1
|
Martinka Maksymiak M, Andrä-Żmuda S, Sikorska W, Janeczek H, Chaber P, Musioł M, Godzierz M, Kowalczuk M, Adamus G. Structural and Thermal Characterization of Bluepha ® Biopolyesters: Insights into Molecular Architecture and Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5863. [PMID: 39685298 DOI: 10.3390/ma17235863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
This study presents an in-depth molecular and structural characterization of novel biopolyesters developed under the trademark Bluepha®. The primary aim was to elucidate the relationship between chemical structure, chain architecture, and material properties of these biopolyesters to define their potential applications across various sectors. Proton nuclear magnetic resonance (1H NMR) analysis identified the biopolyesters as poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBH) copolymers, containing 4% and 10% molar content of hydroxyhexanoate (HH) units, respectively. Mass spectrometry analysis of PHBH oligomers, produced via controlled thermal degradation, further confirmed the chemical structure and molecular architecture of the PHBH samples. Additionally, multistage electrospray ionization mass spectrometry (ESI-MS/MS) provided insights into the chemical homogeneity and arrangement of comonomer units within the copolyester chains, revealing a random distribution of hydroxyhexanoate (HH) and hydroxybutyrate (HB) units along the PHBH chains. X-ray diffraction (XRD) patterns demonstrated partial crystallinity in the PHBH samples. The thermal properties, including glass transition temperature (Tg), melting temperature (Tm), and melting enthalpy (ΔHm), were found to be lower in PHBH than in poly(R)-3-hydroxybutyrate (PHB), suggesting a broader application potential for the tested PHBH biopolyesters.
Collapse
Affiliation(s)
- Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland
| |
Collapse
|
2
|
Vlnieska V, Khanda A, Gilshtein E, Beltrán JL, Heier J, Kunka D. Polypy: A Framework to Interpret Polymer Properties from Mass Spectroscopy Data. Polymers (Basel) 2024; 16:1771. [PMID: 39000627 PMCID: PMC11244493 DOI: 10.3390/polym16131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Mass spectroscopy (MS) is a robust technique for polymer characterization, and it can provide the chemical fingerprint of a complete sample regarding polymer distribution chains. Nevertheless, polymer chemical properties such as polydispersity (Pd), average molecular mass (Mn), weight average molecular mass (Mw) and others are not determined by MS, as they are commonly characterized by gel permeation chromatography (GPC). In order to calculate polymer properties from MS, a Python script was developed to interpret polymer properties from spectroscopic raw data. Polypy script can be considered a peak detection and area distribution method, and represents the result of combining the MS raw data filtered using Root Mean Square (RMS) calculation with molecular classification based on theoretical molar masses. Polypy filters out areas corresponding to repetitive units. This approach facilitates the identification of the polymer chains and calculates their properties. The script also integrates visualization graphic tools for data analysis. In this work, aryl resin (poly(2,2-bis(4-oxy-(2-(methyloxirane)phenyl)propan) was the study case polymer molecule, and is composed of oligomer chains distributed mainly in the range of dimers to tetramers, in some cases presenting traces of pentamers and hexamers in the distribution profile of the oligomeric chains. Epoxy resin has Mn = 607 Da, Mw = 631 Da, and polydispersity (Pd) of 1.015 (data given by GPC). With Polypy script, calculations resulted in Mn = 584.42 Da, Mw = 649.29 Da, and Pd = 1.11, which are consistent results if compared with GPC characterization. Additional information, such as the percentage of oligomer distribution, was also calculated and for this polymer matrix it was not possible to retrieve it from the GPC method. Polypy is an approach to characterizing major polymer chemical properties using only MS raw spectra, and it can be utilized with any MS raw data for any polymer matrix.
Collapse
Affiliation(s)
- Vitor Vlnieska
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ankita Khanda
- Integrated Quantum Optics, Institute for Photonic Quantum Systems (PhoQS), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Evgeniia Gilshtein
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Anker Engelunds Vej 101, 2800 Kongens Lyngby, Denmark
| | - Jorge Luis Beltrán
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jakob Heier
- Laboratory for Thin Films and Photovoltaics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Danays Kunka
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Williams-Pavlantos K, Mokarizadeh AH, Curole BJ, Grayson SM, Tsige M, Wesdemiotis C. Elucidation of Dithiol-yne Comb Polymer Architectures by Tandem Mass Spectrometry and Ion Mobility Techniques. Polymers (Basel) 2024; 16:1665. [PMID: 38932016 PMCID: PMC11207239 DOI: 10.3390/polym16121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Polymers have a wide range of applications depending on their composition, size, and architecture. Varying any of these three characteristics can greatly impact the resulting chemical, physical, and mechanical properties. While many techniques are available to determine polymer composition and size, determining the exact polymer architecture is more challenging. Herein, tandem mass spectrometry (MS/MS) and ion mobility mass spectrometry (IM-MS) methods are utilized to derive crucial architectural information about dithiol-yne comb polymers. Based on their unique fragmentation products and IM drift times, dithiol-yne oligomers with distinct architectures were successfully differentiated and characterized. Additionally, experimental collision cross-sections (Ω) derived via IM-MS were compared to theoretically extracted Ω values from molecular dynamics simulated structures to deduce the architectural motif of these comb oligomers. Overall, this work demonstrates the benefits of combining various mass spectrometry techniques in order to gain a complete understanding of a complex polymer mixture.
Collapse
Affiliation(s)
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA; (A.H.M.); (M.T.)
| | - Brennan J. Curole
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Scott M. Grayson
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA; (A.H.M.); (M.T.)
| | - Chrys Wesdemiotis
- Department of Chemistry, University of Akron, Akron, OH 44325, USA;
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA; (A.H.M.); (M.T.)
| |
Collapse
|
4
|
Hwang J, Zhao Q, Ahmed M, Yakisan AC, Espenship MF, Laskin J, Savoie BM, Mei J. Reductive Doping Inhibits the Formation of Isomerization-Derived Structural Defects in N-doped Poly(benzodifurandione) (n-PBDF). Angew Chem Int Ed Engl 2024; 63:e202401465. [PMID: 38346013 DOI: 10.1002/anie.202401465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 03/28/2024]
Abstract
Recently, solution-processable n-doped poly(benzodifurandione) (n-PBDF) has been made through in-situ oxidative polymerization and reductive doping, which exhibited exceptionally high electrical conductivities and optical transparency. The discovery of n-PBDF is considered a breakthrough in the field of organic semiconductors. In the initial report, the possibility of structural defect formation in n-PBDF was proposed, based on the observation of structural isomerization from (E)-2H,2'H-[3,3'-bibenzofuranylidene]-2,2'-dione (isoxindigo) to chromeno[4,3-c]chromene-5,11-dione (dibenzonaphthyrone) in the dimer model reactions. In this study, we present clear evidence that structural isomerization is inhibited during polymerization. We reveal that the dimer (BFD1) and the trimer (BFD2) can be reductively doped by several mechanisms, including hydride transfer, forming charge transfer complexes (CTC) or undergoing an integer charge transfer (ICT) with reactants available during polymerization. Once the hydride transfer adducts, the CTC, or the ICT product forms, structural isomerization can be effectively prevented even at elevated temperatures. Our findings provide a mechanistic understanding of why isomerization-derived structural defects are absent in n-PBDF backbone. It lays a solid foundation for the future development of n-PBDF as a benchmark polymer for organic electronics and beyond.
Collapse
Affiliation(s)
- Jinhyo Hwang
- Department of Chemistry, Purdue University, 47907, West Lafayette, IN, USA
| | - Qiyuan Zhao
- Davidson School of Chemical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Mustafa Ahmed
- Department of Chemistry, Purdue University, 47907, West Lafayette, IN, USA
| | | | | | - Julia Laskin
- Department of Chemistry, Purdue University, 47907, West Lafayette, IN, USA
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, 47907, West Lafayette, IN, USA
| |
Collapse
|
5
|
Ikeda T, Kotani M. Thin-section- and matrix-free mass spectrometry imaging: Reproducible sample transfer using novel platinum-coated porous plate formed of glass beads. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9697. [PMID: 38356087 DOI: 10.1002/rcm.9697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) typically requires sample preparation such as sectioning and spraying of the matrix. Sample transfer using a Pt-coated porous plate formed of glass beads simplifies preparation and enables reproducible MSI measurements. METHODS The surface of a sintered-glass-bead porous plate was coated with Pt on one side of the plate. Polymer additives and the cross-section of a strawberry were chosen as the sample and transferred to the Pt-coated surface of the plate. This process was completely thin-section- and matrix-free. The prepared plates were analyzed using a commercial MALDI time-of-flight instrument. RESULTS Several constituents of the polymer additives (Irgafos 168 and Irganox 1010) and strawberry metabolites (hexose, citric acid, and sucrose) were detected without organic matrices. These ion images were obtained with a special distribution of the retained constituents. Duplicate prepared plates using the same strawberry cross-section reproduced the ion images. CONCLUSIONS A sample transfer process using a Pt-coated porous plate formed of glass beads was demonstrated as an alternative preparation method for MSI. This process has the potential to simplify MSI preparation and achieve easily reproducible MSI measurements.
Collapse
Affiliation(s)
- Takamasa Ikeda
- Hamamatsu Photonics KK, Iwata, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|
6
|
Maeno Y, Ohtani H, Kitagawa S, Iiguni Y, Yoshimi T, Nakamura T, Yamaguchi T. Characterization of balsam sulfide via pyrolysis-gas chromatography-mass spectrometry/sulfur chemiluminescence detection and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ANAL SCI 2024; 40:133-139. [PMID: 37833551 DOI: 10.1007/s44211-023-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Balsam sulfide, produced by the reaction of turpentine/rosin and sulfur, has been used as one of the raw materials of liquid gold to decorate ceramics and tableware with thin gold film for more than 100 years. The characterization of balsam sulfide is still insufficient because of its compositional complexity. In this study, balsam sulfide was characterized using pyrolysis-gas chromatography (Py-GC)-mass spectrometry (MS) and Py-GC with sulfur chemiluminescence detection (SCD) as well as matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOFMS). Py-GC-MS/SCD analyses of balsam sulfide and its model samples revealed that the low molecular weight reaction products were mainly composed of compounds of one α-pinene unit reacted with 1-3 sulfur atoms. In the analysis of the high molecular weight components by MALDI-TOFMS, the products of two or three α-pinene units crosslinked by sulfur atoms were observed. It was found that dehydrogenation reaction proceeded gradually with the increase in the reaction time.
Collapse
Affiliation(s)
- Yoshihide Maeno
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
- Noritake Co., Ltd., 300 Higashiyama, Miyoshi, Aichi, 470-0293, Japan
| | - Hajime Ohtani
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Shinya Kitagawa
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Yoshinori Iiguni
- Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takamasa Yoshimi
- Noritake Co., Ltd., 300 Higashiyama, Miyoshi, Aichi, 470-0293, Japan
| | - Taisuke Nakamura
- Noritake Co., Ltd., 300 Higashiyama, Miyoshi, Aichi, 470-0293, Japan
| | | |
Collapse
|
7
|
Ozeki Y, Kitagawa S, Ohtani H, Kondo Y, Shinada H. Characterization of styrene/methyl methacrylate/n-butyl acrylate terpolymer with Kendrick mass defect analysis in electrospray ionization-ion mobility spectrometry-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9455. [PMID: 36504460 DOI: 10.1002/rcm.9455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Synthesis of copolymer is one of the major approaches to establish sophisticated polymers. In copolymer analysis in mass spectrometry (MS), an increase in the number of monomer unit species and/or the polymer molecular weight results in complex mass spectra, and a method is required to solve this problem. METHODS In this study, electrospray ionization-ion mobility spectrometry-mass spectrometry was employed to analyze styrene/methyl methacrylate/n-butyl acrylate (St/MMA/nBA) terpolymers via Kendrick mass defect (KMD) analysis. An expanded Fourier transform-based noise reduction method for the copolymer was developed to improve the decrease in the signal/noise ratio observed in the higher m/z region. RESULTS Low-mass terpolymers (0.7 kDa) were identified by comparing the observed and theoretical results using a two-dimensional KMD plot. For the 1.5 kDa terpolymer, the signal overlap, of which KMD value was not matched with the theoretical one, was interpreted by the shift from the theoretical value in the KMD plot. For the 3.0 kDa terpolymers, the compositional candidates were determined by the prediction based on the compositional information of low-mass terpolymers previously analyzed. The 4.5 kDa terpolymer was interpreted after the expanded noise filtering. CONCLUSIONS The terpolymers, whose molecular weight was up to 4.5 kDa, were successfully characterized at a molecular level. The dependency of the St/MMA/nBA composition on molecular weight was observed; that is, the nBA content decreased with an increase in the molecular weight.
Collapse
Affiliation(s)
- Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Yosuke Kondo
- Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | - Hiroko Shinada
- Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| |
Collapse
|
8
|
Yang P, Gao W, Wasserman E. Identification and quantification of polymeric impurity in block copolymer by one-dimensional and two-dimensional liquid chromatography coupled to high-resolution mass spectrometry and evaporative light scattering detector. J Chromatogr A 2023; 1694:463909. [PMID: 36893507 DOI: 10.1016/j.chroma.2023.463909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Identifying and quantifying polymeric impurities in a polymeric material is critical for understanding material quality and performance, but it remains a challenge requiring developing new characterization methods. In this work, a comprehensive two-dimensional liquid chromatography method with simultaneous evaporative light scattering and high-resolution mass spectrometry detection was developed to separate and identify a polymeric impurity in alkyl alcohol-initiated polyethylene oxide/polybutylene oxide diblock copolymer. Size exclusion chromatography was implemented in the first dimension, and gradient reversed-phase liquid chromatography using a large-pore C4 column was applied in the second dimension using an active solvent modulation valve as the interface to minimize the polymer breakthrough. The two-dimensional separation significantly reduced the complexity of the mass spectra data compared to the one-dimensional separation, and the combination of retention time and mass spectral interpretation led to the successful identification of the water-initiated triblock copolymer impurity. This identification was confirmed by comparison with the synthesized triblock copolymer reference material. A one-dimensional LC method with evaporative light scattering detection was employed to quantify the triblock impurity. The impurity level in three samples made with the different processes was determined to be in the range of 9-18 wt% using the triblock reference material as the standard.
Collapse
Affiliation(s)
- Peilin Yang
- The Dow Chemical Company, Analytical Science, 230 Abner Jackson Parkway, Lake Jackson, TX 77566, USA.
| | - Wei Gao
- The Dow Chemical Company, Analytical Science, Collegeville, PA 19426, USA
| | - Eric Wasserman
- The Dow Chemical Company, Home and Personal Care, Collegeville, PA 19426, USA
| |
Collapse
|
9
|
Sun A'B, Li S, Kou X. Applications of MALDI-TOF-MS in structural characterization of synthetic polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:868-883. [PMID: 36745057 DOI: 10.1039/d2ay01583h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been utilized to rapidly and precisely characterize the detailed molecular structures of synthetic polymers. This review summarizes recent progress regarding MALDI-TOF-MS for the characterization of synthetic polymers with a focus on specific important experimental aspects including sample preparation, the choice of matrix, the effects of cationizing agents and solvents, data processing and various applications. Finally, the recent trend of MALDI-TOF-MS development is discussed. We hope this review will be instructive for graduate students and junior users who need to use MALDI-TOF-MS as a necessary characterization technique for new synthetic polymers.
Collapse
Affiliation(s)
- A 'Bin Sun
- Shandong Provincial Education Department, Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Siting Li
- Shandong Provincial Education Department, Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Shandong Provincial Education Department, Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Analyses and Testing Center, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
10
|
Mengerink Y, Philipsen H, Jordens J, Mengerink J, van der Hoeven R, Peters RAH. Sequence distribution determination by
SWAMP‐MS
a systematic way of analyzing multiple fragmented polymers with mass spectrometry. J Appl Polym Sci 2023. [DOI: 10.1002/app.53683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Ynze Mengerink
- ACC DSM Geleen The Netherlands
- Biomedical DSM Geleen The Netherlands
| | - Harry Philipsen
- ACC DSM Geleen The Netherlands
- Engineering Materials DSM Geleen The Netherlands
| | | | | | | | - Ron A. H. Peters
- Group Innovation Covestro Waalwijk The Netherlands
- Van't Hoff Institute for Molecular Science (HIMS) University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
11
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
12
|
Telaretti Leggieri MR, Kaldéus T, Johansson M, Malmström E. PDMAEMA from α to ω chain ends: tools for elucidating the structure of poly(2-(dimethylamino)ethyl methacrylate). Polym Chem 2023. [DOI: 10.1039/d2py01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An in-depth characterization of PDMAEMA prepared by ATRP was conducted, with a focus on end group analysis. This work discusses analytical tools providing essential information about the extent of control over DMAEMA polymerization and chain extension.
Collapse
Affiliation(s)
- Maria Rosella Telaretti Leggieri
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
| | - Tahani Kaldéus
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
| | - Mats Johansson
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- Division of Coating Technology, Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56–58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
13
|
Han A, Uppala VVS, Parisi D, George C, Dixon BJ, Ayala CD, Li X, Madsen LA, Colby RH. Determining the Molecular Weight of Polyelectrolytes Using the Rouse Scaling Theory for Salt-Free Semidilute Unentangled Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aijie Han
- Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Veera Venkata Shravan Uppala
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Daniele Parisi
- Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christy George
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J. Dixon
- Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Camila Denise Ayala
- Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiuli Li
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ralph H. Colby
- Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
14
|
A Flexible Tool to Correct Superimposed Mass Isotopologue Distributions in GC-APCI-MS Flux Experiments. Metabolites 2022; 12:metabo12050408. [PMID: 35629912 PMCID: PMC9144802 DOI: 10.3390/metabo12050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
The investigation of metabolic fluxes and metabolite distributions within cells by means of tracer molecules is a valuable tool to unravel the complexity of biological systems. Technological advances in mass spectrometry (MS) technology such as atmospheric pressure chemical ionization (APCI) coupled with high resolution (HR), not only allows for highly sensitive analyses but also broadens the usefulness of tracer-based experiments, as interesting signals can be annotated de novo when not yet present in a compound library. However, several effects in the APCI ion source, i.e., fragmentation and rearrangement, lead to superimposed mass isotopologue distributions (MID) within the mass spectra, which need to be corrected during data evaluation as they will impair enrichment calculation otherwise. Here, we present and evaluate a novel software tool to automatically perform such corrections. We discuss the different effects, explain the implemented algorithm, and show its application on several experimental datasets. This adjustable tool is available as an R package from CRAN.
Collapse
|
15
|
Satoh T, Takei M, Uematsu F. Development of a peak extraction method using the high-resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and machine learning techniques: Analysis of peak shapes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9235. [PMID: 34908200 DOI: 10.1002/rcm.9235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and Kendrick mass defect (KMD) analysis is a powerful tool for visualizing polymers in complex mass spectra. The identification of minor polymers by KMD analysis requires reduction of the broad noise peaks often observed in the low-mass region. METHODS A machine-learning model was created using pix2pixHD. It converts an original mass spectrum into a pseudo-mass spectrum that contains only the original peaks at m/z positions that the model judges as sharp single-component peaks. It reduces noise by selecting only the m/z and intensity values from the original spectrum's peak list that correspond to peaks in the pseudo-mass spectrum. RESULTS A machine-learning model was applied to a low-concentration polymer mass spectrum observed at m/z <2000. Extracting single-component peaks from the mass spectrum made the minor polymer series appear clearly in the KMD plot. The technique facilitated mass spectrometric imaging of the ultraviolet degradation of polyethylene terephthalate by plotting the polymers' spatial distributions. It could also distinguish between polymer series (before and after degradation) to identify their separate spatial distributions. CONCLUSIONS A machine-learning method for peak extraction from high-resolution MALDI-TOFMS was developed. Single-component peaks of the mass spectrum were distinguished from noise peaks by their peak shapes. Combining with KMD analysis facilitated the identification of minor polymer series in complex mass spectra.
Collapse
|
16
|
Omae M, Ozeki Y, Kitagawa S, Ohtani H. End group analysis of poly(methylmethacrylate)s using the most abundant peak in electrospray ionization-ion mobility spectrometry-tandem mass spectrometry and Fourier transform-based noise filtering. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9176. [PMID: 34355832 DOI: 10.1002/rcm.9176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE We recently developed the characterization method for synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry, in which the m/z value of the most abundant peak was used for characterization. However, the identification of the most abundant peak from the isotopic peaks was often difficult due to the background noise. METHODS Here, we employed a noise reduction method using Fourier transform (FT) filtering. In the power spectrum obtained using FT of the mass spectrum of the multiple charged analytes, the significant signals in the low-frequency region and at frequency z are observed for the analytes of z charges. When the signals in both regions were used for inversed FT (i.e., the signals in other regions were zero padded), a noise-filtered mass spectrum was obtained. RESULTS In the analysis of poly(methylmethacrylate)s weighing 13-17 kDa, mass spectra without noise filtering with relatively high-intensity noise (than signal) were complicated to identify the most abundant peak. On the contrary, the most abundant peak was clearly identified from the mass spectra after FT-based noise filtering, and end group composition was estimated successfully. CONCLUSIONS The proposed FT-based noise filtering for the mass spectrum is effective to characterize multiply charged synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mizuki Omae
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
17
|
Nitsche T, Sheil MM, Blinco JP, Barner-Kowollik C, Blanksby SJ. Electrospray Ionization-Mass Spectrometry of Synthetic Polymers Functionalized with Carboxylic Acid End-Groups. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2123-2134. [PMID: 34242006 DOI: 10.1021/jasms.1c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrospray ionization-mass spectrometry (ESI-MS) of low-charging synthetic polymers typically produces mass spectra exhibiting a bias toward the low-mass region of the polymer mass distribution. To examine the origin(s) of this ionization bias, narrow dispersity polystyrene polymers (Đ < 1.10) were prepared with ionizable carboxylic acid end-groups at one or both chain termini. The mixture complexity was further reduced through preparative size-exclusion chromatography (SEC), and these well-defined polymers were subjected to negative ion ESI-MS on a high-resolution instrument with a mass-to-charge (m/z) range up to 8000. Incorporation of one carboxylic acid end-group facilitated the generation of singly charged [M - H]- ions across the entire range of the mass analyzer. The comparison of mass spectra with size-exclusion chromatograms of the same polymer revealed an ionization bias toward lower masses, which was partially overcome through fractionation, modification of electrospray solvent, and increased declustering potentials. Incorporation of a second ionizable moiety within polymers of equivalent size facilitated multiply charged [M - 2H]2- ion formation with significantly improved ionization efficiency, spectral coverage of the molar mass distribution, and minimal cluster ion formation. These findings indicate that increased charging of polymers through multiple, well-defined sites of ionization can enhance volatilization and ionization of higher-mass polymers. Generation of higher-molecular-weight polymers in low-charge states-while possible under ideal conditions-competes ineffectively with either nonspecific, multiple-charging of similar sized polymers or ionization of the smaller polymers in the distribution.
Collapse
Affiliation(s)
- Tobias Nitsche
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Margaret M Sheil
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - James P Blinco
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
18
|
Niezen LE, Staal BBP, Lang C, Pirok BWJ, Schoenmakers PJ. Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. J Chromatogr A 2021; 1653:462429. [PMID: 34371364 DOI: 10.1016/j.chroma.2021.462429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Many materials used in a wide range of fields consist of polymers that feature great structural complexity. One particularly suitable technique for characterising these complex polymers, that often feature correlated distributions in e.g. microstructure, chemical composition, or molecular weight, is comprehensive two-dimensional liquid chromatography (LC × LC). For example, using a combination of reversed-phase LC and size-exclusion chromatography (RPLC × SEC). Efficient and sensitive LC × LC often requires focusing of the analytes between the two stages. For the analysis of large-molecule analytes, such as synthetic polymers, thermal modulation (or cold trapping) may be feasible. This approach is studied for the analysis of a styrene/butadiene "star" block copolymer. Trapping efficiency is evaluated qualitatively by monitoring the effluent of the trap with an evaporative light-scattering detector and quantitatively by determining the recovery of polystyrene standards from RPLC × SEC experiments. The recovery was dependant on the molecular weight and the temperatures of the first-dimension column and of the trap, and ranged from 46% for a molecular weight of 2.78 kDa to 86% (or up to 94.5% using an optimized set-up) for a molecular weight of 29.15 kDa, all at a first-dimension-column temperature of 80 °C and a trap temperature of 5 °C. Additionally a strategy to reduce the pressure pulse from the modulation has been developed, bringing it down from several tens of bars to only a few bar.
Collapse
Affiliation(s)
- Leon E Niezen
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland.
| | | | - Christiane Lang
- BASF SE, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Bob W J Pirok
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland
| | - Peter J Schoenmakers
- Analytical-Chemistry Group, Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherland; Centre for Analytical Sciences Amsterdam (CASA), the Netherland
| |
Collapse
|
19
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
20
|
Trhlíková O, Walterová Z, Janata M, Kanizsová L, Horský J. Compositional Distribution of Binary Living Copolymers and Their End Sequences. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Olga Trhlíková
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Zuzana Walterová
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Miroslav Janata
- Department of Controlled Polymer Synthesis Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Lívia Kanizsová
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jiří Horský
- Department of Analytical Chemistry Institute of Macromolecular Chemistry of the Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
21
|
Mairinger T, Loos M, Hollender J. Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. WATER RESEARCH 2021; 190:116745. [PMID: 33360422 DOI: 10.1016/j.watres.2020.116745] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/19/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Synthetic water-soluble polymeric materials are widely employed in e.g. cleaning detergents, personal care products, paints or textiles. Accordingly, these compounds reach sewage treatment plants and may enter receiving waters and the aquatic environment. Characteristically, these molecules show a polydisperse molecular weight distribution, comprising multiple repeating units, i.e. a homologous series (HS). Their analysis in environmentally relevant samples has received some attention over the last two decades, however, the majority of previous studies focused on surfactants and a molecular weight range <1000 Da. To capture a wider range on the mass versus polarity plane and extend towards less polar contaminants, a workflow was established using three different ionization strategies, namely conventional electrospray ionization, atmospheric pressure photoionization and atmospheric pressure chemical ionization. The data evaluation consisted of suspect screening of ca. 1200 suspect entries and a non-target screening of HS with pre-defined accurate mass differences using ca. 400 molecular formulas of repeating units of HS as input and repeating retention time shifts as HS indicator. To study the fate of these water-soluble polymeric substances in the wastewater treatment process, the different stages, i.e. after primary and secondary clarifier, and after ozonation followed by sand filtration, were sampled at a Swiss wastewater treatment plant. Remaining with two different ionization interfaces, ESI and APPI, in both polarities, a non-targeted screening approach led to a total number of 146 HS (each with a minimum number of 4 members), with a molecular mass of up to 1200 detected in the final effluent. Of the 146 HS, ca 15% could be associated with suspect hits and approximately 25% with transformation products of suspects. Tentative characterization or probable chemical structure could be assigned to almost half of the findings. In positive ionization mode various sugar derivatives with differing side chains, for negative mode structures with sulfonic acids, could be characterized. The number of detected HS decreased significantly over the three treatment stages. For HS detectable also in the biological and oxidative treatment stages, a change in HS distribution towards to lower mass range was often observed.
Collapse
Affiliation(s)
- Teresa Mairinger
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | | | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Wu C, Jung K, Ma Y, Liu W, Boyer C. Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths. Nat Commun 2021; 12:478. [PMID: 33473121 PMCID: PMC7817663 DOI: 10.1038/s41467-020-20640-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Photomediated-reversible-deactivation radical polymerisation (photo-RDRP) has a limited scope of available photocatalysts (PCs) due to multiple stringent requirements for PC properties, limiting options for performing efficient polymerisations under long wavelengths. Here we report an oxygen-mediated reductive quenching pathway (O-RQP) for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerisation. The highly efficient polymerisations that are performed in the presence of ambient air enable an expanded scope of available PCs covering a much-broadened absorption spectrum, where the oxygen tolerance of PET-RAFT allows high-quality polymerisation by preventing the existence of O2 in large amounts and efficient O-RQP is permitted due to its requirement for only catalytic amounts of O2. Initially, four different porphyrin dyes are investigated for their ability to catalyse PET-RAFT polymerisation via an oxidative quenching pathway (OQP), reductive quenching pathway (RQP) and O-RQP. Thermodynamic studies with the aid of (time-dependent) density functional theory calculations in combination with experimental studies, enable the identification of the thermodynamic constraints within the OQP, RQP and O-RQP frameworks. This knowledge enables the identification of four phthalocyanine photocatalysts, that were previously thought to be inert for PET-RAFT, to be successfully used for photopolymerisations via O-RQP. Well-controlled polymerisations displaying excellent livingness are performed at wavelengths in the red to near-infrared regions. The existence of this third pathway O-RQP provides an attractive pathway to further expand the scope of photocatalysts compatible with the PET-RAFT process and facile access to photopolymerisations under long wavelengths.
Collapse
Affiliation(s)
- Chenyu Wu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, 266237, China
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yongtao Ma
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, 266237, China.
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
23
|
Philipps K, Junkers T, Michels JJ. The block copolymer shuffle in size exclusion chromatography: the intrinsic problem with using elugrams to determine chain extension success. Polym Chem 2021. [DOI: 10.1039/d1py00210d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Is an increase in hydrodynamic volume always expected in block copolymer synthesis? Why SEC is sometimes not the last word.
Collapse
Affiliation(s)
- Kai Philipps
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | |
Collapse
|
24
|
Chagunda IC, Russell GT, McIndoe JS. The signal-to-noise issue in mass spectrometric analysis of polymers. Polym Chem 2021. [DOI: 10.1039/d1py00461a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mass spectrometric approaches to polymer analysis become increasingly ineffective as average molecular weight increases. This perspective explains these fundamental limits of MS for determining molecular weight distribution of high polymers.
Collapse
Affiliation(s)
| | - Gregory T. Russell
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8140
- New Zealand
| | - J. Scott McIndoe
- Department of Chemistry
- University of Victoria
- Canada
- School of Physical and Chemical Sciences
- University of Canterbury
| |
Collapse
|
25
|
Yoo HJ, Kim DH, Shin D, Oh Y, Lee S, Lee JY, Choi YJ, Lee SH, Lee KS, Kim Y, Cho K. Recent developments in pre-treatment and analytical techniques for synthetic polymers by MALDI-TOF mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5767-5800. [PMID: 33241791 DOI: 10.1039/d0ay01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A great deal of effort has been expended to develop accurate means of determining the properties of synthetic polymers using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Many studies have focused on the importance of sample pre-treatment to obtain accurate analysis results. This review discusses the history of synthetic polymer characterization and highlights several applications of MALDI-TOF MS that recognize the importance of pre-treatment technologies. The subject area is of significance in the field of analytical chemistry, especially for users of the MALDI technique. Since the 2000s, many such technologies have been developed that feature improved methods and conditions, including solvent-free systems. In addition, the recent diversification of matrix types and the development of carbon-based matrix materials are described herein together with the current status and future directions of MALDI-TOF MS hardware and software development. We provide a summary of processes used for obtaining the best analytical results with synthetic polymeric materials using MALDI-TOF MS.
Collapse
Affiliation(s)
- Hee-Jin Yoo
- Center for Research Equipment, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28119, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mahmoud Z, Bray F, Hubert-Roux M, Sablier M, Afonso C, Rolando C. Regio- and Stereo-Specific Chemical Depolymerization of High Molecular Weight Polybutadiene and Polyisoprene for Their Analysis by High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Comparison with Pyrolysis-Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry, Atmospheric Solid Analysis Probe, Direct Inlet Probe-Atmospheric Pressure Chemical Ionization Mass Spectrometry, and Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2020; 92:15736-15744. [PMID: 32897057 DOI: 10.1021/acs.analchem.0c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polybutadiene (PB) and polyisoprene (PI), the two most common polydienes (PD), are involved in a large number of materials and used in a wide variety of applications. The characterization of these polymers by mass spectrometry (MS) continues to be very challenging due to their high insolubility and the difficulty to ionize them. In this work, a cross-metathesis reaction was used to generate end-functionalized acetoxy ionizable oligomers for the structural deciphering of different commercial PB and PI samples. A cross-metathesis reaction was carried out between polymers and the Z-1,4-diacetoxy-2-butene as a chain transfer agent in dichloromethane using a Hoveyda-Grubbs second-generation catalyst. Well-defined acetoxy telechelic structures were obtained and analyzed by Fourier transform ion cyclotron resonance (FTICR) high-resolution MS. However, after depolymerization, low molar mass polyolefins contained some units with different configurations, suggesting an olefin isomerization reaction due to the decomposition of the catalyst. The addition of an electron-deficient reagent such as 2,6-dichloro-1,4-benzoquinone suppressed this isomerization in the case of both Z- and E-PB and PI. Ion mobility spectrometry-mass spectrometry (IMS-MS) and energy-resolved tandem mass spectrometry (ERMS) analyses confirmed a successful isomerization suppression. For comparing the results obtained by depolymerization with classical methods for polymer analysis, pyrolysis-comprehensive two-dimensional gas chromatography/mass spectrometry (Py-GC × GC-MS), atmospheric solid analysis probe (ASAP), and direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) analyses were performed on the same polymers. This strategy can be applied on a variety of synthetic and natural not yet characterized polymers.
Collapse
Affiliation(s)
- Ziad Mahmoud
- Université Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59 000 Lille, France
| | - Fabrice Bray
- Université Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59 000 Lille, France
| | - Marie Hubert-Roux
- Normandie Université, Université de Rouen, UMR 6014, CNRS, COBRA, Chimie organique et bioorganique, Réactivité et Analyse, 76821 Mont-Saint-Aignan Cedex, France
| | - Michel Sablier
- Muséum National d'Histoire Naturelle, USR 3224, CNRS, Centre de Recherche sur la Conservation, 36, rue Geoffroy Saint-Hilaire, 75005 Paris, France
| | - Carlos Afonso
- Normandie Université, Université de Rouen, UMR 6014, CNRS, COBRA, Chimie organique et bioorganique, Réactivité et Analyse, 76821 Mont-Saint-Aignan Cedex, France
| | - Christian Rolando
- Université Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59 000 Lille, France
| |
Collapse
|
27
|
Frerichs N, Joswig M, Fischer TL, Oevermann YS, Vana P. Elucidating the Topology and Physical Properties of Triblock Copolymers Using Ion Mobility Mass Spectrometry. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Niklas Frerichs
- Institut für Physikalische Chemie Georg‐August‐Universität Göttingen Tammanstraße 6 Göttingen 37077 Germany
| | - Moritz Joswig
- Institut für Physikalische Chemie Georg‐August‐Universität Göttingen Tammanstraße 6 Göttingen 37077 Germany
| | - Taija Lena Fischer
- Institut für Physikalische Chemie Georg‐August‐Universität Göttingen Tammanstraße 6 Göttingen 37077 Germany
| | - Yan Steffen Oevermann
- Institut für Physikalische Chemie Georg‐August‐Universität Göttingen Tammanstraße 6 Göttingen 37077 Germany
| | - Philipp Vana
- Institut für Physikalische Chemie Georg‐August‐Universität Göttingen Tammanstraße 6 Göttingen 37077 Germany
| |
Collapse
|
28
|
Jin H, Yang J, Farooq A. Determination of absolute photoionization cross-sections of some aromatic hydrocarbons. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8899. [PMID: 32677075 DOI: 10.1002/rcm.8899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Aromatic hydrocarbons play an important role in the formation and growth of polycyclic aromatic hydrocarbon (PAH) and soot particles. Measurements of their absolute photoionization cross-sections (PICSs), that benefit the quantitative investigation of mass spectrometry, are still lacking, however. METHODS PICSs of some aromatic hydrocarbons were measured with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). Nitric oxide and benzene were chosen as standard references for PICS calibration, since their photoionization cross-sections are well documented in the literature. Binary liquid mixtures of the investigated molecules and their specific solvents were used in the measurements. RESULTS The investigated aromatics include naphthalene, phenanthrene, 1-methylnaphthalene, indene, 2-/3-/4-methylphenylacetylene, 2-methylindene, diphenylacetylene, 1-/2-ethynylnaphthalene and acenaphthylene. Photo-induced fragments from the molecules were also observed with increasing photon energy. CONCLUSIONS Based on our measurements and literature data, PICSs of most aromatic molecules have very similar values beyond their ionization energies. However, molecules that contain the phenylacetylene structure have PICSs higher than other aromatics.
Collapse
Affiliation(s)
- Hanfeng Jin
- Physical Sciences and Engineering Division, Clean Combustion Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Aamir Farooq
- Physical Sciences and Engineering Division, Clean Combustion Research Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Baumann M, Wold C, Uliyanchenko E, Weidner S, Falkenhagen J. Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1820170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maria Baumann
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | | | | | - Steffen Weidner
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Jana Falkenhagen
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
30
|
Lipinski BM, Walker KL, Clayman NE, Morris LS, Jugovic TME, Roessler AG, Getzler YDYL, MacMillan SN, Zare RN, Zimmerman PM, Waymouth RM, Coates GW. Mechanistic Study of Isotactic Poly(propylene oxide) Synthesis using a Tethered Bimetallic Chromium Salen Catalyst. ACS Catal 2020; 10:8960-8967. [PMID: 34367720 DOI: 10.1021/acscatal.0c02135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Initial catalyst dormancy has been mitigated for the enantioselective polymerization of propylene oxide using a tethered bimetallic chromium(III) salen complex. A detailed mechanistic study provided insight into the species responsible for this induction period and guided efforts to remove them. High-resolution electrospray ionization-mass spectrometry and density functional theory computations revealed that a μ-hydroxide and a bridged 1,2-hydroxypropanolate complex are present during the induction period. Kinetic studies and additional computation indicated that the μ-hydroxide complex is a short-lived catalyst arrest state, where hydroxide dissociation from one metal allows for epoxide enchainment to form the 1,2-hydroxypropanolate arrest state. While investigating anion dependence on the induction period, it became apparent that catalyst activation was the main contributor for dormancy. Using a 1,2-diol or water as chain transfer agents (CTAs) led to longer induction periods as a result of increased 1,2-hydroxyalkanolate complex formation. With a minor catalyst modification, rigorous drying conditions, and avoiding 1,2-diols as CTAs, the induction period was essentially removed.
Collapse
Affiliation(s)
- Bryce M. Lipinski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Katherine L. Walker
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Naomi E. Clayman
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Lilliana S. Morris
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Timothy M. E. Jugovic
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Allison G. Roessler
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Yutan D. Y. L. Getzler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
31
|
Ishitsuka K, Kakiuchi T, Sato H, Fouquet TNJ. An arsenal of tools based on Kendrick mass defects to process congested electrospray ionization high-resolution mass spectra of polymers with multiple charging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8584. [PMID: 31517411 DOI: 10.1002/rcm.8584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Electrospray ionization (ESI) favors the multiple charging of high molecular weight polymer samples and allows their high-resolution mass analysis in the low-mass range. It also induces the detection of numerous ion series at different charge states with different adducts complicating the interpretation of the mass spectrum which should be facilitated by an appropriate data processing. METHODS An arsenal of tools based on the Kendrick mass defect (KMD) is proposed to process congested ESI high-resolution mass spectra of poly(propylene oxide) (PPO) samples. The combination of regular, charge-dependent, and resolution-enhanced KMD plots in addition to a "remainders" plot and a new three-dimensional plot offers unrivaled capabilities of filtering for any minor series among thousands of points. The sequential data processing is conducted using Kendo, a spreadsheet developed in-house for an advanced KMD analysis. RESULTS The charge-state distribution is easily evaluated by counting the parallel lines in a regular KMD plot. A charge-dependent resolution-enhanced KMD plot instantly reveals the variation of adducted ions at a given charge state, helping the user to choose the best analytical conditions. Ion series at different charge states from PPO oligomers carrying different end-groups are also efficiently extracted using several combinations of KMD and remainders plots and assigned using a new simulator tool. CONCLUSIONS The innovative combination of existing and new KMD-related plots, selection tools, and simulator all combined in a single spreadsheet dramatically facilitates the processing and interpretation of complex ESI mass spectral data. The presented tools may be extended to any other class of homo-, co- and terpolymers.
Collapse
Affiliation(s)
- Kei Ishitsuka
- Analytical Science Team, Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., Yokohama, Japan
| | - Toshifumi Kakiuchi
- Analytical Science Team, Common Base Technology Division, Innovative Technology Laboratories, AGC Inc., Yokohama, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Thierry N J Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
32
|
Satoh T, Nakamura S, Fouquet T, Sato H, Ueda Y. A mass spectrometry imaging method for visualizing synthetic polymers by using average molecular weight and dispersity as indices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8653. [PMID: 31721332 DOI: 10.1002/rcm.8653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometric imaging (MSI) is considered to be a powerful tool for visualizing the spatial distribution of synthetic polymers. However, a conventional method extracting an image of a specific m/z value is not suitable for polymers, which have a mass distribution. It is necessary to develop the visualization method to show the spatial distribution of entire polymer series. METHODS The mass peaks included in polymer series were specified from the average mass spectrum of the entire MSI measurement region by using Kendrick mass defect analysis. The images of those mass peaks were extracted and the number average molecular weight (Mn ), the weight average molecular weight (Mw ) and dispersity (Đ) were calculated for each pixel. Finally, the spatial distribution of the polymer series was summarized to images using Mn , Mw and Đ as indices. RESULTS The effects of the methods were investigated by (i) polymers with different mass distributions and (ii) polymers with different repeat units and end-groups. In both cases, the spatial distribution of specific polymer series including several dozens to hundreds of mass peaks was summarized into three images related to Mn , Mw and Đ, which are familiar indices in polymer analysis. The results are able to provide an overview of the spatial variation of each polymer more intuitively. CONCLUSIONS The visualization of Mn , Mw and Đ will help provide an overview of the spatial distribution of polymer series combined with ion intensity distribution made by conventional methods. It can be also applied to other mass spectrometric imaging methods such as desorption electrospray ionization (DESI) or time-of-flight secondary ion mass spectrometry (TOF-SIMS).
Collapse
Affiliation(s)
| | - Sayaka Nakamura
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Thierry Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | | |
Collapse
|
33
|
Charles L, Chendo C, Poyer S. Ion mobility spectrometry - Mass spectrometry coupling for synthetic polymers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8624. [PMID: 31658387 DOI: 10.1002/rcm.8624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high-performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post-ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas-phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS-MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| | - Christophe Chendo
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| | - Salomé Poyer
- Aix Marseille Univ, CNRS, ICR, Institut de Chimie Radicalaire, 13397, Marseille Cedex 20, France
| |
Collapse
|
34
|
Gies AP, Hefner RE, Rau NJ, Mukhopadhyay S, Reyes JCP, Herceg E. Characterization of microstructures and reaction mechanisms of Tröger's base polymers of intrinsic microporosity. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8713. [PMID: 31887235 DOI: 10.1002/rcm.8713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Tröger's base polymers of intrinsic microporosity (PIMs) are receiving increasing attention for applications such as polymer molecular sieve membranes. Development of novel membrane materials requires microstructure analysis in order to overcome processing and applications challenges. This study aims to address these challenges and overcome some of the solubility/aggregation issues that hinder the analysis of these materials. METHODS A combination of matrix-assisted laser desorption/ionization mass spectrometry and collision-induced dissociation was used to examine the reaction products of unfunctionalized Tröger's base PIMs. RESULTS Enhanced data mining, using ultrahigh-resolution mass spectrometry and statistical analysis, yielded a wealth of information on the molecular mass, chemical connectivity, and end groups of species generated during synthesis. Modifications of interest include N-methyl, N-methanimine, N-formyl, and N-methylol end-capping moieties, as well as incomplete backbone methanodiazocine rings with missing bridging methylene linkages. Most importantly, a general fragmentation mechanism, supported by computational modeling, was developed to assist in the rapid identification of main-chain and end-group modifications in Tröger's base PIMs. CONCLUSIONS Unfunctionalized Tröger's base polymers were selected as a model system, to thoroughly study their end-group modification chemistry. This model system could then be used to gain insights into complex hydroxy-functional PIM materials.
Collapse
Affiliation(s)
- Anthony P Gies
- Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA
| | - Robert E Hefner
- Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA
| | - Nathan J Rau
- Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA
| | - Sukrit Mukhopadhyay
- Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA
| | - Jeremy Chris P Reyes
- Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA
| | - Eldad Herceg
- Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA
| |
Collapse
|
35
|
Inutan ED, Meher AK, Karki S, Fischer JL, Imperial LF, Foley CD, Jarois DR, El-Baba TJ, Lutomski CA, Trimpin S. New mass spectrometry concepts for characterization of synthetic polymers and additives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8768. [PMID: 32107802 DOI: 10.1002/rcm.8768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE New ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives. METHODS Different mass spectrometers (Thermo Orbitrap (Q-)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub-atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum). RESULTS Astonishingly, using nothing more than a small molecule matrix compound (e.g., 2-methyl-2-nitropropane-1,3-diol or 3-nitrobenzonitrile) and a salt (e.g., mono- or divalent cation(s)), such samples upon exposure to sub-atmospheric pressure transfer nonvolatile polymers and nonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototype vacuum matrix-assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum. CONCLUSIONS Direct ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high-resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high-performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial- and temporal-resolution measurements are within reach if sensitivity is addressed for decreasing sample-size measurements.
Collapse
Affiliation(s)
- Ellen D Inutan
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Dean R Jarois
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- MS™, LLC, Newark, DE, USA
| |
Collapse
|
36
|
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: What can we learn from charge detection mass spectrometry? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8539. [PMID: 31353622 DOI: 10.1002/rcm.8539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS-based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single-molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra-high molar mass and polymeric nanomaterials will be provided.
Collapse
Affiliation(s)
- Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, F-69622, Lyon, France
| |
Collapse
|
37
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
38
|
Fouquet TNJ, Cody RB, Nakamura S, Sato H, Ohmura T, Kotani M, Naito Y. Rapid Fingerprinting of High-Molecular-Weight Polymers by Laser Desorption-Ionization Using Through-Hole Alumina Membrane High-Resolution Mass Spectrometry. Anal Chem 2020; 92:7399-7403. [DOI: 10.1021/acs.analchem.0c01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thierry N. J. Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Robert B. Cody
- JEOL USA, Inc., 11 Dearborn Road, Peabody, Massachusetts 01960, United States
| | - Sayaka Nakamura
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takayuki Ohmura
- Hamamatsu Photonics K. K., 314-5 Shimokanzo, Iwata, Shizuoka 438-0193, Japan
| | - Masahiro Kotani
- Hamamatsu Photonics K. K., 314-5 Shimokanzo, Iwata, Shizuoka 438-0193, Japan
| | - Yasuhide Naito
- The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
| |
Collapse
|
39
|
De Bruycker K, Welle A, Hirth S, Blanksby SJ, Barner-Kowollik C. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 2020; 4:257-268. [PMID: 37127980 DOI: 10.1038/s41570-020-0168-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.
Collapse
|
40
|
Dahlhauser SD, Escamilla PR, VandeWalle AN, York JT, Rapagnani RM, Shei JS, Glass SA, Coronado JN, Moor SR, Saunders DP, Anslyn EV. Sequencing of Sequence-Defined Oligourethanes via Controlled Self-Immolation. J Am Chem Soc 2020; 142:2744-2749. [PMID: 31986251 DOI: 10.1021/jacs.9b12818] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence-defined polymers show promise for biomimetics, self-assembly, catalysis, and information storage, wherein the primary structure begets complex chemical processes. Here we report the solution-phase and the high-yielding solid-phase syntheses of discrete oligourethanes and methods for their self-immolative sequencing, resulting in rapid and robust characterization of this class of oligomers and polymers, without the use of MS/MS. Crucial to the sequencing is the inherent reactivity of the terminal alcohol to "unzip" the oligomers, in a controlled and iterative fashion, releasing each monomer as a 2-oxazolidinone. By monitoring the self-immolation reaction via LC/MS, an applied algorithm rapidly produces the sequence of the oligourethane. Not only does this process provide characterization of structurally complex molecules, it works as a reader of molecular information.
Collapse
Affiliation(s)
- Samuel D Dahlhauser
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - P Rogelio Escamilla
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Abigail N VandeWalle
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jordan T York
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Rachel M Rapagnani
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jasper S Shei
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Samuel A Glass
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jaime N Coronado
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Sarah R Moor
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Douglas P Saunders
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eric V Anslyn
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
41
|
Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. DNA storage: research landscape and future prospects. Natl Sci Rev 2020; 7:1092-1107. [PMID: 34692128 PMCID: PMC8288837 DOI: 10.1093/nsr/nwaa007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
The global demand for data storage is currently outpacing the world's storage capabilities. DNA, the carrier of natural genetic information, offers a stable, resource- and energy-efficient and sustainable data storage solution. In this review, we summarize the fundamental theory, research history, and technical challenges of DNA storage. From a quantitative perspective, we evaluate the prospect of DNA, and organic polymers in general, as a novel class of data storage medium.
Collapse
Affiliation(s)
- Yiming Dong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fajia Sun
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qi Ouyang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Long Qian
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Fouquet TNJ. The Kendrick analysis for polymer mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:933-947. [PMID: 31758605 DOI: 10.1002/jms.4480] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/16/2023]
Abstract
The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signal is tedious whether performed manually or automatically. In contrast, the now 60-year-old Kendrick (mass defect) analysis, when adapted to polymer ions, produces visual two-dimensional maps with intuitive alignments of the repetitive patterns and favourable deconvolution of features overlaid in the one-dimensional mass spectrum. This special feature article reports on an up-to-date and theoretically sound use of Kendrick plots as a data processing tool. The approach requires no prior knowledge of the sample but offers promising dynamic capabilities for visualizing, filtering, and sometimes assigning congested mass spectra. Examples of applications of the approach to polymers are discussed throughout the text, but the same tools can be readily extended to other applications, including the analysis of polymers present as pollutants/contaminants, and to other analytes incorporating a repetitive moiety, for example, oils or lipids. In each of these instances, data processing can benefit from the application of an updated and interactive Kendrick analysis.
Collapse
Affiliation(s)
- Thierry N J Fouquet
- Research Institute for Sustainable Chemistry (RISC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
43
|
Scotti G, Nilsson SM, Matilainen VP, Haapala M, Boije af Gennäs G, Yli-Kauhaluoma J, Salminen A, Kotiaho T. Simple 3D printed stainless steel microreactors for online mass spectrometric analysis. Heliyon 2019; 5:e02002. [PMID: 31312730 PMCID: PMC6609794 DOI: 10.1016/j.heliyon.2019.e02002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 12/03/2022] Open
Abstract
A simple flow chemistry microreactor with an electrospray ionization tip for real time mass spectrometric reaction monitoring is introduced. The microreactor was fabricated by a laser-based additive manufacturing technique from acid-resistant stainless steel 316L. The functionality of the microreactor was investigated by using an inverse electron demand Diels-Alder and subsequent retro Diels-Alder reaction for testing. Challenges and problems encountered are discussed and improvements proposed. Adsorption of reagents to the rough stainless steel channel walls, short length of the reaction channel, and making a proper ESI tip present challenges, but the microreactor is potentially useful as a disposable device.
Collapse
Affiliation(s)
- Gianmario Scotti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland
| | - Sofia M.E. Nilsson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland
| | - Ville-Pekka Matilainen
- Laser Processing Research Group, Lappeenranta University of Technology, Tuotantokatu 2, FI-53850, Lappeenranta, Finland
| | - Markus Haapala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland
| | - Antti Salminen
- Laser Processing Research Group, Lappeenranta University of Technology, Tuotantokatu 2, FI-53850, Lappeenranta, Finland
| | - Tapio Kotiaho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FI-00014, University of Helsinki, Finland
- Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014, University of Helsinki, Finland
| |
Collapse
|
44
|
Issart A, Szpunar J. Potential of Liquid Extraction Surface Analysis Mass Spectrometry (LESA-MS) for the Characterization of Polymer-Based Materials. Polymers (Basel) 2019; 11:polym11050802. [PMID: 31060265 PMCID: PMC6572150 DOI: 10.3390/polym11050802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 12/23/2022] Open
Abstract
Liquid extraction surface analysis mass spectrometry (LESA -MS) is a direct analysis method suitable for the analysis of polymers. It is based on a fast and efficient extraction of polymer components, such as non-intentionally added species (NIAS), post-polymerization residues, or additives, and residues resulting from specific uses followed by their MS detection. In comparison with batch methods, it is a “green” method, using negligible volumes of organic solvents, and it is cost-effective, avoiding lengthy sample preparation procedures. It can be used for the detection of known molecules (targeted analysis), identification of unknown species (exploratory analysis requiring MS/MS) and semi-quantative analysis, if standards are available. The to-date applications of LESA-MS in the field of polymer science are reviewed and critically discussed taking into account the hands-on experience from the authors’ laboratory. Future possibilities of LESA applications are highlighted.
Collapse
Affiliation(s)
- Ambre Issart
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR 5254CNRS-UPPA, Hélioparc, 2, av. Pr. Angot, 64053 Pau, France.
| | - Joanna Szpunar
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR 5254CNRS-UPPA, Hélioparc, 2, av. Pr. Angot, 64053 Pau, France.
| |
Collapse
|
45
|
End Group Stability of Atom Transfer Radical Polymerization (ATRP)-Synthesized Poly( N-isopropylacrylamide): Perspectives for Diblock Copolymer Synthesis. Polymers (Basel) 2019; 11:polym11040678. [PMID: 31013945 PMCID: PMC6523552 DOI: 10.3390/polym11040678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Studies on the end group stability of poly(N-isopropylacrylamide) during the atom transfer radical polymerization (ATRP) process are presented. Polymerization of N-isopropylacrylamide was conducted in different solvents using a copper(I) chloride/Me6Tren catalyst complex. The influence of the ATRP solvent as well as the polymer purification process on the end group stability was investigated. For the first time, mass spectrometry results clearly underline the loss of ω end groups via an intramolecular cyclization reaction. Furthermore, an ATRP system based on a copper(I) bromide/Me6Tren catalyst complex was introduced, that showed not only good control over the polymerization process, but also provided the opportunity of block copolymerization of N-isopropylacrylamide with acrylates and other N-substituted acrylamides. The polymers were characterized using 1H-NMR spectroscopy and size exclusion chromatography. Polymer end groups were determined via ESI-TOF mass spectrometry enhanced by ion mobility separation (IMS).
Collapse
|
46
|
Nitsche T, Steinkoenig J, De Bruycker K, Bloesser FR, Blanksby SJ, Blinco JP, Barner-Kowollik C. Mapping the Compaction of Discrete Polymer Chains by Size Exclusion Chromatography Coupled to High-Resolution Mass Spectrometry. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Jan Steinkoenig
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Ghent, Belgium
| | | | | | | | | | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
47
|
Nakamura S, Fouquet T, Sato H. Molecular Characterization of High Molecular Weight Polyesters by Matrix-Assisted Laser Desorption/Ionization High-Resolution Time-of-Flight Mass Spectrometry Combined with On-plate Alkaline Degradation and Mass Defect Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:355-367. [PMID: 30411195 PMCID: PMC6345728 DOI: 10.1007/s13361-018-2092-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 05/28/2023]
Abstract
Matrix-assisted laser desorption ionization high-resolution time-of-flight mass spectrometry (MALDI HR TOF MS) is a powerful tool for the molecular characterization of industrial polymers. However, accurate mass determination and resolution of isobaric ions are possible for oligomer samples only typically below m/z 3000. To cut long polymer chains into oligomers suitable for high-resolution mass spectrometry, we propose a simple "on-plate" alkaline degradation of polyesters as a sample pretreatment technique prior to the MALDI TOF MS measurement. This pretreatment can be performed on a MALDI target using a small amount of sample (μg or less) and 1 μL of alkaline reagent by simple pipetting. Informative mass spectra in the oligomeric mass range are successfully recorded but complicated by the variation of end-groups and the copolymeric composition of the degradation products. Data processing is assisted by a series of advanced Kendrick mass defect (KMD) analyses recently proposed by the authors to plot visually understandable two-dimensional maps. On-plate degradation pretreatment, high-resolution MALDI TOF MS measurements, and advanced KMD analyses are innovatively combined for the compositional characterization of bacterial poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and industrial poly(ethylene terephthalate) samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sayaka Nakamura
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Thierry Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
48
|
Ozeki Y, Omae M, Kitagawa S, Ohtani H. Electrospray ionization-ion mobility spectrometry-high resolution tandem mass spectrometry with collision-induced charge stripping for the analysis of highly multiply charged intact polymers. Analyst 2019; 144:3428-3435. [PMID: 31012442 DOI: 10.1039/c8an02500b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers with large molecular weight are difficult to interpret using electrospray ionization-mass spectrometry (ESI-MS) due to the generation of various highly multiply charged analytes. Although ESI-ion mobility spectrometry (IMS)-MS is effective in reducing the complexity of the mass spectrum, this approach is insufficient for analyzing highly multiply charged polymers. In this study, we propose a method combining tandem mass spectrometry (quadrupole and high-resolution time-of-flight MS, QMS/TOFMS), IMS, and collision-induced charge stripping (CICS) for analyzing large intact polymers (∼40 kDa), which are highly multiply charged. The number of charges can be estimated from a Fourier transform power spectrum of a mass spectrum when the charge number is less than approximately 20. Interpretations of the spectra of poly(ethylene oxide)s (PEOs) weighing 20 kDa, poly(methyl methacrylate)s weighing 22 kDa, and methoxy-PEO-maleimide weighing 40 kDa were successfully demonstrated with isotope level and polymerization degree level separations, respectively. In the proposed method, a mixture can be analyzed for relatively small (a few kDa) and large (a few tens of kDa) polymers simultaneously without any sample pretreatment.
Collapse
Affiliation(s)
- Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | | | | | | |
Collapse
|
49
|
Engelke J, Brandt J, Barner-Kowollik C, Lederer A. Strengths and limitations of size exclusion chromatography for investigating single chain folding – current status and future perspectives. Polym Chem 2019. [DOI: 10.1039/c9py00336c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic approaches for Single-Chain Nanoparticles (SCNPs) developed rapidly during the last decade, opening a multitude of avenues for the design of functional macromolecular chains able to collapse into defined nanoparticles. However, the analytical evaluation of the SCNP formation process still requires critical improvements.
Collapse
Affiliation(s)
- Johanna Engelke
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Technische Universität Dresden
| | - Josef Brandt
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Albena Lederer
- Polymer Separation Group
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Technische Universität Dresden
| |
Collapse
|
50
|
Jovic K, Nitsche T, Lang C, Blinco JP, De Bruycker K, Barner-Kowollik C. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis – a tutorial review. Polym Chem 2019. [DOI: 10.1039/c9py00370c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we demonstrate how SEC-ESI-MS can be used to analyze complex polymers, a significant challenge in contemporary polymer chemistry.
Collapse
Affiliation(s)
- Kristina Jovic
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Tobias Nitsche
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kevin De Bruycker
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|