
- Italy
| | - Alessandro Sala
- CNR-IOM Laboratorio TASC
- Basovizza SS-14, km 163.5
- I-34149 Trieste
- Italy
| | - Tommaso Fontanot
- Dipartimento di Fisica
- Universitá di Trieste
- via A. Valerio 2
- I-34127 Trieste
- Italy
| | - Roberto Costantini
- Dipartimento di Fisica
- Universitá di Trieste
- via A. Valerio 2
- I-34127 Trieste
- Italy
| | - Cristina Africh
- CNR-IOM Laboratorio TASC
- Basovizza SS-14, km 163.5
- I-34149 Trieste
- Italy
| | - Giovanni Comelli
- Dipartimento di Fisica
- Universitá di Trieste
- via A. Valerio 2
- I-34127 Trieste
- Italy
| | - Luca Floreano
- CNR-IOM Laboratorio TASC
- Basovizza SS-14, km 163.5
- I-34149 Trieste
- Italy
| | - Alberto Morgante
- Dipartimento di Fisica
- Universitá di Trieste
- via A. Valerio 2
- I-34127 Trieste
- Italy
| | - Albano Cossaro
- CNR-IOM Laboratorio TASC
- Basovizza SS-14, km 163.5
- I-34149 Trieste
- Italy
| |
Collapse
|
24
|
Cattani-Scholz A. Functional Organophosphonate Interfaces for Nanotechnology: A Review. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25643-25655. [PMID: 28671811 DOI: 10.1021/acsami.7b04382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optimization of interfaces in inorganic-organic device systems depends strongly on understanding both the molecular processes that are involved in surface modification and the effects that such modifications have on the electronic states of the material. In particular, the last several years have seen passivation and functionalization of semiconductor surfaces to be strategies by which to realize devices with superior function by controlling Fermi level energies, band-gap magnitudes, and work functions of semiconducting substrates. Among all of the synthetic routes and deposition methods available for the optimization of functional interfaces in hybrid systems, organophosphonate chemistry has been found to be a powerful tool to control at the molecular level the properties of materials in many different applications. In this Review, we focus on the relevance of organophosphonate chemistry in nanotechnology, giving an overview about some recent advances in surface modification, interface engineering, nanostructure optimization, and biointegration.
Collapse
Affiliation(s)
- Anna Cattani-Scholz
- Walter Schottky Institut and Technische Universität München , 85748 Garching, Germany
| |
Collapse
|
25
|
Cui CX, Liu YJ. Regioselectivity and stereoselectivity of Diels-Alder reaction: a DFT study on the functionalization of organic semiconductor crystals. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cheng-Xing Cui
- School of Chemistry and Chemical Engineering; Henan Institute of Science and Technology; Xinxiang 453003 China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| |
Collapse
|
26
|
Zhou F, Liu H. Direct Nanofabrication Using DNA Nanostructure. Methods Mol Biol 2017; 1500:217-235. [PMID: 27813011 DOI: 10.1007/978-1-4939-6454-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent advances in DNA nanotechnology make it possible to fabricate arbitrarily shaped 1D, 2D, and 3D DNA nanostructures through controlled folding and/or hierarchical assembly of up to several thousands of unique sequenced DNA strands. Both individual DNA nanostructures and their assembly can be made with almost arbitrarily shaped patterns at a theoretical resolution down to 2 nm. Furthermore, the deposition of DNA nanostructures on a substrate can be made with precise control of their location and orientation, making them ideal templates for bottom-up nanofabrication. However, many fabrication processes require harsh conditions, such as corrosive chemicals and high temperatures. It still remains a challenge to overcome the limited stability of DNA nanostructures during the fabrication process.This chapter focuses on the proof-of-principle study to directly convert the structural information of DNA nanostructure to various kinds of materials by nanofabrication.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Chemistry, University of Pittsburgh, 201 Eberly Hall, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, 201 Eberly Hall, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
27
|
Routaboul L, Tanabe I, Santana JC, Yuan M, Ghisolfi A, Garcia WS, Dowben PA, Doudin B, Braunstein P. Changes in molecular film metallicity with minor modifications of the constitutive quinonoid zwitterions. RSC Adv 2017. [DOI: 10.1039/c7ra01597f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electronic properties of molecular films formed by quinonoid zwitterions deposited on gold are highly dependent on the nature of the N-substituent.
Collapse
Affiliation(s)
- Lucie Routaboul
- Université de Strasbourg
- CNRS
- CHIMIE UMR 7177
- Laboratoire de Chimie de Coordination
- 67081 Strasbourg
| | - Iori Tanabe
- Dept. of Physics and Astronomy
- Nebraska Center for Materials and Nanoscience
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Juan Colon Santana
- Dept. of Physics and Astronomy
- Nebraska Center for Materials and Nanoscience
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Minghui Yuan
- Université de Strasbourg
- CNRS
- CHIMIE UMR 7177
- Laboratoire de Chimie de Coordination
- 67081 Strasbourg
| | - Alessio Ghisolfi
- Université de Strasbourg
- CNRS
- CHIMIE UMR 7177
- Laboratoire de Chimie de Coordination
- 67081 Strasbourg
| | - William Serrano Garcia
- Dept. of Physics and Astronomy
- Nebraska Center for Materials and Nanoscience
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Peter A. Dowben
- Dept. of Physics and Astronomy
- Nebraska Center for Materials and Nanoscience
- University of Nebraska-Lincoln
- Lincoln
- USA
| | | | - Pierre Braunstein
- Université de Strasbourg
- CNRS
- CHIMIE UMR 7177
- Laboratoire de Chimie de Coordination
- 67081 Strasbourg
| |
Collapse
|
28
|
Duan XL, Chen HJ, Huang JY, Liu ZF, Li JK, Yang ZY, Zhang WF, Yu G. Tracking the Evolution of Polymer Interface Films during the Process of Thermal Annealing at the Domain and Single Molecular Levels using Scanning Tunneling Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9437-9444. [PMID: 27605160 DOI: 10.1021/acs.langmuir.6b02139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Structural evolution of polymer (NTZ12) interface films during the process of annealing is revealed at the domain and single molecular levels using the statistical data measured from scanning tunneling microscopy images and through theoretical calculations. First, common features of the interface films are examined. Then, mean values of surface-occupied ratio, size and density of the domain are used to reveal the intrinsic derivation of the respective stages. Formation of new domains is triggered at 70 °C, but domain ripening is not activated. At 110 °C, the speed of formation of new domains is almost balanced by the consumption due to the ripening process. However, formation of new domains is reduced heavily at 150 °C but restarted at 190 °C. At the single molecular level, the ratio of the average length of linear to curved backbones is increased during annealing, whereas the ratios of the total length and the total number of linear to curved skeletons reaches a peak value at 150 °C. The two major conformations of curved backbones for all samples are 120° and 180° bending, but the ripening at 150 °C reduces 180° folding dramatically. Molecular dynamic simulations disclose the fast relaxing process of curved skeletons at high temperature.
Collapse
Affiliation(s)
- Xiao-Ling Duan
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , 19A Yuquanlu, Beijing 100049, P. R. China
| | - Hua-Jie Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Jian-Yao Huang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Zhi-Fei Liu
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , 19A Yuquanlu, Beijing 100049, P. R. China
| | - Jin-Kuo Li
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , 19A Yuquanlu, Beijing 100049, P. R. China
| | - Zhi-Yong Yang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , 19A Yuquanlu, Beijing 100049, P. R. China
| | - Wei-Feng Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
29
|
Igbari F, Shang QX, Xie YM, Zhang XJ, Wang ZK, Liao LS. Low-temperature sol–gel processed AlOx gate dielectric buffer layer for improved performance in pentacene-based OFETs. RSC Adv 2016. [DOI: 10.1039/c6ra02700h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An approach to achieve improved performance in pentacene-based organic field effect transistors (OFETs) using high-k AlOx prepared by a low temperature sol–gel technique as a thin buffer layer on a SiO2 gate dielectric was demonstrated.
Collapse
Affiliation(s)
- Femi Igbari
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
- China
| | - Qi-Xun Shang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
- China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
- China
| | - Xiu-Juan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
- China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
- China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
- China
| |
Collapse
|
30
|
Surwade SP, Zhou F, Li Z, Powell A, O'Donnell C, Liu H. Nanoscale patterning of self-assembled monolayers using DNA nanostructure templates. Chem Commun (Camb) 2015; 52:1677-80. [PMID: 26661791 DOI: 10.1039/c5cc08183a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe a method to pattern arbitrary-shaped silane self-assembled monolayers (SAMs) with nm scale resolution using DNA nanostructures as templates. The DNA nanostructures assembled on a silicon substrate act as a soft-mask to negatively pattern SAMs. Mixed SAMs can be prepared by back filling the negative tone patterns with a different silane.
Collapse
Affiliation(s)
- S P Surwade
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Agina EV, Sizov AS, Yablokov MY, Borshchev OV, Bessonov AA, Kirikova MN, Bailey MJA, Ponomarenko SA. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11755-11764. [PMID: 25984650 DOI: 10.1021/am508905t] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An approach to polymer surface modification using self-assembled layers (SALs) of functional alkoxysilanes has been developed in order to improve the printability of silver nanoparticle inks and enhance adhesion between the metal conducting layer and the flexible polymer substrate. The SALs have been fully characterized by AFM, XPS, and WCA, and the resulting printability, adhesion, and electrical conductivity of the screen-printed metal contacts have been estimated by cross-cut tape test and 4-point probe measurements. It was shown that (3-mercaptopropyl)trimethoxysilane SALs enable significant adhesion improvements for both aqueous- and organic-based silver inks, approaching nearly 100% for PEN and PDMS substrates while exhibiting relatively low sheet resistance up to 0.1 Ω/sq. It was demonstrated that SALs containing functional -SH or -NH2 end groups offer the opportunity to increase the affinity of the polymer substrates to silver inks and thus to achieve efficient patterning of highly conductive structures on flexible and stretchable substrates.
Collapse
Affiliation(s)
- Elena V Agina
- †Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Ul. 70, 117393 Moscow, Russia
| | - Alexey S Sizov
- †Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Ul. 70, 117393 Moscow, Russia
| | - Mikhail Yu Yablokov
- †Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Ul. 70, 117393 Moscow, Russia
| | - Oleg V Borshchev
- †Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Ul. 70, 117393 Moscow, Russia
| | - Alexander A Bessonov
- ‡Nokia Technologies, 21 JJ Thomson Avenue, Madingley Road, Cambridge CB3 0FA, United Kingdom
| | - Marina N Kirikova
- †Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Ul. 70, 117393 Moscow, Russia
| | - Marc J A Bailey
- ‡Nokia Technologies, 21 JJ Thomson Avenue, Madingley Road, Cambridge CB3 0FA, United Kingdom
| | - Sergei A Ponomarenko
- †Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Ul. 70, 117393 Moscow, Russia
- §Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
32
|
Conical Gradient Junctions of Dendritic Viologen Arrays on Electrodes. Sci Rep 2015; 5:11122. [PMID: 26057120 PMCID: PMC4460877 DOI: 10.1038/srep11122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/15/2015] [Indexed: 11/30/2022] Open
Abstract
The three-dimensional construction of arrays of functional molecules on an electrode surface, such as organic semiconductors and redox-active molecules, is a considerable challenge in the fabrication of sophisticated junctions for molecular devices. In particular, well-defined organic layers with precise molecular gradients are anticipated to function as novel metal/organic interfaces with specific electrical properties, such as a space charge layer at the metal/semiconductor interface. Here, we report a strategy for the construction of a three-dimensional molecular array with an electrical connection to a metal electrode by exploiting dendritic molecular architecture. Newly designed dendritic molecules consisting of viologens (1,1′-disubstituted-4,4′-bipyridilium salts) as the framework and mercapto groups as anchor units form unique self-assembled monolayers (SAMs) on a gold surface reflecting the molecular design. The dendritic molecules exhibit a conical shape and closely pack to form cone arrays on the substrate, whereas, in solution, they expand into more flexible conformations. Differences in the introduction position of the anchor units in the dendritic structure result in apical- and basal-type cone arrays in which the spatial concentration of the viologen units can be precisely configured in the cones. The concentration in apical-type SAMs increases away from the substrate, whereas the opposite is true in basal-type SAMs.
Collapse
|
33
|
Shong B, Sandoval TE, Crow AM, Bent SF. Unidirectional Adsorption of Bifunctional 1,4-Phenylene Diisocyanide on the Ge(100)-2 × 1 Surface. J Phys Chem Lett 2015; 6:1037-1041. [PMID: 26262866 DOI: 10.1021/acs.jpclett.5b00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adsorption of bifunctional organic molecules on semiconductor surfaces is important for surface modification; however, most bifunctional molecules previously studied have yielded mixtures of singly and dually tethered adsorbates. Here we report the adsorption of bifunctional 1,4-phenylene diisocyanide (PDI) on the Ge(100)-2 × 1 surface, in which singly bound adsorbates are selectively produced. As shown by polarized multiple internal reflection infrared spectroscopy experiments and density functional theory calculations, PDI adsorbates form a single C-dative bonding configuration through one of the isocyanide functionalities, retaining one unreacted isocyanide moiety per adsorbate. The angle of the molecular axis is ∼30° from the surface normal. The delocalized π* molecular orbital of the free molecule is also preserved upon adsorption. These results demonstrate the potential usefulness of isocyanide adsorbates as a means toward selective organic functionalization of semiconductor surfaces.
Collapse
Affiliation(s)
- Bonggeun Shong
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Tania E Sandoval
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Allison M Crow
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
34
|
Jung MC, Leyden MR, Nikiforov GO, Lee MV, Lee HK, Shin TJ, Takimiya K, Qi Y. Flat-lying semiconductor-insulator interfacial layer in DNTT thin films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1833-40. [PMID: 25545199 DOI: 10.1021/am507528e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The molecular order of organic semiconductors at the gate dielectric is the most critical factor determining carrier mobility in thin film transistors since the conducting channel forms at the dielectric interface. Despite its fundamental importance, this semiconductor-insulator interface is not well understood, primarily because it is buried within the device. We fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) thin film transistors by thermal evaporation in vacuum onto substrates held at different temperatures and systematically correlated the extracted charge mobility to the crystal grain size and crystal orientation. As a result, we identify a molecular layer of flat-lying DNTT molecules at the semiconductor-insulator interface. It is likely that such a layer might form in other material systems as well, and could be one of the factors reducing charge transport. Controlling this interfacial flat-lying layer may raise the ultimate possible device performance for thin film devices.
Collapse
Affiliation(s)
- Min-Cherl Jung
- Energy Materials and Surface Sciences Unit (EMSS), Okinawa Institute of Science and Technology Graduate University (OIST) , 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee S, Jeon H, Jang M, Baek KY, Yang H. Tunable solubility parameter of poly(3-hexyl thiophene) with hydrophobic side-chains to achieve rubbery conjugated films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1290-1297. [PMID: 25531189 DOI: 10.1021/am507512m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A highly π-conjugated nanofibrillar network of poly(3-hexyl thiophene) (P3HT) embedded in polydimethylsiloxane (PDMS) elastomer films on SiO2 dielectrics was facilely developed via solution-blending of an ultrasound-assisted dilute P3HT solution with a PDMS precursor followed by spin-casting and curing. In contrast, simple blending without ultrasonication against the dilute P3HT solution yielded large agglomerates in cast films owing to a great difference in solubility parameter (δ) values (P3HT = 9.5 cal(1/2) cm(-3/2), PDMS = 7.3 cal(1/2) cm(-3/2)). In the ultrasound-assisted 0.1 vol % P3HT solutions, the π-conjugated polymer could develop crystalline nanofibrils surrounded by nonpolar hexyl side chains with the same δ value as that of PDMS, yielding homogeneously dispersed 10 wt % loaded P3HT/PDMS blend films. Spun-cast P3HT/PDMS blend films could yield high electrical properties in organic field-effect transistor, including mobilities of up to 0.045 cm(2) V(-1) s(-1) and on/off current ratios of >5 × 10(5), as well as excellent environmental stability owing to the outer PDMS layer.
Collapse
Affiliation(s)
- Seulyi Lee
- Department of Applied Organic Materials Engineering, Inha University , Incheon 402-751, Korea
| | | | | | | | | |
Collapse
|
36
|
Lee WH, Lee SG, Kwark YJ, Lee DR, Lee S, Cho JH. Chemically tunable ultrathin silsesquiazane interlayer for n-type and p-type organic transistors on flexible plastic. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22807-22814. [PMID: 25459690 DOI: 10.1021/am507003n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In organic field-effect transistors (OFETs), surface modification of the gate-dielectric is a critical technique for enhancing the electrical properties of the device. Here, we report a simple and versatile method for fabricating an ultrathin cross-linked interlayer (thickness ∼3 nm) on an oxide gate dielectric by using polymeric silsesquiazane (SSQZ). The fabricated siloxane film exhibited an ultrasmooth surface with minimal hydroxyl groups; the properties of the surface were chemically tuned by introducing phenyl and phenyl/fluorine pendent groups into the SSQZ. The growth characteristics of two semiconductors-pentacene (p-type) and N,N'-ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C13, n-type)-on this ultrathin film were systematically investigated according to the type of pendent groups in the SSQZ-treated gate dielectric. Pentacene films on phenyl/fluorine groups exhibited large grains and excellent crystalline homogeneity. By contrast, PTCDI-C13 films exhibited greater crystalline order and perfectness when deposited on phenyl groups rather than on phenyl/fluorine groups. These microstructural characteristics of the organic semiconductors, as well as the dipole moment of the pendent groups, determined the electrical properties of FETs based on pentacene or PTCDI-C13. Importantly, compared to FETs in which the gate dielectric was treated with a silane-coupling agent (a commonly used surface treatment), the FETs fabricated using the tunable SSQZ treatment showed much higher field-effect mobilities. Finally, surface treatment with an ultrathin SSQZ layer was also utilized to fabricate flexible OFETs on a plastic substrate. This was facilitated by the facile SSQZ deposition process and the compatibility of SSQZ with the plastic substrate.
Collapse
Affiliation(s)
- Wi Hyoung Lee
- Department of Organic and Nano System Engineering, Konkuk University , Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Lee S, Jang M, Yang H. Optimized grafting density of end-functionalized polymers to polar dielectric surfaces for solution-processed organic field-effect transistors. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20444-20451. [PMID: 25343374 DOI: 10.1021/am506024s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polystyrene (PS) grafted to silicon oxide (SiO2, referred to as gPS-SiO2) bilayers generated via a polymer grafting method were used as organic-oxide hybrid gate dielectrics to fabricate solution-processed triethylsilylethynyl anthradithiophene (TES-ADT) organic field-effect transistors (OFETs). The dielectric surface properties were significantly altered by the areal grafting densities of different molecular weight (Mw) PS chains with end-functionalized dimethylchlorosilane attached to the SiO2 surfaces. Lesser grafting densities of longer PS chains increased the surface roughness of the treated SiO2 surfaces from 0.2 to 1.5 nm, as well as the water contact angles from 94° to 88°. Below a critical Mw of end-functionalized PS, the gPS chains on the SiO2 surfaces appeared to form a brush-like conformation with an areal density value greater than 0.1 chains nm(-2), but other high-Mw gPS chains formed pancake structures in which the polymeric layers were easily incorporated with solution-processed TES-ADT as a solute. These findings indicate that low-density gPS layers interfered with the self-assembly of TES-ADT in cast films, causing great decreases in crystal grain size and π-conjugated orientation. The presence of compact gPS chains on the SiO2 surface could yield high electrical performance of TES-ADT OFETs with a field-effect mobility of 2.1 cm2 V(-1) s(-1), threshold voltage of -2.0 V, and on/off current ratio of greater than 10(7) when compared to those developed using less-concentrated gPS-SiO2 surfaces.
Collapse
Affiliation(s)
- Seulyi Lee
- Department of Applied Organic Materials Engineering, Inha University , Incheon 402-751, Republic of Korea
| | | | | |
Collapse
|
38
|
Bousquet A, Awada H, Hiorns RC, Dagron-Lartigau C, Billon L. Conjugated-polymer grafting on inorganic and organic substrates: A new trend in organic electronic materials. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Wang G, Jeong H, Ku J, Na SI, Kang H, Ito E, Jang YH, Noh J, Lee T. Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers. J Colloid Interface Sci 2014; 419:39-45. [PMID: 24491327 DOI: 10.1016/j.jcis.2013.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
We investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling. Our study will aid in understanding the electronic properties at the interface between SAMs and metals in organic electronic devices if an annealing treatment is applied.
Collapse
Affiliation(s)
- Gunuk Wang
- Department of Chemistry and the Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, TX 77005, USA; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Hyunhak Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jamin Ku
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Seok-In Na
- School of Flexible and Printable Electronics, Chonbuk National University, Jeonju-si, Jeollabuk-do 561-756, Republic of Korea
| | - Hungu Kang
- Department of Chemistry, Hanyang University, Seoul 133-791, Republic of Korea
| | - Eisuke Ito
- Flucto-Order Functions Research Team, RIKEN-HYU Collaboration Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yun Hee Jang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Takhee Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Republic of Korea.
| |
Collapse
|
40
|
Singhana B, Jamison AC, Hoang J, Lee TR. Self-assembled monolayer films derived from tridentate cyclohexyl adsorbates with alkyl tailgroups of increasing chain length. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14108-14116. [PMID: 24099574 DOI: 10.1021/la401899q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tridentate cyclohexyl-based alkanethiolate SAMs generated from a series of adsorbates of the form R3C6H6(CH2SH)3, where R = -(CH2)nH and n = 3, 8, and 13 (3CnCyTSH), were examined. Characterization of the SAMs by X-ray photoelectron spectroscopy (XPS) revealed that all sulfur atoms of the tridentate adsorbates were bound to the surface of gold, and that the tailgroups were in general less densely packed than the SAM derived from octadecanethiol (C18SH). For each of the SAMs, the relative molecular coverage on the surface was estimated from the XPS-derived C1s/Au4f ratios. The trend in conformational order for these SAMs as determined by the surface interactions with contacting liquids and the relative crystallinity of the alkyl chains as revealed by the PM-IRRAS spectra were found to decrease as follows: C18SH >> 3C13CyTSH > 3C8CyTSH > 3C3CyTSH. A preliminary study of the thermal stability of the SAMs as evaluated by XPS indicates that the SAM generated from the cyclohexyl-based adsorbate with the longest alkyl chain, 3C13CyTSH, is markedly more stable than the SAM generated from C18SH. Overall, the results suggest that the stability of the SAMs are influenced by both the length of the alkyl chains and the chelate effect associated with the tridentate adsorbates.
Collapse
Affiliation(s)
- Burapol Singhana
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , Houston, Texas 77204-5003
| | | | | | | |
Collapse
|
41
|
Chams A, Dupeyre G, Jouini M, Yassar A, Perruchot C. Direct growth of polymer brushes from an electrodeposited conducting poly(dithienylpyrrole) layer functionalized with ATRP initiating moieties. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Chiu JM, Tai Y. Improving the efficiency of ZnO-based organic solar cell by self-assembled monolayer assisted modulation on the properties of ZnO acceptor layer. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6946-6950. [PMID: 23895177 DOI: 10.1021/am400928n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, we fabricated a bilayer hybrid organic solar cell with P3HT as the donor and ZnO as the acceptor (ITO/ZnO/P3HT/Au). We show that passivating a self-assembled monolayer (SAM) over the ITO electrode surface before fabricating the ZnO layer improves the crystallinity of the ZnO layer and of the P3HT layer spin-coated on top of the ZnO layer. The SAM modification resulted in improved charge mobility in the ZnO and P3HT layers. As a consequence, the short circuit current of the photovoltaic device were enhanced. The power conversion efficiency of the SAM-modified device was approximately 60% higher than that of the untreated device. Our findings suggest that the performance of metal oxide-based organic solar cells can be improved by SAM-assisted modulation of metal oxide crystallinity.
Collapse
Affiliation(s)
- Jian-Ming Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | |
Collapse
|
43
|
Kim CH, Hlaing H, Carta F, Bonnassieux Y, Horowitz G, Kymissis I. Templating and charge injection from copper electrodes into solution-processed organic field-effect transistors. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3716-3721. [PMID: 23611406 DOI: 10.1021/am400325k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Solution-processed organic field-effect transistors (OFETs) using chemically modified copper electrodes are reported. The purpose of this study is to shed light on the use of inexpensive copper electrodes in bottom-contact OFETs, which is consistent with the major goal of organic electronics: the realization of low-cost electronics. 6,13-Bis(triisopropylsilylethynyl)pentacene was used for solution-processed hole-transporting molecular films and pentafluorobenzenethiol was used to form self-assembled monolayers (SAMs) on the contact metals. We conducted a comparative study on copper and gold contacts and realized that, under the same performance improvement schemes, via SAM treatment and controlled crystal growth, the copper electrode device experienced a more significant enhancement than the gold electrode device. We attribute the beneficial effects of SAMs to the improved charge injection and transport properties, which are critical double effects from the fluorinated aromatic SAM structure. Grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements showed that templating property of SAMs promotes the crystallization of TIPS-pentacene films at the metal/organic interface. The presented result indicates that copper can be regarded as a promising candidate for reducing the use of gold in organic-based circuits and systems, where the cost-effective production is an important issue.
Collapse
Affiliation(s)
- Chang Hyun Kim
- LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France.
| | | | | | | | | | | |
Collapse
|
44
|
Chen H, Guo X. Unique role of self-assembled monolayers in carbon nanomaterial-based field-effect transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1144-1159. [PMID: 23457058 DOI: 10.1002/smll.201202973] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/08/2013] [Indexed: 06/01/2023]
Abstract
Molecular self-assembly is a promising technology for creating reliable functional films in optoelectronic devices with full control of thickness and even spatial resolution. In particular, rationally designed self-assembled monolayers (SAMs) play an important role in modifying the electrode/semiconductor and semiconductor/dielectric interfaces in field-effect transistors. Carbon nanomaterials, especially single-walled carbon nanotubes and graphene, have attracted intense interest in recent years due to their remarkable physicochemical properties. The combination of the advantages of both SAMs and carbon nanomaterials has been opening up a thriving research field. In this Review article, the unique role of SAMs acting as either active or auxiliary layers in carbon nanomaterials-based field-effect transistors is highlighted for tuning the substrate effect, controlling the carrier type and density in the conducting channel, and even installing new functionalities. The combination of molecular self-assembly and molecular engineering with materials fabrication could incorporate diverse molecular functionalities into electrical nanocircuits, thus speeding the development of nanometer/molecular electronics in the future.
Collapse
Affiliation(s)
- Hongliang Chen
- Center for NanoChemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural, Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | | |
Collapse
|
45
|
Gliboff M, Sang L, Knesting KM, Schalnat MC, Mudalige A, Ratcliff EL, Li H, Sigdel AK, Giordano AJ, Berry JJ, Nordlund D, Seidler GT, Brédas JL, Marder SR, Pemberton JE, Ginger DS. Orientation of phenylphosphonic acid self-assembled monolayers on a transparent conductive oxide: a combined NEXAFS, PM-IRRAS, and DFT study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2166-2174. [PMID: 23379837 DOI: 10.1021/la304594t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Self-assembled monolayers (SAMs) of dipolar phosphonic acids can tailor the interface between organic semiconductors and transparent conductive oxides. When used in optoelectronic devices such as organic light emitting diodes and solar cells, these SAMs can increase current density and photovoltaic performance. The molecular ordering and conformation adopted by the SAMs determine properties such as work function and wettability at these critical interfaces. We combine angle-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to determine the molecular orientations of a model phenylphosphonic acid on indium zinc oxide, and correlate the resulting values with density functional theory (DFT). We find that the SAMs are surprisingly well-oriented, with the phenyl ring adopting a well-defined tilt angle of 12-16° from the surface normal. We find quantitative agreement between the two experimental techniques and density functional theory calculations. These results not only provide a detailed picture of the molecular structure of a technologically important class of SAMs, but also resolve a long-standing ambiguity regarding the vibrational-mode assignments for phosphonic acids on oxide surfaces, thus improving the utility of PM-IRRAS for future studies.
Collapse
Affiliation(s)
- Matthew Gliboff
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bulliard X, Benayad A, Ihn SG, Yun S, Park JH, Choi W, Choi YS, Kim Y. Autocatalytic effect of amine-terminated precursors in mixed self-assembled monolayers. RSC Adv 2013. [DOI: 10.1039/c2ra21855k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Qualizza BA, Prasad S, Chiarelli MP, Ciszek JW. Functionalization of organic semiconductor crystals via the Diels–Alder reaction. Chem Commun (Camb) 2013; 49:4495-7. [DOI: 10.1039/c3cc40866c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Agina EV, Usov IA, Borshchev OV, Wang J, Mourran A, Shcherbina MA, Bakirov AV, Grigorian S, Möller M, Chvalun SN, Ponomarenko SA. Formation of self-assembled organosilicon-functionalized quinquethiophene monolayers by fast processing techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16186-16195. [PMID: 23036156 DOI: 10.1021/la303324j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Different techniques for a relatively fast self-assembled monolayer film formation such as Langmuir-Blodgett (LB), spin-coating, and dip-coating methods have been compared using chloro[11-(5''''-ethyl-2,2':5',2″:5''',2''':5''',2''''-quinquethiophene-5-yl)undecyl]dimethylsilane as a reactive precursor. It was shown that both spin-coating and LB techniques are very promising methods for preparation of highly ordered monolayer films of organosilicon-functionalized quinquethiophene with vertical orientation of oligothiophene fragments, while dip-coating gives only partial coverage. Optimal conditions for complete filling out the substrate surface by the quinquethiophene-containing monolayer by spin-coating and LB methods have been found. Grazing incidence X-ray diffraction measurements confirmed formation of in-plane crystalline order within the monolayer film. Changes in the layer structure were established by X-ray reflectivity and grazing incidence X-ray diffraction methods.
Collapse
Affiliation(s)
- Elena V Agina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Molecular monolayers as semiconducting channels in field effect transistors. Top Curr Chem (Cham) 2012; 312:213-37. [PMID: 21809186 DOI: 10.1007/128_2011_220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
This chapter describes the fundamental study of charge transport through single layers of π-conjugated molecules organized to form the semiconducting channels of field-effect transistors (FETs). Physical and chemical methods of evaporation, Langmuir-Blodgett assembly and transfer, and self-assembly have been used by the community to realize single molecular monolayers on the gate or gate dielectric surface of FETs. Advancements in molecular design and chemical modification of FET interfaces continue to improve measured charge transport properties in FETs. These monolayer FETs have been integrated in electronic circuitry and demonstrated as chemical sensors, where they promise the ultimate in performance as the entire molecular monolayer is modulated by the applied gate field and is accessed by analytes, respectively.
Collapse
|
50
|
Weidner T, Baio JE, Seibel J, Siemeling U. Dithienylcyclopentene-functionalised subphthalocyaninatoboron complexes: photochromism, luminescence modulation and formation of self-assembled monolayers on gold. Dalton Trans 2012; 41:1553-61. [PMID: 22138955 DOI: 10.1039/c1dt11644d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subphthalocyaninatoboron (SubPc) complexes bearing six peripheral n-dodecylthio substituents and an apical photochromic dithienylperfluorocyclopentene unit were prepared. The photoinduced isomerisation of the apical substituent from the open to the ring-closed form significantly influences the photoluminescence of the covalently attached SubPc unit, which is more efficiently quenched by the ring-closed form. Films on gold were fabricated from these multifunctional conjugates and characterised by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). The results are in accord with the formation of self-assembled monolayers based on dome-shaped SubPc-based anchor groups. Their chemisorption is primarily due to the peripheral n-dodecylthio substituents, giving rise to covalently attached thiolate as well as coordinatively bound thioether units, whose alkyl chains are in an almost parallel orientation to the surface.
Collapse
Affiliation(s)
- Tobias Weidner
- National ESCA and Surface Analysis Center for Biomedical Problems (NESAC/BIO), Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|