1
|
Li P, Tu C, Xun MM, Wu WX. Enzymatic synthesis, post-polymerization modification and cross-linking of functionalized poly(β-thioether ester) with pendant vinyl group. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Lukas Sadowski P, Singh A, Daniel Luo H, Michael Majcher J, Urosev I, Rothenbroker M, Kapishon V, Niels Smeets M, Hoare T. Functionalized poly(oligo(lactic acid) methacrylate)-block-poly(oligo(ethylene glycol) methacrylate) block copolymers: A synthetically tunable analogue to PLA-PEG for fabricating drug-loaded nanoparticles. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Yang X, Zhang W, Huang HY, Dai J, Wang MY, Fan HZ, Cai Z, Zhang Q, Zhu JB. Stereoselective Ring-Opening Polymerization of Lactones with a Fused Ring Leading to Semicrystalline Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Yang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Wei Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jiang Dai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Meng-Yuan Wang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Hua-Zhong Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
4
|
Kalelkar PP, Geng Z, Cox B, Finn MG, Collard DM. Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly(lactic acid) surfaces. Colloids Surf B Biointerfaces 2021; 211:112242. [PMID: 34929482 DOI: 10.1016/j.colsurfb.2021.112242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022]
Abstract
We have modified the surface of poly(lactic acid) (PLA) by bromination in the presence of N-bromosuccinimide (NBS) under UV irradiation. This new approach to impart functionality to the surface does not effect the bulk of the material. Brominated PLA surfaces served as initiators for atom-transfer radical polymerization (SI-ATRP) of 2-(methacryloyloxy)ethyl]trimethylammonium chloride, a quaternary ammonium methacrylate (QMA). Grafting of poly(QMA) brushes rendered PLA films hydrophilic and these films displayed a three-order of magnitude increase in antimicrobial efficacy against Gram-negative bacteria such as Escherichia coli as compared to unmodified PLA. The two-step strategy described here to modify PLA surface represents a useful route to modified PLA materials for biomedical and antimicrobial packaging applications.
Collapse
Affiliation(s)
- Pranav P Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Zhishuai Geng
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Bronson Cox
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - David M Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
5
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
6
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
7
|
Gupta SS, Mishra V, Mukherjee MD, Saini P, Ranjan KR. Amino acid derived biopolymers: Recent advances and biomedical applications. Int J Biol Macromol 2021; 188:542-567. [PMID: 34384802 DOI: 10.1016/j.ijbiomac.2021.08.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023]
Abstract
Over the past few years, amino acids (AA) have emerged as promising biomaterials for the synthesis of functional polymers. Owing to the diversity of functional groups in amino acids, various polymerization methods may be used to make a wide range of well-defined functional amino-acid/peptide-based optically active polymers with varying polymer lengths, compositions, and designs. When incorporated with chirality and self-assembly, they offer a wide range of applications and are particularly appealing in the field of drug delivery, tissue engineering, and biosensing. There are several classes of these polymers that include polyamides (PA), polyesters (PE), poly(ester-amide)s (PEA)s, polyurethanes (PU)s, poly(depsipeptide)s (PDP)s, etc. They offer the ability to control functionality, conjugation, crosslinking, stimuli responsiveness, and tuneable mechanical/thermal properties. In this review, we present the recent advancements in the synthesis strategies for obtaining these amino acid-derived bio-macromolecules, their self-assembly properties, and the wealth of prevalent applications.
Collapse
Affiliation(s)
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, NOIDA, India.
| | | | | | - Kumar Rakesh Ranjan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, NOIDA, India.
| |
Collapse
|
8
|
Bhattacharya S. Anti-EGFR-mAb and 5-Fluorouracil Conjugated Polymeric Nanoparticles for Colorectal Cancer. Recent Pat Anticancer Drug Discov 2021; 16:84-100. [PMID: 33349222 DOI: 10.2174/1574892815666201221121859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the higher intake of junk food and unhealthy lifestyle, the percentage of U.S. adults aged 50 to 75 years who were up-to-date with colorectal cancer screening increased 1.4 percentage points, from 67.4% in 2016 to 68.8% in 2018. This represents an additional 3.5 million adults screened for colorectal cancer. This is a severe concern of this research, and an attempt was made to prepare a target-specific formulation that could circumvent chemotherapy-related compilation and improvise higher cellular uptake. The fundamental agenda of this research was to prepare and develop Anti-EGFR mAb and 5-Fluorouracil (5-FU) fabricated polymeric nanoparticles for colorectal cancer. OBJECTIVE The main objective of this research was to prepare and evaluate more target specific formulation for the treatment of colorectal cancer. PLGA and PEG-based polymeric nanoparticles are capable of preventing opsonization via the reticuloendothelial system. Hence, prepared polymeric nanoparticles are capable of higher cellular uptake. METHODS The Poly(d,1-lactide-co-glycolide) (PLGA) and Polyethylene Glycol (PEG) were combined utilizing the ring-opening polymerization method. The presence of PEG prevents opsonization and distinguished blood concentration along with enhanced targeting. The presence of PLGA benefits in the sustained release of polymeric formulations. The optimized formulation (5-FU-PLGA- PEG-NP) was lyophilized using 4% trehalose (cryoprotectants) and conjugated with Anti- EGFR mAb on its surface to produce Anti-EGFR-5-FU-PLGA-PEG-NP; the final formulation, which increases target specificity and drug delivery system of nanoparticles. RESULTS The spherical shaped optimized formulation, 5-FU-PLGA-PEG-NP-3 was found to have higher percentage drug entrapment efficacy (71.23%), higher percentage drug content (1.98 ± 0.34%) with minimum particles size (252.3nm) and anionic zeta potential (-31.23mV). The IC50 value of Anti-EGFR-5-FU-PLGA-PEG-NP was 1.01μg/mL after 48 hours incubation period in the HCT 116 cell line, indicating higher anticancer effects of the final formulation. CONCLUSION From the outcomes of various experiments, it was concluded that Anti-EGFR-5-FUPLGA- PEG-NP has biphasic drug release kinetics, higher cellular uptake and higher cytotoxicity. Therefore, anti-EGFR-5-FU-PLGA-PEG-NP holds excellent potential for drug delivery to EGFR positive colorectal cancer cells.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, India
| |
Collapse
|
9
|
|
10
|
Wang J, Tao Y. Synthesis of Sustainable Polyesters via Organocatalytic Ring-Opening Polymerization of O-carboxyanhydrides: Advances and Perspectives. Macromol Rapid Commun 2020; 42:e2000535. [PMID: 33241601 DOI: 10.1002/marc.202000535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Indexed: 11/06/2022]
Abstract
Sustainable polyesters can be furnished via ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs). Various catalysts, especially metal-based catalysts, are devised to achieve controlled ROP of OCAs. In the following mini review, the recent progress on the organocatalytic ROP of OCAs, including the usage of thiourea-based bifunctional single-molecule organocatalysts for eliminating epimerization in OCAs polymerization is summarized. Moreover, the future development of the organocatalytic ROP of OCAs for the synthesis of sustainable polyesters will be discussed.
Collapse
Affiliation(s)
- Jianqun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
11
|
Kalelkar PP, Collard DM. Tricomponent Amphiphilic Poly(oligo(ethylene glycol) methacrylate) Brush-Grafted Poly(lactic acid): Synthesis, Nanoparticle Formation, and In Vitro Uptake and Release of Hydrophobic Dyes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
12
|
Lanteri D, Quattrosoldi S, Soccio M, Basso A, Cavallo D, Munari A, Riva R, Lotti N, Moni L. Regioselective Photooxidation of Citronellol: A Way to Monomers for Functionalized Bio-Polyesters. Front Chem 2020; 8:85. [PMID: 32117900 PMCID: PMC7031484 DOI: 10.3389/fchem.2020.00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Dye-sensitized photooxygenation reaction of bio-based double bond-containing substrates is proposed as sustainable functionalization of terpenes and terpenoids to transform them into polyoxygenated compounds to be employed for the synthesis of new bio-based polyesters. As proof of concept, citronellol 1 has been regioselectively converted into diol 4 using singlet oxygen (1O2), a traceless reagent that can be generated from air, visible light and zeolite supported-photosensitizer (Thionine-NaY). With our synthetic approach, diol 4 has been obtained in two-steps, with good regioselectivity, using green reagents such as light and air, and finally a solvent-free oxidation step. From this compound, a citronellol-based copolyester of poly(butylene succinate) (PBS) has been synthesized and fully characterized. The results obtained evidence that the proposed copolymerization of PBS with the citronellol-based building blocks allows to obtain a more flexible and functionalizable material, by exploiting a largely available natural molecule modified through a green synthetic path.
Collapse
Affiliation(s)
- Deianira Lanteri
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| | - Silvia Quattrosoldi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Renata Riva
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genova, Genova, Italy
| |
Collapse
|
13
|
Phetsuk S, Molloy R, Nalampang K, Meepowpan P, Topham PD, Tighe BJ, Punyodom W. Physical and thermal properties of
l‐
lactide/ϵ‐caprolactone copolymers: the role of microstructural design. POLYM INT 2019. [DOI: 10.1002/pi.5940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sawarot Phetsuk
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
| | - Robert Molloy
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| | - Kanarat Nalampang
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University Birmingham UK
| | - Brian J Tighe
- Chemical Engineering and Applied ChemistryAston University Birmingham UK
| | - Winita Punyodom
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
14
|
Wu WX, Li J, Yang XL, Wang N, Yu XQ. Lipase-catalyzed synthesis of renewable acid-degradable poly(β-thioether ester) and poly(β-thioether ester-co-ricinoleic acid) copolymers derived from castor oil. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Wang P, Liu W, Liu S, Yang R, Pu Y, Zhang W, Wang X, Liu X, Ren Y, Chi B. pH-responsive nanomicelles of poly(ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) for targeted drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:277-292. [PMID: 31665964 DOI: 10.1080/09205063.2019.1687132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Here, a novel pH-responsive block copolymer, poly (ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) (PEG-PCL-PHis), was synthesized and designed for anti-cancer drug delivery with excellent biocompatible, biodegradable, and strong drug loading efficiency. 1H-NMR, IF-IR, and GPC were used to characterize the structure of the PEG-PCL-PHis copolymer. In addition, the morphology, particle size, Zeta potential, and critical micelle concentration (CMC) of different degree of polymerization were determined by transmission electron microscopy (TEM), dynamic light scattering granulometer (DLS), and fluorescence spectrometer, respectively. The strong affinity between the core of micelles and hydrophobic drug was manifested with 15.09% drug loading content and 84.65% entrapment efficiency. In vitro release of DOX from the block copolymer micelle demonstrated, the PEG-PCL-PHis copolymer micelle has stable and durable drug releasing ability accompanied with pH-sensitivity. From the mechanism of cellular uptake the micelles, the pathway of drug release was captured by confocal laser scanning microscope. These experiments demonstrated the safe delivery for anticancer medicine through this novel copolymer. In conclusion, the PEG-PCL-PHis copolymer micelle has great potential to become a safe drug carrier for cancer chemotherapy.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yajie Pu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| |
Collapse
|
16
|
Kalelkar PP, Geng Z, Finn MG, Collard DM. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups. Biomacromolecules 2019; 20:3366-3374. [DOI: 10.1021/acs.biomac.9b00504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Fuoco T, Finne-Wistrand A. Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1625059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tiziana Fuoco
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
18
|
Non-Isothermal Crystallization and Degradation Kinetic Studies of Synthesized Mo-TG end Capped Poly(ε-Caprolactone). Macromol Res 2019. [DOI: 10.1007/s13233-019-7052-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Xie Y, Lei D, Wang S, Liu Z, Sun L, Zhang J, Qing FL, He C, You Z. A Biocompatible, Biodegradable, and Functionalizable Copolyester and Its Application in Water-Responsive Shape Memory Scaffold. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Tran J, Pesenti T, Cressonnier J, Lefay C, Gigmes D, Guillaneuf Y, Nicolas J. Degradable Copolymer Nanoparticles from Radical Ring-Opening Copolymerization between Cyclic Ketene Acetals and Vinyl Ethers. Biomacromolecules 2019; 20:305-317. [PMID: 30540444 DOI: 10.1021/acs.biomac.8b01500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Methylene-1,3-dioxepane (MDO) and different vinyl ether (VE) monomers were successfully copolymerized by free-radical radical ring-opening copolymerization (rROP) to yield P(MDO- co-VE) copolymers with Mn = 7 000-13 000 g·mol-1 and high molar fractions of MDO ( FMDO = 0.7-0.9). By using VE derivatives of different aqueous solubilities or by grafting PEG chains onto the copolymers by "click" chemistry via azide-containing VE units, hydrophobic, amphiphilic and water-soluble copolymers were obtained. The different copolymers were then formulated into nanoparticles by nanoprecipitation using Pluronics for hydrophobic copolymers, without surfactant for amphiphilic copolymers, or blended with PMDO for water-soluble copolymers. Most of the copolymers led to nanoparticles with average diameters in the 130-250 nm with narrow particle size distributions and satisfying colloidal stability for a period of at least 1-2 weeks and up to 6 months. The copolymers were successfully degraded under accelerated, hydrolytic or enzymatic conditions. Hydrophobic copolymers led to degradation kinetics in PBS similar to that of PCL and complete degradation (-95% in Mn decrease) was observed in the presence of enzymes (lipases). Preliminary cytotoxicity assays were performed on endothelial cells (HUVEC) and macrophages (J774.A1) and revealed high cell viabilities at 0.1 mg·mL-1.
Collapse
Affiliation(s)
- Johanna Tran
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Théo Pesenti
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Jonathan Cressonnier
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| | - Catherine Lefay
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Didier Gigmes
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Yohann Guillaneuf
- Aix Marseille Univ. , CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397 France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Univ. Paris-Saclay, Faculté de Pharmacie , 5 rue Jean-Baptiste Clément , F-92296 Châtenay-Malabry cedex , France
| |
Collapse
|
21
|
Xu Y, Perry MR, Cairns SA, Shaver MP. Understanding the ring-opening polymerisation of dioxolanones. Polym Chem 2019. [DOI: 10.1039/c8py01695j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eliminating small molecules from dioxolane rings affords isotactic poly(mandelic acid), with competing chain transfer overcome through dynamic vacuum polymerisation.
Collapse
Affiliation(s)
- Yuechao Xu
- School of Materials
- University of Manchester
- Manchester
- UK
| | | | | | | |
Collapse
|
22
|
Cui Y, Jiang J, Pan X, Wu J. Highly isoselective ring-opening polymerization of rac-O-carboxyanhydrides using a zinc alkoxide initiator. Chem Commun (Camb) 2019; 55:12948-12951. [DOI: 10.1039/c9cc06108h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly isoselective ROP system using just a zinc alkoxide as an initiator for the isoselective ROP of OCAs with the best Pm value of 0.97 at −70 °C.
Collapse
Affiliation(s)
- Yaqin Cui
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Jinxing Jiang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
23
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
24
|
Polyester-based nanoparticles for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:983-994. [DOI: 10.1016/j.msec.2018.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
|
25
|
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018; 47:7739-7782. [PMID: 30221267 DOI: 10.1039/c8cs00531a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further post-modification of the corresponding chemically functional polymers after polymerization. Synthetic concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications highlighted.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
26
|
Zhu Y, Radlauer MR, Schneiderman DK, Shaffer MSP, Hillmyer MA, Williams CK. Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02690] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yunqing Zhu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Madalyn R. Radlauer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Deborah K. Schneiderman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Charlotte K. Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
27
|
Hong SH, Patel T, Ip S, Garg S, Oh JK. Microfluidic Assembly To Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3316-3325. [PMID: 29485889 DOI: 10.1021/acs.langmuir.8b00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling the size and narrow size distribution of polymer-based nanocarriers for targeted drug delivery is an important parameter that significantly influences their colloidal stability, biodistribution, and targeting ability. Herein, we report a high-throughput microfluidic process to fabricate colloidally stable aqueous nanoparticulate colloids with tunable sizes at 50-150 nm and narrow size distribution. The nanoparticulates are designed with different molecular weight polyesters having both ester bonds (responsive to esterase) and sulfide linkages (to oxidative reaction) on the backbones, thus exhibiting dual esterase/oxidation responses, causing the destabilization of the nanoparticulates to lead to the controlled release of encapsulated therapeutics. The systematic investigation on both microfluidic and formulation parameters enables to control their properties as allowing for decreasing nanoparticulate sizes as well as improving colloidal stability and cytotoxicity. Further to such control over smaller size and narrow size distribution, dual stimuli-responsive degradation and excellent cellular uptake could suggest that the microfluidic nanoparticulates stabilized with polymeric stabilizers could offer the versatility toward dual smart drug delivery exhibiting enhanced release kinetics.
Collapse
Affiliation(s)
- Sung Hwa Hong
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| | - Twinkal Patel
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| | - Shell Ip
- Precision NanoSystems, Vancouver , BC , Canada V6T 1Z3
| | - Shyam Garg
- Precision NanoSystems, Vancouver , BC , Canada V6T 1Z3
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC , Canada H4B 1R6
| |
Collapse
|
28
|
Wang C, An X, Pang M, Zhang Z, Zhu X, Zhu J, Du Prez FE, Pan X. Dynamic diselenide-containing polyesters from alcoholysis/oxidation of γ-butyroselenolactone. Polym Chem 2018. [DOI: 10.1039/c8py00736e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile protocol for the synthesis of a variety of multiresponsive diselenide-containing polyesters was investigated.
Collapse
Affiliation(s)
- Can Wang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaowei An
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Minglun Pang
- Department of Chemistry
- Xi'an Jiaotong-Liverpool University
- Suzhou 215123
- P.R. China
| | - Zhengbiao Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Xiangqiang Pan
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
29
|
Kalelkar PP, Collard DM. Thiol-substituted copolylactide: synthesis, characterization and post-polymerization modification using thiol–ene chemistry. Polym Chem 2018. [DOI: 10.1039/c7py01930k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copolylactide that is substituted with pendent thiol groups (thiol-PL) undergoes coupling with a variety of electrophiles under mild conditions via thiol–ene addition.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - David M. Collard
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
30
|
Hedir G, Stubbs C, Aston P, Dove AP, Gibson MI. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. ACS Macro Lett 2017; 6:1404-1408. [PMID: 29399386 PMCID: PMC5792090 DOI: 10.1021/acsmacrolett.7b00905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Poly(vinyl alcohol) (PVA) is the most active synthetic mimic of antifreeze proteins and has extremely high ice recrystallization inhibition (IRI) activity. Addition of PVA to cellular cryopreservation solutions increases the number of recovered viable cells due to its potent IRI, but it is intrinsically nondegradable in vivo. Here we report the synthesis, characterization, and IRI activity of PVA containing degradable ester linkages. Vinyl chloroacetate (VClAc) was copolymerized with 2-methylene-1,3-dioxepane (MDO) which undergoes radical ring-opening polymerization to install main-chain ester units. The use of the chloroacetate monomer enabled selective deacetylation with retention of esters within the polymer backbone. Quantitative IRI assays revealed that the MDO content had to be finely tuned to retain IRI activity, with higher loadings (24 mol %) resulting in complete loss of IRI activity. These degradable materials will help translate PVA, which is nontoxic and biocompatible, into a range of biomedical applications.
Collapse
Affiliation(s)
- Guillaume Hedir
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Institute
of Advanced Study, University of Warwick
Science Park, Coventry CV4 8UW, U.K.
| | | | - Phillip Aston
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
31
|
Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Tardy A, Honoré JC, Tran J, Siri D, Delplace V, Bataille I, Letourneur D, Perrier J, Nicoletti C, Maresca M, Lefay C, Gigmes D, Nicolas J, Guillaneuf Y. Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew Chem Int Ed Engl 2017; 56:16515-16520. [PMID: 29105983 DOI: 10.1002/anie.201707043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Indexed: 11/08/2022]
Abstract
Free-radical copolymerization of cyclic ketene acetals (CKAs) and vinyl ethers (VEs) was investigated as an efficient yet simple approach for the preparation of functional aliphatic polyesters. The copolymerization of CKA and VE was first predicted to be quasi-ideal by DFT calculations. The theoretical prediction was experimentally confirmed by the copolymerization of 2-methylene-1,3-dioxepane (MDO) and butyl vinyl ether (BVE), leading to rMDO =0.73 and rBVE =1.61. We then illustrated the versatility of this approach by preparing different functional polyesters: 1) copolymers functionalized by fluorescent probes; 2) amphiphilic copolymers grafted with poly(ethylene glycol) (PEG) side chains able to self-assemble into PEGylated nanoparticles; 3) antibacterial films active against Gram-positive and Gram-negative bacteria (including a multiresistant strain); and 4) cross-linked bioelastomers with suitable properties for tissue engineering applications.
Collapse
Affiliation(s)
- Antoine Tardy
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Jean-Claude Honoré
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Johanna Tran
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Didier Siri
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Vianney Delplace
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Isabelle Bataille
- Laboratoire de recherche vasculaire translationnelle, INSERM 1148, University Paris 13 &, University Paris Diderot, Paris, France
| | - Didier Letourneur
- Laboratoire de recherche vasculaire translationnelle, INSERM 1148, University Paris 13 &, University Paris Diderot, Paris, France
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Catherine Lefay
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Yohann Guillaneuf
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| |
Collapse
|
33
|
de Oliveira FCS, Olvera D, Sawkins MJ, Cryan SA, Kimmins SD, da Silva TE, Kelly DJ, Duffy GP, Kearney C, Heise A. Direct UV-Triggered Thiol–ene Cross-Linking of Electrospun Polyester Fibers from Unsaturated Poly(macrolactone)s and Their Drug Loading by Solvent Swelling. Biomacromolecules 2017; 18:4292-4298. [DOI: 10.1021/acs.biomac.7b01335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando C. S. de Oliveira
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Dinorath Olvera
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michael J. Sawkins
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sally-Ann Cryan
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Scott D. Kimmins
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Tatiane Eufrasio da Silva
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Daniel J. Kelly
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Garry P. Duffy
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Anatomy,
School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Cathal Kearney
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy & School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Andreas Heise
- Department
of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| |
Collapse
|
34
|
Bexis P, De Winter J, Coulembier O, Dove AP. Isotactic degradable polyesters derived from O-carboxyanhydrides of l-lactic and l-malic acid using a single organocatalyst/initiator system. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Fuoco T, Pappalardo D, Finne-Wistrand A. Redox-Responsive Disulfide Cross-Linked PLA–PEG Nanoparticles. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tiziana Fuoco
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Daniela Pappalardo
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
- Department
of Science and Technology, University of Sannio, via dei Mulini
59/A, 82100 Benevento, Italy
| | - Anna Finne-Wistrand
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
37
|
Kalaoglu-Altan OI, Kirac-Aydin A, Sumer Bolu B, Sanyal R, Sanyal A. Diels–Alder “Clickable” Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth. Bioconjug Chem 2017; 28:2420-2428. [DOI: 10.1021/acs.bioconjchem.7b00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ozlem Ipek Kalaoglu-Altan
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Azize Kirac-Aydin
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Burcu Sumer Bolu
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University,
Bebek 34342, Istanbul, Turkey
| |
Collapse
|
38
|
Yang H, Sun A, Chai C, Huang W, Xue X, Chen J, Jiang B. Synthesis and post-functionalization of a degradable aliphatic polyester containing allyl pendent groups. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Xu YC, Ren WM, Zhou H, Gu GG, Lu XB. Functionalized Polyesters with Tunable Degradability Prepared by Controlled Ring-Opening (Co)polymerization of Lactones. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yue-Chao Xu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hui Zhou
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge-Ge Gu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
40
|
Affiliation(s)
- Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| |
Collapse
|
41
|
Senevirathne SA, Washington KE, Miller JB, Biewer MC, Oupicky D, Siegwart DJ, Stefan MC. HDAC Inhibitor Conjugated Polymeric Prodrug Micelles for Doxorubicin Delivery. J Mater Chem B 2017; 5:2106-2114. [PMID: 28630710 PMCID: PMC5473365 DOI: 10.1039/c6tb03038f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Amphiphilic diblock copolymers bearing histone deacetylase inhibitors (HDACi) (4-phenyl butyric acid and valproic acid) were synthesized by the ring-opening polymerization of γ-4-phenylbutyrate-ε-caprolactone (PBACL), γ-valproate-ε-caprolactone (VPACL), and ε-caprolactone (CL) from a poly(ethylene glycol) macroinitiator (PEG). These amphiphilic diblock copolymers self-assembled into stable pro-drug micelles and demonstrated excellent biocompatibility. High loading of doxorubicin (DOX) up to 5.1 wt% was achieved. Optimized micelles enabled sustained drug release in a concentration-dependent manner over time to expand the therapeutic window of cytotoxic small molecule drugs.
Collapse
Affiliation(s)
| | | | - Jason B Miller
- Department of Biochemistry, University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Michael C Biewer
- Department of Chemistry, University of Texas at Dallas, Richardson, TX, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Daniel J Siegwart
- Department of Biochemistry, University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Mihaela C Stefan
- Department of Chemistry, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
42
|
Ouyang H, Nie K, Yuan D, Yao Y. Synthesis of amine-bridged bis(phenolate) rare-earth metal aryloxides and their catalytic performances for the ring-opening polymerization of l-lactic acid O-carboxyanhydride and l-lactide. Dalton Trans 2017; 46:15928-15938. [PMID: 29119172 DOI: 10.1039/c7dt03001k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rare-earth metal aryloxides were found as efficient initiators for the ring-opening polymerization of l-lactic acid O-carboxyanhydride and l-lactide. A comparative study on catalyst activities and reaction kinetics were conducted.
Collapse
Affiliation(s)
- Hao Ouyang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Kun Nie
- Key Laboratory of Organic Synthesis of Jiangsu Province
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
43
|
Cui Y, Chen C, Sun Y, Wu J, Pan X. Isoselective mechanism of the ring-opening polymerization of rac-lactide catalyzed by chiral potassium binolates. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00449k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chain end control mechanism for the isoselective ring-opening polymerization of rac-lactide catalyzed by potassium complexes was proven via three different methods.
Collapse
Affiliation(s)
- Yaqin Cui
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Changjuan Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Yangyang Sun
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
44
|
Basu A, Kunduru KR, Katzhendler J, Domb AJ. Poly(α-hydroxy acid)s and poly(α-hydroxy acid-co-α-amino acid)s derived from amino acid. Adv Drug Deliv Rev 2016; 107:82-96. [PMID: 27527666 DOI: 10.1016/j.addr.2016.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/17/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Polyesters derived from the α-hydroxy acids, lactic acid, and glycolic acid, are the most common biodegradable polymers in clinical use. These polymers have been tailored for a range of applications that require a physical material possessing. The physical and mechanical properties of these polymers fit the specific application and also safely biodegrade. These polymers are hydrophobic and do not possess functional side groups. This does not allow hydrophilic or hydrophobic manipulation, conjugation of active agents along the polymer chain, etc. These manipulations have partly been achieved by block copolymerization with, for example, poly(ethylene glycol), to obtain an amphiphilic copolymer. The objective of this review is to survey PLA functional copolymers in which functional α-hydroxy acids derived from amino acids are introduced along the polymer chain, allowing endless manipulation of PLA. Biodegradable functional polyesters are one of the most versatile biomaterials available to biomedical scientists. Amino acids with their variable side chains are ideal candidates for synthesizing such structural as well as stereochemically diverse polymers. They render control over functionalization, conjugation, crosslinking, stimulus responsiveness, and tunable mechanical/thermal properties. Functionalized amino acid derived polyesters are widely used, mainly due to advancement in ring opening polymerization (primarily O-carboxyanhydride mediated). The reaction proceeds under milder conditions and yields high molecular weight polymers. We reviewed on advances in the synthetic methodologies for poly-α-hydroxy esters derived from amino acids with appropriate recent examples.
Collapse
|
45
|
Longo JM, Sanford MJ, Coates GW. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships. Chem Rev 2016; 116:15167-15197. [PMID: 27936619 DOI: 10.1021/acs.chemrev.6b00553] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.
Collapse
Affiliation(s)
- Julie M Longo
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - Maria J Sanford
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| |
Collapse
|
46
|
Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc Natl Acad Sci U S A 2016; 113:E5702-10. [PMID: 27621434 DOI: 10.1073/pnas.1606886113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Conventional chemotherapeutics nonselectively kill all rapidly dividing cells, which produces numerous side effects. To address this challenge, we report the discovery of functional polyesters that are capable of delivering siRNA drugs selectively to lung cancer cells and not to normal lung cells. Selective polyplex nanoparticles (NPs) were identified by high-throughput library screening on a unique pair of matched cancer/normal cell lines obtained from a single patient. Selective NPs promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells during the initial transfection period. When injected into tumor xenografts in mice, cancer-selective NPs were retained in tumors for over 1 wk, whereas nonselective NPs were cleared within hours. This translated to improved siRNA-mediated cancer cell apoptosis and significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively. Importantly, this work highlights that different cells respond differentially to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Because no targeting ligands are required, these functional polyester NPs provide an exciting alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies.
Collapse
|
47
|
Kalelkar PP, Alas GR, Collard DM. Synthesis of an Alkene-Containing Copolylactide and Its Facile Modification by the Addition of Thiols. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Guillermo R. Alas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
48
|
Zhang J, Zhang M, Du FS, Li ZC. Synthesis of Functional Polycaprolactones via Passerini Multicomponent Polymerization of 6-Oxohexanoic Acid and Isocyanides. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00096] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jian Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Mei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Fuoco T, Finne-Wistrand A, Pappalardo D. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds. Biomacromolecules 2016; 17:1383-94. [DOI: 10.1021/acs.biomac.6b00005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tiziana Fuoco
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Finne-Wistrand
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Daniela Pappalardo
- Department
of Fibre and Polymer Technology, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
- Department
of Science and Technology, University of Sannio, via dei Mulini
59/A, 82100 Benevento, Italy
| |
Collapse
|
50
|
Barouti G, Khalil A, Orione C, Jarnouen K, Cammas-Marion S, Loyer P, Guillaume SM. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles. Chemistry 2016; 22:2819-30. [PMID: 26791328 DOI: 10.1002/chem.201504824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.
Collapse
Affiliation(s)
- Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Ali Khalil
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Clement Orione
- Centre Régional de Mesures Physiques de l'Ouest, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 11 Allée de Beaulieu CS 50837, 35708, Rennes Cedex, France
| | - Pascal Loyer
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|