1
|
Raman Spectroscopy of Liquid-Based Cervical Smear Samples as a Triage to Stratify Women Who Are HPV-Positive on Screening. Cancers (Basel) 2021; 13:cancers13092008. [PMID: 33921939 PMCID: PMC8122405 DOI: 10.3390/cancers13092008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Persistent high-risk human papillomavirus (HPV) infection can lead to cervical precancer and cancer. Recently, HPV testing has been introduced for primary cervical screening, but the HPV DNA test cannot distinguish between transient and persistent HPV infection. Thus, there is an unmet clinical need to develop a new test to identify women with a high-risk persistent HPV infection. Raman spectra were recorded from cervical smear samples (n = 60) and, on the basis of HPV DNA and HPV mRNA test results, a classifier was developed to identify persistent HPV infection. A further blinded independent test set (n = 14) was used to validate the model, and sensitivity of 90% and specificity of 100% were achieved. Improved triage would allow women with a high-risk persistent HPV infection to be referred for immediate treatment, while women with a low-risk transient infection could avoid overtreatment. Abstract The role of persistent high-risk human papillomavirus (HPV) infection in the development of cervical precancer and cancer is now well accepted, and HPV testing has recently been introduced for primary cervical screening. However, the low specificity of HPV DNA testing can result in large numbers of women with an HPV-positive result, and additional triage approaches are needed to avoid over-referral to colposcopy and overtreatment. The aim of this study was to assess Raman spectroscopy as a potential triage test to discriminate between transient and persistent HPV infection. HPV DNA status and mRNA status were confirmed in ThinPrep® cervical samples (n = 60) using the Cobas 4800 and APTIMA HPV test, respectively. Raman spectra were recorded from single-cell nuclei and subjected to partial least squares discriminant analysis (PLSDA). In addition, the PLSDA classification model was validated using a blinded independent test set (n = 14). Sensitivity of 85% and specificity of 92% were achieved for the classification of transient and persistent HPV infection, and this increased to 90% sensitivity and 100% specificity when mean sample spectra were used instead of individual cellular spectra. This study showed that Raman spectroscopy has potential as a triage test for HPV-positive women to identify persistent HPV infection.
Collapse
|
2
|
Hackshaw KV, Miller JS, Aykas DP, Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules 2020; 25:E4725. [PMID: 33076318 PMCID: PMC7587585 DOI: 10.3390/molecules25204725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical "fingerprint" with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.
Collapse
Affiliation(s)
- Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St, Austin, TX 78712, USA
| | - Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Didem P. Aykas
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
| |
Collapse
|
3
|
Picot F, Daoust F, Sheehy G, Dallaire F, Chaikho L, Bégin T, Kadoury S, Leblond F. Data consistency and classification model transferability across biomedical Raman spectroscopy systems. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Fabien Picot
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - François Daoust
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Guillaume Sheehy
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Frédérick Dallaire
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Layal Chaikho
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
| | - Théophile Bégin
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
| | - Samuel Kadoury
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
| | - Frédéric Leblond
- Department of Engineering Physics Polytechnique Montréal, 2500 chemin de Polytechnique Montreal Quebec Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
- Institut du Cancer de Montréal Montreal Quebec Canada
| |
Collapse
|
4
|
Zheng C, Qing S, Wang J, Lü G, Li H, Lü X, Ma C, Tang J, Yue X. Diagnosis of cervical squamous cell carcinoma and cervical adenocarcinoma based on Raman spectroscopy and support vector machine. Photodiagnosis Photodyn Ther 2019; 27:156-161. [PMID: 31136828 DOI: 10.1016/j.pdpdt.2019.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
In this report, we collected the Raman spectrum of cervical adenocarcinoma and cervical squamous cell carcinoma tissues by a micro-Raman spectroscopy system. We analysed, compared and summarized the characteristics and differences of the normalized mean Raman spectra of the two tissues and pointed out the major differences in the biochemical composition between the two tissues. The PCA-SVM model that was used to distinguish the two types of cervical cancer tissues was established. The accuracy of the model in differentiating cervical adenocarcinoma from cervical squamous cell carcinoma was 93.125%. The results of this study indicate that Raman spectroscopy of cervical adenocarcinoma and cervical squamous cell carcinoma tissue in combination with SVM (support vector analysis) and PCA (principal component analysis) can be useful for the classification of cervical adenocarcinoma and cervical squamous cell carcinoma tissues and for the exploration of the differences in biochemical compositions between the two types of cervical tissue. This study lays a foundation to further study Raman spectroscopy as a clinical diagnostic method for cervical cancer.
Collapse
Affiliation(s)
- Chengxia Zheng
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; Changji Vocational and Technical College, Changji City 831100, Xinjiang Uygur Autonomous Region, China
| | - Song Qing
- Pathology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Jing Wang
- Gynecology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Hongyi Li
- Quality of Products Supervision and Inspection Institute, Urumqi 830011, Xinjiang, China
| | - Xiaoyi Lü
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Cailing Ma
- Gynecology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| | - Jun Tang
- Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China
| | - Xiaxia Yue
- Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Traynor D, Duraipandian S, Martin CM, O'Leary JJ, Lyng FM. Improved removal of blood contamination from ThinPrep cervical cytology samples for Raman spectroscopic analysis. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29729092 DOI: 10.1117/1.jbo.23.5.055001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
There is an unmet need for methods to help in the early detection of cervical precancer. Optical spectroscopy-based techniques, such as Raman spectroscopy, have shown great potential for diagnosis of different cancers, including cervical cancer. However, relatively few studies have been carried out on liquid-based cytology (LBC) pap test specimens and confounding factors, such as blood contamination, have been identified. Previous work reported a method to remove blood contamination before Raman spectroscopy by pretreatment of the slides with hydrogen peroxide. The aim of the present study was to extend this work to excessively bloody samples to see if these could be rendered suitable for Raman spectroscopy. LBC ThinPrep specimens were treated by adding hydrogen peroxide directly to the vial before slide preparation. Good quality Raman spectra were recorded from negative and high grade (HG) cytology samples with no blood contamination and with heavy blood contamination. Good classification between negative and HG cytology could be achieved for samples with no blood contamination (sensitivity 92%, specificity 93%) and heavy blood contamination (sensitivity 89%, specificity 88%) with poorer classification when samples were combined (sensitivity 82%, specificity 87%). This study demonstrates for the first time the improved potential of Raman spectroscopy for analysis of ThinPrep specimens regardless of blood contamination.
Collapse
Affiliation(s)
- Damien Traynor
- Dublin Institute of Technology (DIT), Focas Research Institute, DIT Centre for Radiation and Environ, Ireland
| | - Shiyamala Duraipandian
- Dublin Institute of Technology (DIT), Focas Research Institute, DIT Centre for Radiation and Environ, Ireland
| | - Cara M Martin
- Coombe Women and Infants University Hospital, Department of Pathology, Dublin, Ireland
| | - John J O'Leary
- Coombe Women and Infants University Hospital, Department of Pathology, Dublin, Ireland
| | - Fiona M Lyng
- Dublin Institute of Technology (DIT), Focas Research Institute, DIT Centre for Radiation and Environ, Ireland
| |
Collapse
|
6
|
Woolford L, Chen M, Dholakia K, Herrington CS. Towards automated cancer screening: Label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700244. [PMID: 29283510 PMCID: PMC6540043 DOI: 10.1002/jbio.201700244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 12/23/2017] [Indexed: 05/30/2023]
Abstract
The ability to provide quantitative, objective and automated pathological analysis would provide enormous benefits for national cancer screening programmes, in terms of both resource reduction and improved patient wellbeing. The move towards molecular pathology through spectroscopic methods shows great promise, but has been restricted by spectral quality, acquisition times and lack of direct clinical application. In this paper, we present the application of wavelength modulated Raman spectroscopy for the automated label- and fluorescence-free classification of fixed squamous epithelial cells in suspension, such as those produced during a cervical smear test. Direct comparison with standard Raman spectroscopy shows marked improvement of sensitivity and specificity when considering both human papillomavirus (sensitivity +12.0%, specificity +5.3%) and transformation status (sensitivity +10.3%, specificity +11.1%). Studies on the impact of intracellular sampling location and storage effects suggest that wavelength modulated Raman spectroscopy is sufficiently robust to be used in fixed cell classification, but requires further investigations of potential sources of molecular variation in order to improve current clinical tools.
Collapse
Affiliation(s)
- Lana Woolford
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Mingzhou Chen
- SUPA, School of Physics and AstronomyUniversity of St. AndrewsFifeUK
| | - Kishan Dholakia
- SUPA, School of Physics and AstronomyUniversity of St. AndrewsFifeUK
| | - C. Simon Herrington
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
7
|
Daniel A, Prakasarao A, Ganesan S. Near-infrared Raman spectroscopy for estimating biochemical changes associated with different pathological conditions of cervix. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:409-416. [PMID: 28954253 DOI: 10.1016/j.saa.2017.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/23/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.
Collapse
Affiliation(s)
- Amuthachelvi Daniel
- Department of Medical Physics, Anna University, Sardar Patel Road, Chennai 600025, India.
| | - Aruna Prakasarao
- Department of Medical Physics, Anna University, Sardar Patel Road, Chennai 600025, India
| | - Singaravelu Ganesan
- Department of Medical Physics, Anna University, Sardar Patel Road, Chennai 600025, India
| |
Collapse
|
8
|
de Carvalho LFDCES, Saito Nogueira M. New insights of Raman spectroscopy for oral clinical applications. Analyst 2018; 143:6037-6048. [DOI: 10.1039/c8an01363b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oral injuries are currently diagnosed by histopathological analysis of biopsy, which is an invasive procedure and does not give immediate results.
Collapse
|
9
|
Kim S, Lee SH, Min SY, Byun KM, Lee SY. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-6. [PMID: 29027408 DOI: 10.1117/1.jbo.22.10.105002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.
Collapse
Affiliation(s)
- Soogeun Kim
- Kyung Hee University, Department of Biomedical Engineering, Yongin, Republic of Korea
| | - Seung Ho Lee
- Kyung Hee University, Department of Medical Engineering, Seoul, Republic of Korea
| | - Sun Young Min
- Kyung Hee University School of Medicine, Department of Surgery, Seoul, Republic of Korea
| | - Kyung Min Byun
- Kyung Hee University, Department of Biomedical Engineering, Yongin, Republic of Korea
| | - Soo Yeol Lee
- Kyung Hee University, Department of Biomedical Engineering, Yongin, Republic of Korea
| |
Collapse
|
10
|
Kearney P, Traynor D, Bonnier F, Lyng FM, O'Leary JJ, Martin CM. Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29086546 DOI: 10.1117/1.jbo.22.10.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
It is widely accepted that cervical screening has significantly reduced the incidence of cervical cancer worldwide. The primary screening test for cervical cancer is the Papanicolaou (Pap) test, which has extremely variable specificity and sensitivity. There is an unmet clinical need for methods to aid clinicians in the early detection of cervical precancer. Raman spectroscopy is a label-free objective method that can provide a biochemical fingerprint of a given sample. Compared with studies on infrared spectroscopy, relatively few Raman spectroscopy studies have been carried out to date on cervical cytology. The aim of this study was to define the Raman spectral signatures of cervical exfoliated cells present in liquid-based cytology Pap test specimens and to compare the signature of high-grade dysplastic cells to each of the normal cell types. Raman spectra were recorded from single exfoliated cells and subjected to multivariate statistical analysis. The study demonstrated that Raman spectroscopy can identify biochemical signatures associated with the most common cell types seen in liquid-based cytology samples; superficial, intermediate, and parabasal cells. In addition, biochemical changes associated with high-grade dysplasia could be identified suggesting that Raman spectroscopy could be used to aid current cervical screening tests.
Collapse
Affiliation(s)
- Padraig Kearney
- Coombe Women and Infants University Hospital, Department of Pathology, Dublin, Ireland
- Trinity College, School of Medicine, Department of Histopathology and Morbid Anatomy, Dublin, Ireland
| | - Damien Traynor
- Focas Research Institute, Dublin Institute of Technology, DIT Centre for Radiation and Environmental, Ireland
- Dublin Institute of Technology, School of Physics, Dublin, Ireland
| | - Franck Bonnier
- Focas Research Institute, Dublin Institute of Technology, DIT Centre for Radiation and Environmental, Ireland
- Dublin Institute of Technology, School of Physics, Dublin, Ireland
- Université François-Rabelais de Tours, Faculty of Pharmacy, Tours, France
| | - Fiona M Lyng
- Focas Research Institute, Dublin Institute of Technology, DIT Centre for Radiation and Environmental, Ireland
- Dublin Institute of Technology, School of Physics, Dublin, Ireland
| | - John J O'Leary
- Coombe Women and Infants University Hospital, Department of Pathology, Dublin, Ireland
- Trinity College, School of Medicine, Department of Histopathology and Morbid Anatomy, Dublin, Ireland
| | - Cara M Martin
- Coombe Women and Infants University Hospital, Department of Pathology, Dublin, Ireland
- Trinity College, School of Medicine, Department of Histopathology and Morbid Anatomy, Dublin, Ireland
| |
Collapse
|
11
|
Kim S, Byun KM, Lee SY. Influence of water content on Raman spectroscopy characterization of skin sample. BIOMEDICAL OPTICS EXPRESS 2017; 8:1130-1138. [PMID: 28271008 PMCID: PMC5330544 DOI: 10.1364/boe.8.001130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/13/2017] [Accepted: 01/22/2017] [Indexed: 05/20/2023]
Abstract
We report that the Raman spectrum obtained from porcine skin varies significantly with the change of skin water content. At different water contents from 40 to 55 wt.%, the Raman spectra results using confocal Raman spectroscopy show that the spectral variation of porcine skin is highly affected by skin water content. Experimental data are consistent with the Monte Carlo calculation and it is proved that the intensity of the Raman spectrum depends on the angle distribution and collection efficiency of backscattered light from the sample surface for a varied water content. It is suggested that water content for a given skin sample should be controlled carefully to minimize errors and deviations in the Raman peak analyses.
Collapse
Affiliation(s)
- Soogeun Kim
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, South Korea; Targeted Precision Treatment Research Center, Kyung Hee University, Seoul 02447, South Korea
| | - Kyung Min Byun
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, South Korea; Targeted Precision Treatment Research Center, Kyung Hee University, Seoul 02447, South Korea;
| | - Soo Yeol Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, South Korea; Targeted Precision Treatment Research Center, Kyung Hee University, Seoul 02447, South Korea;
| |
Collapse
|
12
|
Abstract
Despite significant effort, cancer still remains a leading cause of death worldwide. In order to reduce its burden, the development and improvement of noninvasive strategies for early detection and diagnosis of cancer are urgently needed. Raman spectroscopy, an optical technique that relies on inelastic light scattering arising from molecular vibrations, is one such strategy, as it can noninvasively probe cancerous markers using only endogenous contrast. In this review, spontaneous, coherent and surface enhanced Raman spectroscopies and imaging, as well as the fundamental principles governing the successful use of these techniques, are discussed. Methods for spectral data analysis are also highlighted. Utilization of the discussed Raman techniques for the detection and diagnosis of cancer in vitro, ex vivo and in vivo is described. The review concludes with a discussion of the future directions of Raman technologies, with particular emphasis on their clinical translation.
Collapse
Affiliation(s)
- Lauren A Austin
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| | - Sam Osseiran
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA. and Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue E25-519, Cambridge, Massachusetts 02139, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
13
|
Abstract
Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering this information in real-time, non-invasively, and in an automated manner. This review presents the various instrumentation considerations relevant to the clinical implementation of Raman spectroscopy and reviews a subset of interesting applications that have successfully demonstrated the efficacy of this technique for clinical diagnostics and monitoring in large (n ≥ 50) in vivo human studies.
Collapse
Affiliation(s)
- Isaac Pence
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|
14
|
Liu Y, Zhu Y, Li Z. Application of Raman spectroscopy in Andrology: non-invasive analysis of tissue and single cell. Transl Androl Urol 2016; 3:125-33. [PMID: 26816760 PMCID: PMC4708293 DOI: 10.3978/j.issn.2223-4683.2014.03.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a fast, label-free and non-invasive detection method, Raman spectroscopy has been widely used for the interrogation of biological tissues, any alterations of molecular structure and chemical components during pathological processes would be identified and revealed via the differences on Raman spectrum. In clinics, the Raman spectroscopy has great potentials to provide real-time scanning of living tissues and fast diagnosis of diseases, just like discrimination of various carcinomas. A portable Raman spectroscopy which combined Raman system with an optical fiber probe has also been developed and proved to be able to provide intraoperative assistance in both human study and animal models. In Andrology, interests in Raman spectroscopy had just emerged. In this review, we summarized the progress about the utility of Raman spectroscopy in Andrology, the literatures were gathered from PubMed and Ovid database using MeSH terms associated with prostate, testis, seminal plasma and single sperm cell. We also highlighted the serious challenges as to the final clinical application of Raman technique. In conclusion, research in Raman spectroscopy may herald a new era for Andrology.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Urology, Ren Ji Hospital, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yong Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Zheng Li
- Department of Urology, Ren Ji Hospital, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
15
|
Liu YF, Di L, Osterberg EC, He L, Li PS, Li Z. Use of Raman spectroscopy to identify active spermatogenesis and Sertoli-cell-only tubules in mice. Andrologia 2016; 48:1086-1091. [PMID: 26804545 DOI: 10.1111/and.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 11/28/2022] Open
Abstract
Microdissection testicular sperm extraction (micro-TESE) has become the first line therapy to harvest spermatozoa for men with nonobstructive azoospermia. However, the pitfall is that the selection of seminiferous tubules depends on subjective assessment of the colour and size of tubules, which cannot guarantee successful retrieval of spermatozoa. The aim of this study was to determine whether Raman spectroscopy (RS) could distinguish tubules with spermatogenesis from Sertoli-cell-only (SCO) tubules, and potentially serve as a useful tool to improve sperm retrieval rates. Fourteen male adult mice were divided into two groups: SCO group received a single intraperitoneal injection of busulfan (40 mg per kg body weight), and the control group received a placebo dose of 0.9% saline solution. Mice were sacrificed after 4 weeks, and the testicular tissue was assessed by RS and then confirmed with histopathology. The results indicated that tubules with spermatogenesis had intensified Raman peaks at 748, 1124, 1309, 1446 and 1658 cm-1 compared to SCO tubules, except a decreased peak at 1582 cm-1 . RS was able to distinguish the two groups with a sensitivity of 91.2% and specificity of 82.9%. In conclusion, RS may serve as a useful diagnostic tool prior to sperm retrieval.
Collapse
Affiliation(s)
- Y F Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Di
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - E C Osterberg
- Center for Male Reproductive Medicine and Microsurgery, Department of Urology, Cornell Institute for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - L He
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - P S Li
- Center for Male Reproductive Medicine and Microsurgery, Department of Urology, Cornell Institute for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Z Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Daniel A, Prakasarao A, Dornadula K, Ganesan S. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:58-63. [PMID: 26189160 DOI: 10.1016/j.saa.2015.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique.
Collapse
Affiliation(s)
- Amuthachelvi Daniel
- Anna University, Department of Medical Physics, Sardar Patel Road, Chennai, India
| | - Aruna Prakasarao
- Anna University, Department of Medical Physics, Sardar Patel Road, Chennai, India.
| | | | - Singaravelu Ganesan
- Anna University, Department of Medical Physics, Sardar Patel Road, Chennai, India
| |
Collapse
|
17
|
Raman spectroscopy for screening and diagnosis of cervical cancer. Anal Bioanal Chem 2015; 407:8279-89. [PMID: 26277185 DOI: 10.1007/s00216-015-8946-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
Cervical cancer is the fourth most common cancer in women worldwide and mainly affects younger women. The mortality associated with cervical cancer can be reduced if the disease is detected at the pre-cancer stage. Current best-practice methods include cytopathology, HPV testing, and histopathology, but these methods are limited in terms of subjectivity, cost, and time. There is an unmet clinical need for new methods to aid clinicians in the early detection of cervical pre-cancer. These methods should be objective and rapid and require minimal sample preparation. Raman spectroscopy is a vibrational spectroscopic technique by which incident radiation is used to induce vibrations in the molecules of a sample and the scattered radiation may be used to characterise the sample in a rapid and non-destructive manner. Raman spectroscopy is sensitive to subtle biochemical changes occurring at the molecular level, enabling spectral variations corresponding to disease onset to be detected. Over the past 15 years, there have been numerous reports revealing the potential of Raman spectroscopy together with multivariate statistical analysis for the detection of a variety of cancers. This paper discusses the recent advances and challenges for cervical-cancer screening and diagnosis and offers some perspectives for the future.
Collapse
|
18
|
Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:561242. [PMID: 26180802 PMCID: PMC4477184 DOI: 10.1155/2015/561242] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 11/24/2022]
Abstract
Raman spectroscopy provides a unique biochemical fingerprint capable of identifying and characterizing the structure of molecules, cells, and tissues. In cervical cancer, it is acknowledged as a promising biochemical tool due to its ability to detect premalignancy and early malignancy stages. This review summarizes the key research in the area and the evidence compiled is very encouraging for ongoing and further research. In addition to the diagnostic potential, promising results for HPV detection and monitoring treatment response suggest more than just a diagnosis prospective. A greater body of evidence is however necessary before Raman spectroscopy is fully validated for clinical use and larger comprehensive studies are required to fully establish the role of Raman spectroscopy in the molecular diagnostics of cervical cancer.
Collapse
|
19
|
Devpura S, Barton KN, Brown SL, Palyvoda O, Kalkanis S, Naik VM, Siddiqui F, Naik R, Chetty IJ. Vision 20/20: the role of Raman spectroscopy in early stage cancer detection and feasibility for application in radiation therapy response assessment. Med Phys 2014; 41:050901. [PMID: 24784365 DOI: 10.1118/1.4870981] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Raman spectroscopy is an optical technique capable of identifying chemical constituents of a sample by their unique set of molecular vibrations. Research on the applicability of Raman spectroscopy in the differentiation of cancerous versus normal tissues has been ongoing for many years, and has yielded successful results in the context of prostate, breast, brain, skin, and head and neck cancers as well as pediatric tumors. Recently, much effort has been invested on developing noninvasive "Raman" probes to provide real-time diagnosis of potentially cancerous tumors. In this regard, it is feasible that the Raman technique might one day be used to provide rapid, minimally invasive real-time diagnosis of tumors in patients. Raman spectroscopy is relatively new to the field of radiation therapy. Recent work involving cell lines has shown that the Raman technique is able to identify proteins and other markers affected by radiation therapy. Although this work is preliminary, one could ask whether or not the Raman technique might be used to identify molecular markers that predict radiation response. This paper provides a brief review of Raman spectroscopic investigations in cancer detection, benefits and limitations of this method, advances in instrument development, and also preliminary studies related to the application of this technology in radiation therapy response assessment.
Collapse
Affiliation(s)
- Suneetha Devpura
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Kenneth N Barton
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Olena Palyvoda
- College of Engineering, Wayne State University, Detroit, Michigan 48202
| | - Steven Kalkanis
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202
| | - Vaman M Naik
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Ratna Naik
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202
| |
Collapse
|
20
|
Huang J, Liu S, Chen Z, Chen N, Pang F, Wang T. Distinguishing Cancerous Liver Cells Using Surface-Enhanced Raman Spectroscopy. Technol Cancer Res Treat 2014; 15:36-43. [DOI: 10.1177/1533034614561358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022] Open
Abstract
Raman spectroscopy has been widely used in biomedical research and clinical diagnostics. It possesses great potential for the analysis of biochemical processes in cell studies. In this article, the surface-enhanced Raman spectroscopy (SERS) of normal and cancerous liver cells incubated with SERS active substrates (gold nanoparticle) was measured using confocal Raman microspectroscopy technology. The chemical components of the cells were analyzed through statistical methods for the SERS spectrum. Both the relative intensity ratio and principal component analysis (PCA) were used for distinguishing the normal liver cells (QSG-7701) from the hepatoma cells (SMMC-7721). The relative intensity ratio of the Raman spectra peaks such as I937/I1209, I1276/I1308, I1342/I1375, and I1402/I1435 was set as the judge boundary, and the sensitivity and the specificity using PCA method were calculated. The results indicated that the surface-enhanced Raman spectrum could provide the chemical information for distinguishing the normal cells from the cancerous liver cells and demonstrated that SERS technology possessed the possible applied potential for the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| | - Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
- Institute of Biomedical Engineering, Shanghai University, Shanghai, PR China
| | - Zhenyi Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| | - Na Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| | - Fufei Pang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| | - Tingyun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, PR China
| |
Collapse
|
21
|
O'Brien CM, Vargis E, Paria BC, Bennett KA, Mahadevan-Jansen A, Reese J. Raman spectroscopy provides a noninvasive approach for determining biochemical composition of the pregnant cervix in vivo. Acta Paediatr 2014; 103:715-21. [PMID: 24628401 DOI: 10.1111/apa.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED The molecular changes that occur with cervical remodelling during pregnancy are not completely understood. This study reviews Raman spectroscopy, an optical technique for detecting changes in the pregnant cervix, and reports preliminary studies on cervical remodelling in mice that suggest that the technique provides advantages over other methods. CONCLUSION Raman spectroscopy is sensitive to biochemical changes in the pregnant cervix and has high potential as a tool for detecting premature cervical remodelling in pregnant women.
Collapse
Affiliation(s)
| | - Elizabeth Vargis
- Department of Biological Engineering; Utah State University; Logan UT USA
| | - Bibhash C. Paria
- Department of Pediatrics; Vanderbilt University Medical Center; Nashville TN USA
| | - Kelly A. Bennett
- Department of Obstetrics and Gynecology; Vanderbilt University Medical Center; Nashville TN USA
| | | | - Jeff Reese
- Department of Pediatrics; Vanderbilt University Medical Center; Nashville TN USA
| |
Collapse
|
22
|
Patil CA, Pence IJ, Lieber CA, Mahadevan-Jansen A. 1064 nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence. OPTICS LETTERS 2014; 39:303-6. [PMID: 24562132 DOI: 10.1364/ol.39.000303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Raman spectroscopy is an established technique for molecularly specific characterization of tissues. However, even with near-infrared (NIR) excitation, some tissues possess background autofluorescence, which can overwhelm Raman scattering. Here, we report collection of spectra from tissues with strong autofluorescence using a 1064 nm system with a high-throughput dispersive spectrometer and deep-cooled InGaAs array. Spectra collected at 1064 nm were compared with those collected at 785 nm in specimens from human breast, liver, and kidney. The results demonstrate superior performance at 1064 nm in the liver and kidney, where NIR autofluorescence is intense. The results indicate the feasibility of new biomedical applications for Raman spectroscopy at 1064 nm in tissues with strong autofluorescence.
Collapse
|
23
|
Giorgini E, Balercia P, Conti C, Ferraris P, Sabbatini S, Rubini C, Tosi G. Insights on diagnosis of oral cavity pathologies by infrared spectroscopy: A review. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Mallidis C, Sanchez V, Wistuba J, Wuebbeling F, Burger M, Fallnich C, Schlatt S. Raman microspectroscopy: shining a new light on reproductive medicine. Hum Reprod Update 2013; 20:403-14. [PMID: 24144514 DOI: 10.1093/humupd/dmt055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The last 20 years have seen an enormous upsurge in the number of publications reporting findings obtained by Raman spectroscopy, a non-invasive, non-destructive method which uses the inelastic scattering of light to provide a 'fingerprint' of the sample's chemical composition and constituents. Long neglected because of practical difficulties, the technique has been transformed by recent technological advances into a powerful analytical tool capable of opening avenues of investigation that were previously out of the reach of biomedical scientists. Beyond introducing the approach and describing its relative merits and weaknesses, the aim of this review is to provide a spur for discussion of what may become an invaluable tool for biomedical investigations. METHODS A comprehensive review of the literature was conducted searching PubMed and Ovid databases using numerous MeSH terms associated with reproductive medicine. Furthermore, the reference lists of all reported literature were explored. The searches were restricted to English language articles published in the last 50 years. RESULTS Beginning with simple characterizations of biologically and medically important substances, aided by increasing technological sophistication, the use of Raman spectroscopy in biomedicine has quickly expanded to the investigation of complex biochemical interactions, the assessment of organelles and now the evaluation of living cells and tissue. The first Raman investigations of reproductive organs were primarily oncological in nature; however, the past few years have seen an increase in the application of the technique for the assessment and evaluation of both male and female gametes. In particular, progress has been made in the characterization, identification and localization of sperm nuclear DNA damage. CONCLUSIONS The use of Raman spectroscopy has already provided many tantalizing glimpses into the potential that the technique has to answer many of the unresolved issues in investigative and therapeutic reproductive medicine. However, without stringent assessment and the clear representation of the methods' findings, their true meaning cannot be revealed nor should any conclusions be hastily derived. For the potential of Raman microspectroscopy to be truly realized, the dependability and reliability of the technique and its results can only be ascertained by multidisciplinary collaborations that undertake carefully conducted, controlled and analysed studies.
Collapse
Affiliation(s)
- Con Mallidis
- Centre of Reproductive Medicine and Andrology, University Clinic of Muenster, Muenster 48149, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Wade R, Spackman E, Corbett M, Walker S, Light K, Naik R, Sculpher M, Eastwood A. Adjunctive colposcopy technologies for examination of the uterine cervix--DySIS, LuViva Advanced Cervical Scan and Niris Imaging System: a systematic review and economic evaluation. Health Technol Assess 2013; 17:1-240, v-vi. [PMID: 23449335 PMCID: PMC4781255 DOI: 10.3310/hta17080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Women in England (aged 25-64 years) are invited for cervical screening every 3-5 years to assess for cervical intraepithelial neoplasia (CIN) or cancer. CIN is a term describing abnormal changes in the cells of the cervix, ranging from CIN1 to CIN3, which is precancerous. Colposcopy is used to visualise the cervix. Three adjunctive colposcopy technologies for examination of the cervix have been included in this assessment: Dynamic Spectral Imaging System (DySIS), the LuViva Advanced Cervical Scan and the Niris Imaging System. OBJECTIVE To determine the clinical effectiveness and cost-effectiveness of adjunctive colposcopy technologies for examination of the uterine cervix for patients referred for colposcopy through the NHS Cervical Screening Programme. DATA SOURCES Sixteen electronic databases [Allied and Complementary Medicine Database (AMED), BIOSIS Previews, Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Database of Abstracts of Reviews of Effects (DARE), EMBASE, Health Management Information Consortium (HMIC), Health Technology Assessment (HTA) database; Inspec, Inside Conferences, MEDLINE, NHS Economic Evaluation Database (NHS EED), PASCAL, Science Citation Index Expanded (SCIE) and Science Citation Index (SCI) - Conference Proceedings], and two clinical trial registries [ClinicalTrials.gov and Current Controlled Trials (CCT)] were searched to September-October 2011. REVIEW METHODS Studies comparing DySIS, LuViva or Niris with conventional colposcopy were sought; a narrative synthesis was undertaken. A decision-analytic model was developed, which measured outcomes in terms of quality-adjusted life-years (QALYs) and costs were evaluated from the perspective of the NHS and Personal Social Services with a time horizon of 50 years. RESULTS Six studies were included: two studies of DySIS, one study of LuViva and three studies of Niris. The DySIS studies were well reported and had a low risk of bias; they found higher sensitivity with DySIS (both the DySISmap alone and in combination with colposcopy) than colposcopy alone for identifying CIN2+ disease, although specificity was lower with DySIS. The studies of LuViva and Niris were poorly reported and had limitations, which indicated that their results were subject to a high risk of bias; the results of these studies cannot be considered reliable. The base-case cost-effectiveness analysis suggests that both DySIS treatment options are less costly and more effective than colposcopy alone in the overall weighted population; these results were robust to the ranges tested in the sensitivity analysis. DySISmap alone was more costly and more effective in several of the referral groups but the incremental cost-effectiveness ratio (ICER) was never higher than £1687 per QALY. DySIS plus colposcopy was less costly and more effective in all reasons for referral. Only indicative analyses were carried out on Niris and LuViva and no conclusions could be made on their cost-effectiveness. LIMITATIONS The assessment is limited by the available evidence on the new technologies, natural history of the disease area and current treatment patterns. CONCLUSIONS DySIS, particularly in combination with colposcopy, has higher sensitivity than colposcopy alone. There is no reliable evidence on the clinical effectiveness of LuViva and Niris. DySIS plus colposcopy appears to be less costly and more effective than both the DySISmap alone and colposcopy alone; these results were robust to the sensitivity analyses undertaken. Given the lack of reliable evidence on LuViva and Niris, no conclusions on their potential cost-effectiveness can be drawn. There is some uncertainty about how generalisable these findings will be to the population of women referred for colposcopy in the future, owing to the introduction of the human papillomavirus (HPV) triage test and uptake of the HPV vaccine.
Collapse
Affiliation(s)
- R Wade
- CRD/CHE Technology Assessment Group, Centre for Reviews and Dissemination, University of York, York, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Webb-Robertson BJM, Bailey VL, Fansler SJ, Wilkins MJ, Hess NJ. Spectral signatures for the classification of microbial species using Raman spectra. Anal Bioanal Chem 2012; 404:563-72. [DOI: 10.1007/s00216-012-6152-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
27
|
Near-infrared Raman Microspectroscopy Detects High-risk Human Papillomaviruses. Transl Oncol 2012; 5:172-9. [PMID: 22741036 DOI: 10.1593/tlo.12106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Detecting human papillomaviruses (HPVs) infection in cervical cells is an exceedingly important part of the clinical management of cervical dysplasia. Current guidelines in women's health outline the need for both the Papanicolaou test as well as high-risk HPV testing. Testing for HPV is expensive, is time-consuming, and requires experienced technicians. METHODS Two sets of near-infrared Raman microspectroscopy experiments were conducted using a Raman confocal microscope system. First, Raman spectra were acquired from four different cell culture lines, two positive for HPV (HeLa, SiHa), one negative for HPV, but malignant (C33A), and one normal, HPV-negative line (NHEK). The three malignant lines were all derived from cervical cells. Second, Raman spectra were acquired from deidentified patient samples that were previously tested for the presence of high-risk HPV. RESULTS The spectra from the cell culture lines and the patient samples contained many statistically significant differences. Using sparse multinomial logistic regression to classify the data led to classification accuracies of 89% to 97% for the cell culture samples and 98.5% for the patient samples. CONCLUSIONS Raman micro-spectroscopy can be used to detect HPV and differentiate among specific HPV strains. This technique may provide health providers with a new method for quickly testing cell samples for the presence of HPV.
Collapse
|
28
|
Detecting biochemical changes in the rodent cervix during pregnancy using Raman spectroscopy. Ann Biomed Eng 2012; 40:1814-24. [PMID: 22411265 DOI: 10.1007/s10439-012-0541-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
The goal of this research is to determine whether Raman spectroscopy (RS), an optical method that probes the vibrational modes of tissue components, can be used in vivo to study changes in the mouse cervix during pregnancy. If successful, such a tool could be used to detect cervical changes due to pregnancy, both normal and abnormal, in animal models and humans. For this study, Raman spectra were acquired before, during and after a 19-day mouse gestational period. In some cases, after Raman data was obtained, cervices were excised for structural testing and histological staining for collagen and smooth muscle. Various peaks of the Raman spectra, such as the areas corresponding to fatty acid content and collagen organization, changed as the cervix became softer in preparation for labor and delivery. These findings correspond to the increase in compliance of the tissue and the collagen disorganization visualized with the histological staining. The results of this study suggest that non-invasive RS can be used to study cervical changes during pregnancy, labor and delivery and can possibly predict preterm delivery before overt clinical manifestations, potentially lead to more effective preventive and therapeutic interventions.
Collapse
|
29
|
Vargis E, Byrd T, Logan Q, Khabele D, Mahadevan-Jansen A. Sensitivity of Raman spectroscopy to normal patient variability. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:117004. [PMID: 22112136 PMCID: PMC3221719 DOI: 10.1117/1.3646210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.
Collapse
Affiliation(s)
- Elizabeth Vargis
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
30
|
Kho KW, Fu CY, Dinish US, Olivo M. Clinical SERS: are we there yet? JOURNAL OF BIOPHOTONICS 2011; 4:667-684. [PMID: 21922673 DOI: 10.1002/jbio.201100047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/06/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
Surface Enhanced Raman Spectroscopy or SERS has witnessed many successes over the past 3 decades, owing particularly to its simplicity of use as well as its highly-multiplexing capability. This article provides an overview of SERS and its applicability in the field of bio-medicine. We will preview recent developments in SERS substrate designs, and the various sensing technologies that are based on the SERS phenomenon. An overview of the clinical applications of SERS is also included. Finally, we provide an opinion on the future trends of this unique spectroscopic technique.
Collapse
Affiliation(s)
- Kiang Wei Kho
- Bio-photonics Group, School of Physics, National University of Ireland, Galway, Ireland; National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | | | | | | |
Collapse
|