1
|
Zhou J, Cheng H, Cheng J, Wang L, Xu H. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300418. [PMID: 37421184 DOI: 10.1002/smtd.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Solar-driven photoelectrochemical (PEC) energy conversion holds great potential in converting solar energy into storable and transportable chemicals or fuels, providing a viable route toward a carbon-neutral society. Conjugated polymers are rapidly emerging as a new class of materials for PEC water splitting. They exhibit many intriguing properties including tunable electronic structures through molecular engineering, excellent light harvesting capability with high absorption coefficients, and facile fabrication of large-area thin films via solution processing. Recent advances have indicated that integrating rationally designed conjugated polymers with inorganic semiconductors is a promising strategy for fabricating efficient and stable hybrid photoelectrodes for high-efficiency PEC water splitting. This review introduces the history of developing conjugated polymers for PEC water splitting. Notable examples of utilizing conjugated polymers to broaden the light absorption range, improve stability, and enhance the charge separation efficiency of hybrid photoelectrodes are highlighted. Furthermore, key challenges and future research opportunities for further improvements are also presented. This review provides an up-to-date overview of fabricating stable and high-efficiency PEC devices by integrating conjugated polymers with state-of-the-art semiconductors and would have significant implications for the broad solar-to-chemical energy conversion research.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Marchini E, Caramori S, Carli S. Metal Complexes for Dye-Sensitized Photoelectrochemical Cells (DSPECs). Molecules 2024; 29:293. [PMID: 38257206 PMCID: PMC10818894 DOI: 10.3390/molecules29020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Since Mallouk's earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed.
Collapse
Affiliation(s)
- Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Decavoli C, Boldrini CL, Faroldi F, Baldini L, Sansone F, Ranaudo A, Greco C, Cosentino U, Moro G, Manfredi N, Abbotto A. Calix[4]arene‐Based Sensitizers for Host‐Guest Supramolecular Dyads for Solar Energy Conversion in Photoelectrochemical Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cristina Decavoli
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| | - Chiara L. Boldrini
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| | - Federica Faroldi
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Laura Baldini
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anna Ranaudo
- Department of Earth and Environmental Sciences University of Milano-Bicocca Piazza della Scienza 1 20126 Milano Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences University of Milano-Bicocca Piazza della Scienza 1 20126 Milano Italy
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences University of Milano-Bicocca Piazza della Scienza 1 20126 Milano Italy
| | - Giorgio Moro
- Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center – MIB-Solar University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy
| |
Collapse
|
5
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
6
|
Zhu Y, Liu G, Zhao R, Gao H, Li X, Sun L, Li F. Photoelectrochemical water oxidation improved by pyridine N-oxide as a mimic of tyrosine-Z in photosystem II. Chem Sci 2022; 13:4955-4961. [PMID: 35655895 PMCID: PMC9067620 DOI: 10.1039/d2sc00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Artificial photosynthesis provides a way to store solar energy in chemical bonds with water oxidation as a major challenge for creating highly efficient and robust photoanodes that mimic photosystem II. We report here an easily available pyridine N-oxide (PNO) derivative as an efficient electron transfer relay between an organic light absorber and molecular water oxidation catalyst on a nanoparticle TiO2 photoanode. Spectroscopic and kinetic studies revealed that the PNO/PNO+˙ couple closely mimics the redox behavior of the tyrosine/tyrosyl radical pair in PSII in improving light-driven charge separation via multi-step electron transfer. The integrated photoanode exhibited a 1 sun current density of 3 mA cm-2 in the presence of Na2SO3 and a highly stable photocurrent density of >0.5 mA cm-2 at 0.4 V vs. NHE over a period of 1 h for water oxidation at pH 7. The performance shown here is superior to those of previously reported organic dye-based photoanodes in terms of photocurrent and stability.
Collapse
Affiliation(s)
- Yong Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Guoquan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Ran Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Hua Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaona Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Stockholm 10044 Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University Hangzhou 310024 China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
7
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Li L, Yan H, Li F, Kong Q, Yuan C, Weng TC. Identification of intermediates of a molecular ruthenium catalyst for water oxidation using in situ electrochemical X-ray absorption spectroscopy. Phys Chem Chem Phys 2021; 23:23961-23966. [PMID: 34661215 DOI: 10.1039/d1cp03837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first study on a Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylic acid) catalyst in solution using a home-built electrochemical cell, in combination with an energy-dispersive X-ray absorption spectroscopy setup. The oxidation state and coordination number of the catalyst during electrocatalysis could be estimated, while avoiding radiation damage from the X-rays.
Collapse
Affiliation(s)
- Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Huacai Yan
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette Cedex BP 48 91192, France
| | - Fusheng Li
- State Key Lab of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| | - Qingyu Kong
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette Cedex BP 48 91192, France
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Rodrigues MPDS, Miguel VM, Germano LD, Córdoba de Torresi SI. Metal oxides as electrocatalysts for water splitting: On plasmon‐driven enhanced activity. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Vítor M. Miguel
- Departamento de Química Fundamental, Instituto de Química Universidade de São Paulo São Paulo Brazil
| | - Lucas D. Germano
- Departamento de Química Fundamental, Instituto de Química Universidade de São Paulo São Paulo Brazil
| | | |
Collapse
|
10
|
Whang DR. Immobilization of molecular catalysts for artificial photosynthesis. NANO CONVERGENCE 2020; 7:37. [PMID: 33252707 PMCID: PMC7704885 DOI: 10.1186/s40580-020-00248-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Artificial photosynthesis offers a way of producing fuels or high-value chemicals using a limitless energy source of sunlight and abundant resources such as water, CO2, and/or O2. Inspired by the strategies in natural photosynthesis, researchers have developed a number of homogeneous molecular systems for photocatalytic, photoelectrocatalytic, and electrocatalytic artificial photosynthesis. However, their photochemical instability in homogeneous solution are hurdles for scaled application in real life. Immobilization of molecular catalysts in solid supports support provides a fine blueprint to tackle this issue. This review highlights the recent developments in (i) techniques for immobilizing molecular catalysts in solid supports and (ii) catalytic water splitting, CO2 reduction, and O2 reduction with the support-immobilized molecular catalysts. Remaining challenges for molecular catalyst-based devices for artificial photosynthesis are discussed in the end of this review.
Collapse
Affiliation(s)
- Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, 34054, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Bruggeman DF, Bakker TMA, Mathew S, Reek JNH. Redox-Mediated Alcohol Oxidation Coupled to Hydrogen Gas Formation in a Dye-Sensitized Photosynthesis Cell. Chemistry 2020; 27:218-221. [PMID: 32902899 PMCID: PMC7839774 DOI: 10.1002/chem.202003306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Abstract
This work reports a dye-sensitized photoelectrochemical cell (DSPEC) that couples redox-mediated light-driven oxidative organic transformations to reductive hydrogen (H2 ) formation. The DSPEC photoanode consists of a mesoporous anatase TiO2 film on FTO (fluorine-doped tin oxide), sensitized with the thienopyrroledione-based dye AP11, while H2 was formed at a FTO-Pt cathode. Irradiation of the dye-sensitized photoanode transforms 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to the oxidized TEMPO (TEMPO+ ), which acts as a chemical oxidant for the conversion of benzyl alcohol. The TEMPO0/+ couple, previously used as redox mediator in DSSC, mediates efficient electron transfer from the organic substrate to the photo-oxidized dye. A DSPEC photoreactor was designed that allows in situ monitoring the reaction progress by infrared spectroscopy and gas chromatography. Sustained light-driven oxidation of benzyl alcohol to benzaldehyde within the DSPEC photoreactor, using of TEMPO as mediator, demonstrated the efficiency of the device, with a photocurrent of 0.4 mA cm-2 , approaching quantitative Faradaic efficiency and exhibiting excellent device stability.
Collapse
Affiliation(s)
- Didjay F Bruggeman
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| | - Tijmen M A Bakker
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Luo T, Huang J, Liu J. Application of Novel Calix[4]arene Metal-free Sensitizers in Dye-sensitized Photoelectrochemical Cells for Water Splitting. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0302-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Wang Y, Zhu Y, Sun L, Li F. Selective CO Production by Photoelectrochemical CO 2 Reduction in an Aqueous Solution with Cobalt-Based Molecular Redox Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41644-41648. [PMID: 32820886 DOI: 10.1021/acsami.0c14533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-driven CO2 reduction was performed in a two-electrode photoelectrochemical cell (PEC) composed of a Co4O4 cubane complex-modified BiVO4 photoanode and a cobalt phthalocyanine complex-modified carbon cloth (cc) cathode. The hybrid electrodes assembled by the simple physical absorption of hydrophobic molecular catalysts exhibit long-term stability in an aqueous solution. Under 1 sun AM 1.5 G illumination, simultaneous oxygen and CO evolution at an approximately 2:1 ratio were achieved in a CO2-saturated NaHCO3 aqueous solution with high faradic efficiency up to 87% for CO production. Control experiments revealed a crucial role of immobilized molecular catalysts in promoting the activity and selectivity for both half-reactions. A solar-to-CO conversion efficiency of 0.44% was realized at a cell potential of 0.8 V, which is the highest efficiency for CO2 to CO conversion in PEC devices based on noble-metal-free materials.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| |
Collapse
|
14
|
Ulusoy Ghobadi TG, Ghobadi A, Buyuktemiz M, Yildiz EA, Berna Yildiz D, Yaglioglu HG, Dede Y, Ozbay E, Karadas F. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Dilara Berna Yildiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Ekmel Ozbay
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
- Department of Physics Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
15
|
Ulusoy Ghobadi TG, Ghobadi A, Buyuktemiz M, Yildiz EA, Berna Yildiz D, Yaglioglu HG, Dede Y, Ozbay E, Karadas F. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angew Chem Int Ed Engl 2020; 59:4082-4090. [DOI: 10.1002/anie.201914743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Dilara Berna Yildiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Ekmel Ozbay
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
- Department of Physics Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
16
|
Liang X, Cao X, Sun W, Ding Y. Recent Progress in Visible Light Driven Water Oxidation Using Semiconductors Coupled with Molecular Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201901510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiangming Liang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
| | - Xiaohu Cao
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
| | - Wanjun Sun
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical EngineeringLanzhou University Tianshui South Road 222 Lanzhou 730000 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical PhysicsChinese Academy of Sciences Middle Tianshui Road 18 Lanzhou 730000 P. R. China
| |
Collapse
|
17
|
Pan L, Vlachopoulos N, Hagfeldt A. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2019; 12:4337-4352. [PMID: 31478349 DOI: 10.1002/cssc.201900849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/02/2019] [Indexed: 06/10/2023]
Abstract
Artificial photosynthesis promises to become a sustainable way to harvest solar energy and store it in chemical fuels by means of photoelectrochemical (PEC) cells. Although it is intriguing to shift the fossil-fuel-based economy to a renewable carbon-neutral one, which will alleviate environmental problems, there is still a long way to go before it rivals traditional energy sources. Existing solar water-splitting devices can be sorted into three categories: photovoltaic-powered electrolysis, PEC water splitting, and photocatalysis (PC). PEC and PC systems hold the potential to further reduce the cost of devices due to their simple structures in which photoabsorbers and catalysts are closely integrated. PC is expected to be the least expensive approach; however, additional costs and concerns are brought about by the subsequent explosive gas separation. At the heart of all devices, semiconductor photoabsorbers should be efficient, robust, and cheap to satisfy the strict requirements on the market. Therefore, this Review intends to give readers an overview on PEC water splitting, with an emphasis on oxide material-based devices, which hold the potential to support global-scale production in the future.
Collapse
Affiliation(s)
- Linfeng Pan
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Nick Vlachopoulos
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anders Hagfeldt
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Zhang L, Lin S. Effect of novel anchoring groups on the electronic and optical properties of water-splitting metal-free dye molecules: A first-principles investigation. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
20
|
Zhang B, Sun L. Ru-bda: Unique Molecular Water-Oxidation Catalysts with Distortion Induced Open Site and Negatively Charged Ligands. J Am Chem Soc 2019; 141:5565-5580. [PMID: 30889353 DOI: 10.1021/jacs.8b12862] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A water-oxidation catalyst with high intrinsic activity is the foundation for developing any type of water-splitting device. To celebrate its 10 years anniversary, in this Perspective we focus on the state-of-the-art molecular water-oxidation catalysts (MWOCs), the Ru-bda series (bda = 2,2'-bipyridine-6,6'-dicarboxylate), to offer strategies for the design and synthesis of more advanced MWOCs. The O-O bond formation mechanisms, derivatives, applications, and reasons behind the outstanding catalytic activities of Ru-bda catalysts are summarized and discussed. The excellent performance of the Ru-bda catalyst is owing to its unique structural features: the distortion induced 7-coordination and the carboxylate ligands with coordination flexibility, proton-transfer function as well as small steric hindrance. Inspired by the Ru-bda catalysts, we emphasize that the introduction of negatively charged groups, such as the carboxylate group, into ligands is an effective strategy to lower the onset potential of MWOCs. Moreover, distortion of the regular configuration of a transition metal complex by ligand design to generate a wide open site as the catalytic site for binding the substrate as an extra-coordination is proposed as a new concept for the design of efficient molecular catalysts. These inspirations can be expected to play a great role in not only water-oxidation catalysis but also other small molecule activation and conversion reactions involving artificial photosynthesis, such as CO2 reduction and N2 fixation reactions.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Licheng Sun
- Department of Chemistry , KTH Royal Institute of Technology , 10044 Stockholm , Sweden.,State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT) , 116024 Dalian , China
| |
Collapse
|
21
|
Matias TA, Rein FN, Rocha RC, Formiga ALB, Toma HE, Araki K. Effects of a strong π-accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts. Dalton Trans 2019; 48:3009-3017. [PMID: 30747931 DOI: 10.1039/c8dt04963g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significant differences were found in the proton-coupled redox chemistry and catalytic behavior of the binuclear [{Ru(H2O)(bpz)}2(tpy2ph)](PF6)4 complex [bpz = 2,2'-bipyrazine; tpy2ph = 1,3-bis(4'-2,2':6',2''-terpyridin-4-yl)benzene] as compared with the structurally analogous derivative with 2,2'-bipyridine (bpy) instead of bpz. The differences were assigned to the stronger π-accepting character of bpz relative to bpy as the ancillary ligand. The expectation of a positive shift for the Ru-centered redox potentials was confirmed for the lower oxidation state species, but that trend was reversed in the formation of the high-valence catalytic active species as shown by a negative shift of 0.14 V for the potential of the [RuIV/V[double bond, length as m-dash]O] process. Moreover, DFT calculations indicated a significant decrease of about 15% on the spin density and oxyl character of the [RuV[double bond, length as m-dash]O]3+ fragment. The significantly lower kcat(O2) for the bpz system was attributed to these combined electronic effects.
Collapse
Affiliation(s)
- Tiago A Matias
- Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
The Effect of Chloride Anions on Charge Transfer in Dye-Sensitized Photoanodes for Water Splitting. Biomimetics (Basel) 2019; 4:biomimetics4010005. [PMID: 31105191 PMCID: PMC6477621 DOI: 10.3390/biomimetics4010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 11/17/2022] Open
Abstract
The photoelectrochemical behavior of dye-sensitized photoelectrochemical cells based on a TiO2 layer sensitized with ruthenium components, including an absorber, ruthenium(II)bis(2,2'-bipyridine)([2,2'-bipyridine]-4,4'-diylbis(phosphonic acid)) dibromide (RuP), and a catalyst, ruthenium(II) tris(4-methylpyridine)(4-(4-(2,6-bis((l1-oxidanyl)carbonyl)pyridin-4-yl)phenyl) pyridine-2,6-dicarboxylic acid) (RuOEC), was investigated in the following water-based electrolyte configurations: KCl (pH ≈ 5), HCl (pH ≈ 3), ethylphoshonic acid (pH ≈ 3) with a different KCl concentration, and a standard phosphate buffer (pH ≈ 7). The rate of charge transfer on the photoanode's surface was found to increase in line with the increase in the concentration of chloride anions (Cl-) in the low pH electrolyte. This effect is discussed in the context of pH influence, ionic strength, and specific interaction, studied by cyclic voltammetry (CV) in dark conditions and upon illumination of the photoanodes. The correlations between photocurrent decay traces and CV studies were also observed.
Collapse
|
23
|
Abstract
Cobalt oxide nanopetals were grown on silicon electrodes by heat-treating metallic cobalt films deposited by DC magnetron sputtering. We show that cobalt oxide, with this peculiar nanostructure, is active towards the photo-electrochemical oxidation of water as well as of organic molecules, and that its electrochemical properties are directly linked to the structure of its surface. The formation of Co3O4 nanopetals, induced by oxidizing annealing at 300 °C, considerably improves the performance of the material with respect to simple cobalt oxide films. Photocurrent measurements and electrochemical impedance are used to explain the behavior of the different structures and to highlight their potential application in water remediation technologies.
Collapse
|
24
|
Yun S, Vlachopoulos N, Qurashi A, Ahmad S, Hagfeldt A. Dye sensitized photoelectrolysis cells. Chem Soc Rev 2019; 48:3705-3722. [DOI: 10.1039/c8cs00987b] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review from theory to practice discusses the principles and designs of dye-sensitized semiconductor photoelectrodes for water splitting and electrolysis reactions.
Collapse
Affiliation(s)
- Sining Yun
- Functional Materials Laboratory (FML)
- School of Materials Science and Engineering
- Xi’an University of Architecture and Technology
- Xi’an
- China
| | - Nick Vlachopoulos
- Laboratory of Photomolecular Science
- Institute of Chemical Sciences Engineering
- Ēcole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Ahsanulhaq Qurashi
- Center of Excellence in Nanotechnology
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Shahzada Ahmad
- Basque Center for Materials Applications and Nanostructures
- Martina Casiano
- UPV/EHU Science Park
- 48940 Leioa
- Spain
| | - Anders Hagfeldt
- Laboratory of Photomolecular Science
- Institute of Chemical Sciences Engineering
- Ēcole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
25
|
Yang T, Yin H, Gao LH, Wang KZ, Yan D. Recent advances in electrodes modified with ruthenium complexes for electrochemical and photoelectrochemical water oxidation. ADVANCES IN INORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.adioch.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Ulusoy Ghobadi TG, Akhuseyin Yildiz E, Buyuktemiz M, Sadigh Akbari S, Topkaya D, İsci Ü, Dede Y, Yaglioglu HG, Karadas F. A Noble‐Metal‐Free Heterogeneous Photosensitizer‐Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - Sina Sadigh Akbari
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Derya Topkaya
- Department of Chemistry Faculty of Sciences Dokuz Eylul University Tınaztepe Campus Izmir Turkey
| | - Ümit İsci
- Department of Chemistry Gebze Technical University 41400 Kocaeli Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
27
|
Ulusoy Ghobadi TG, Akhuseyin Yildiz E, Buyuktemiz M, Sadigh Akbari S, Topkaya D, İsci Ü, Dede Y, Yaglioglu HG, Karadas F. A Noble‐Metal‐Free Heterogeneous Photosensitizer‐Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light. Angew Chem Int Ed Engl 2018; 57:17173-17177. [DOI: 10.1002/anie.201811570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 11/10/2022]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - Sina Sadigh Akbari
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Derya Topkaya
- Department of Chemistry Faculty of Sciences Dokuz Eylul University Tınaztepe Campus Izmir Turkey
| | - Ümit İsci
- Department of Chemistry Gebze Technical University 41400 Kocaeli Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
28
|
Matias TA, Parussulo AL, Benavides PA, Guimarães RR, Dourado AH, Nakamura M, de Torresi SIC, Bertotti M, Araki K. Polymeric binuclear ruthenium complex as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Ho PY, Mark MF, Wang Y, Yiu SC, Yu WH, Ho CL, McCamant DW, Eisenberg R, Huang S. Panchromatic Sensitization with Zn II Porphyrin-Based Photosensitizers for Light-Driven Hydrogen Production. CHEMSUSCHEM 2018; 11:2517-2528. [PMID: 29920985 DOI: 10.1002/cssc.201801255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Three molecular photosensitizers (PSs) with carboxylic acid anchors for attachment to platinized titanium dioxide nanoparticles were studied for light-driven hydrogen production from a fully aqueous medium with ascorbic acid (AA) as the sacrificial electron donor. Two zinc(II) porphyrin (ZnP)-based PSs were used to examine the effect of panchromatic sensitization on the photocatalytic H2 generation. A dyad molecular design was used to construct a difluoro boron-dipyrromethene (bodipy)-conjugated ZnP PS (ZnP-dyad), whereas the other one featured an electron-donating diarylamino moiety (YD2-o-C8). To probe the use of the ZnP scaffold in this particular energy conversion process, an organic PS without the ZnP moiety (Bodipy-dye) was also synthesized for comparison. Ultrafast transient absorption spectroscopy was adopted to map out the energy transfer processes occurring in the dyad and to establish the bodipy-based antenna effect. In particular, the systems with YD2-o-C8 and ZnP-dyad achieved a remarkable initial activity for the production of H2 with an initial turnover frequency (TOFi ) higher than 300 h-1 under white light irradiation. The use of ZnP PSs in dye-sensitized photocatalysis for the H2 evolution reaction in this study indicated the importance of the panchromatic sensitization capability for the development of light absorbing PSs.
Collapse
Affiliation(s)
- Po-Yu Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
| | - Michael F Mark
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Yi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
| | - Sze-Chun Yiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
| | - Wai-Hong Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
| | - Cheuk-Lam Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P. R. China
| | - David W McCamant
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Richard Eisenberg
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
30
|
Lei Zhang, Qiaoyi Wang. First Principles Study on the Interfacial Structure and Electronic Properties of a Metal-Free Organic Dye/TiO2 Photoanode for Water Oxidation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418080162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Hennessey S, Farràs P. Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies. Chem Commun (Camb) 2018; 54:6662-6680. [PMID: 29808196 DOI: 10.1039/c8cc02487a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.
Collapse
Affiliation(s)
- Seán Hennessey
- School of Chemistry, Energy Research Centre, Ryan Institute, National University of Ireland, Galway (NUI Galway), University Road, H91 CF50 Galway, Ireland.
| | | |
Collapse
|
32
|
Manfredi N, Boldrini CL, Abbotto A. Organic Sensitizers for Photoanode Water Splitting in Dye-Sensitized Photoelectrochemical Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201800592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Norberto Manfredi
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| | - Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| |
Collapse
|
33
|
Gatty MG, Pullen S, Sheibani E, Tian H, Ott S, Hammarström L. Direct evidence of catalyst reduction on dye and catalyst co-sensitized NiO photocathodes by mid-infrared transient absorption spectroscopy. Chem Sci 2018; 9:4983-4991. [PMID: 29938026 PMCID: PMC5989651 DOI: 10.1039/c8sc00990b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Co-sensitization of molecular dyes and catalysts on semiconductor surfaces is a promising strategy to build photoelectrodes for solar fuel production.
Co-sensitization of molecular dyes and catalysts on semiconductor surfaces is a promising strategy to build photoelectrodes for solar fuel production. In such a photoelectrode, understanding the charge transfer reactions between the molecular dye, catalyst and semiconductor material is key to guide further improvement of their photocatalytic performance. Herein, femtosecond mid-infrared transient absorption spectroscopy is used, for the first time, to probe charge transfer reactions leading to catalyst reduction on co-sensitized nickel oxide (NiO) photocathodes. The NiO films were co-sensitized with a molecular dye and a proton reducing catalyst from the family of [FeFe](bdt)(CO)6 (bdt = benzene-1,2-dithiolate) complexes. Two dyes were used: an organic push–pull dye denoted E2 with a triarylamine–oligothiophene–dicyanovinyl structure and a coumarin 343 dye. Upon photo-excitation of the dye, a clear spectroscopic signature of the reduced catalyst is observed a few picoseconds after excitation in all co-sensitized NiO films. However, kinetic analysis of the transient absorption signals of the dye and reduced catalyst reveal important mechanistic differences in the first reduction of the catalyst depending on the co-sensitized molecular dye (E2 or C343). While catalyst reduction is preceded by hole injection in NiO in C343-sensitized NiO films, the singly reduced catalyst is formed by direct electron transfer from the excited dye E2* to the catalyst in E2-sensitized NiO films. This change in mechanism also impacts the lifetime of the reduced catalyst, which is only ca. 50 ps in E2-sensitized NiO films but is >5 ns in C343-sensitized NiO films. Finally, the implication of this mechanistic study for the development of better co-sensitized photocathodes is discussed.
Collapse
Affiliation(s)
- M Gilbert Gatty
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - S Pullen
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - E Sheibani
- Organic Chemistry , Department of Chemistry , Chemical Science and Engineering , KTH , Royal Institute of Technology , Teknikringen 30 , 100 44 Stockholm , Sweden
| | - H Tian
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - S Ott
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| | - L Hammarström
- Physical Chemistry , Department of Chemistry , Ångström Laboratory , Uppsala University , Box 523 , 75120 Uppsala , Sweden .
| |
Collapse
|
34
|
Yuan YJ, Yu ZT, Chen DQ, Zou ZG. Metal-complex chromophores for solar hydrogen generation. Chem Soc Rev 2018; 46:603-631. [PMID: 27808300 DOI: 10.1039/c6cs00436a] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solar H2 generation from water has been intensively investigated as a clean method to convert solar energy into hydrogen fuel. During the past few decades, many studies have demonstrated that metal complexes can act as efficient photoactive materials for photocatalytic H2 production. Here, we review the recent progress in the application of metal-complex chromophores to solar-to-H2 conversion, including metal-complex photosensitizers and supramolecular photocatalysts. A brief overview of the fundamental principles of photocatalytic H2 production is given. Then, different metal-complex photosensitizers and supramolecular photocatalysts are introduced in detail, and the most important factors that strictly determine their photocatalytic performance are also discussed. Finally, we illustrate some challenges and opportunities for future research in this promising area.
Collapse
Affiliation(s)
- Yong-Jun Yuan
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China. and College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China.
| | - Da-Qin Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China.
| | - Zhi-Gang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nano Technology, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|
35
|
Black FA, Clark CA, Summers GH, Clark IP, Towrie M, Penfold T, George MW, Gibson EA. Investigating interfacial electron transfer in dye-sensitized NiO using vibrational spectroscopy. Phys Chem Chem Phys 2018; 19:7877-7885. [PMID: 28262897 DOI: 10.1039/c6cp05712h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding what influences the formation and lifetime of charge-separated states is key to developing photoelectrochemical devices. This paper describes the use of time-resolved infrared absorption spectroscopy (TRIR) to determine the structure and lifetime of the intermediates formed on photoexcitation of two organic donor-π-acceptor dyes adsorbed to the surface of NiO. The donor and π-linker of both dyes is triphenylamine and thiophene but the acceptors differ, maleonitrile (1) and bodipy (2). Despite their structural similarities, dye 1 outperforms 2 significantly in devices. Strong transient bands in the fingerprint region (1 and 2) and nitrile region (2300-2000 cm-1) for 1 enabled us to monitor the structure of the excited states in solution or adsorbed on NiO (in the absence and presence of electrolyte) and the corresponding kinetics, which are on a ps-ns timescale. The results are consistent with rapid (<1 ps) charge-transfer from NiO to the excited dye (1) to give exclusively the charge-separated state on the timescale of our measurements. Conversely, the TRIR experiments revealed that multiple species are present shortly after excitation of the bodipy chromophore in 2, which is electronically decoupled from the thiophene linker. In solution, excitation first populates the bodipy singlet excited state, followed by charge transfer from the triphenylamine to the bodipy. The presence and short lifetime (τ ≈ 30 ps) of the charge-transfer excited state when 2 is adsorbed on NiO (2|NiO) suggests that charge separation is slower and/or less efficient in 2|NiO than in 1|NiO. This is consistent with the difference in performance between the two dyes in dye-sensitized solar cells and photoelectrochemical water splitting devices. Compared to n-type materials such as TiO2, less is understood regarding electron transfer between dyes and p-type metal oxides such as NiO, but it is evident that fast charge-recombination presents a limit to the performance of photocathodes. This is also a major challenge to photocatalytic systems based on a "Z-scheme", where the catalysis takes place on a µs-s timescale.
Collapse
Affiliation(s)
- Fiona A Black
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Charlotte A Clark
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth H Summers
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. and School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK and Dynamic Structural Science Consortium, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - Thomas Penfold
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Michael W George
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK and Dynamic Structural Science Consortium, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK and Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Elizabeth A Gibson
- School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. and School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
36
|
Ding X, Zhang L, Wang Y, Liu A, Gao Y. Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Zhang B, Li F, Zhang R, Ma C, Chen L, Sun L. Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic)2 in neutral media. Chem Commun (Camb) 2018; 52:8619-22. [PMID: 27332794 DOI: 10.1039/c6cc04003a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru(III)-O-Ru(IV)-O-Ru(III) type trinuclear species was crystallographically characterized in water oxidation by Ru(bda)(pic)2 (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; pic = 4-picoline) under neutral conditions. The formation of a ruthenium trimer due to the reaction of Ru(IV)[double bond, length as m-dash]O with Ru(II)-OH2 was fully confirmed by chemical, electrochemical and photochemical methods. Since the oxidation of the trimer was proposed to lead to catalyst decomposition, the photocatalytic water oxidation activity was rationally improved by the suppression of the formation of the trimer.
Collapse
Affiliation(s)
- Biaobiao Zhang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Chengbing Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Lin Chen
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China.
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), 116024 Dalian, China. and Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
38
|
Bora A, Mohan K, Doley S, Goswami P, Dolui SK. Broadening the sunlight response region with carbon dot sensitized TiO2 as a support for a Pt catalyst in the methanol oxidation reaction. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01040d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dots with upconversion properties harness unused visible light and act as sensitizers for a TiO2 supported Pt catalyst in MOR.
Collapse
Affiliation(s)
- Anindita Bora
- Department of Chemical Sciences
- Tezpur University
- Napaam
- India
| | | | - Simanta Doley
- Department of Chemical Sciences
- Tezpur University
- Napaam
- India
| | | | | |
Collapse
|
39
|
Alibabaei L, Brennaman MK, Meyer TJ. Light-Driven Water Splitting in the Dye-Sensitized Photoelectrosynthesis Cell. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5924-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
40
|
Furugori S, Kobayashi A, Watanabe A, Yoshida M, Kato M. Impact of Photosensitizing Multilayered Structure on Ruthenium(II)-Dye-Sensitized TiO 2-Nanoparticle Photocatalysts. ACS OMEGA 2017; 2:3901-3912. [PMID: 31457696 PMCID: PMC6641294 DOI: 10.1021/acsomega.7b00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 06/10/2023]
Abstract
To improve the efficiency of photoinduced charge separation on the surface of dye-sensitized TiO2 nanoparticles, we synthesized the Ru(II)-photosensitizer-immobilized, Pt-cocatalyst-loaded TiO2 nanoparticles RuCP 2 @Pt-TiO2, RuCP 2 -Zr-RuP 6 @Pt-TiO2, and RuCP 2 -Zr-RuP 4 -Zr-RuP 6 @Pt-TiO2 (RuCP 2 = [Ru(bpy)2(mpbpy)]2-, RuP 4 = [Ru(bpy)(pbpy)2]6-, RuP 6 = [Ru(pbpy)3]10-, H4mpbpy = 2,2'-bipyridine-4,4'-bis(methanephosphonic acid), and H4pbpy = 2,2'-bipyridine-4,4'-bis(phosphonic acid)) using phosphonate linkers with bridging Zr4+ ions. X-ray fluorescence and ultraviolet-visible absorption spectra revealed that a layered molecular structure composed of Ru(II) photosensitizers and Zr4+ ions (i.e., RuCP 2 -Zr-RuP 6 and RuCP 2 -Zr-RuP 4 -Zr-RuP 6 ) was successfully formed on the surface of Pt-TiO2 nanoparticles, which increased the surface coverage from 0.113 nmol/cm2 for singly layered RuCP 2 @Pt-TiO2 to 0.330 nmol/cm2 for triply layered RuCP 2 -Zr-RuP 4 -Zr-RuP 6 @Pt-TiO2. The photocatalytic H2 evolution activity of the doubly layered RuCP 2 -Zr-RuP 6 @Pt-TiO2 was three times higher than that of the singly layered RuCP 2 @Pt-TiO2, whereas the activity of triply layered RuCP 2 -Zr-RuP 4 -Zr-RuP 6 @Pt-TiO2 was less than half of that for RuCP 2 @Pt-TiO2. The photosensitizing efficiencies of these Ru(II)-photosensitizer-immobilized nanoparticles for the O2 evolution reaction catalyzed by the Co(II)-containing Prussian blue analogue [CoII(H2O)2]1.31[{CoIII(CN)6}0.63{PtII(CN)4}0.37] decreased as the number of Ru(II)-photosensitizing layers increased. Thus, crucial aspects of the energy- and electron-transfer mechanism for the photocatalytic H2 and O2 evolution reactions involve not only the Ru(II)-complex-TiO2 interface but also the multilayered structure of the Ru(II)-photosensitizers on the Pt-TiO2 surface.
Collapse
Affiliation(s)
- Sogo Furugori
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Atsushi Kobayashi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ayako Watanabe
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masaki Yoshida
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masako Kato
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
41
|
Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects. INORGANICS 2017. [DOI: 10.3390/inorganics5020034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Luminescence quenching of tris(4,4′-dinonyl-2,2′-bipyridyl) ruthenium(II) cation with phenolate ions in DMSO. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
43
|
Kment S, Riboni F, Pausova S, Wang L, Wang L, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R. Photoanodes based on TiO2and α-Fe2O3for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 2017; 46:3716-3769. [DOI: 10.1039/c6cs00015k] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solar driven photoelectrochemical water splitting represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as H2.
Collapse
|
44
|
Liu X, Inagaki S, Gong J. Heterogene molekulare Systeme für eine photokatalytische CO2-Reduktion mit Wasseroxidation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600395] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| | - Shinji Inagaki
- Toyota Central R&D Laboratories, Inc.; Nagakute Aichi 480-1192 Japan
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| |
Collapse
|
45
|
Liu X, Inagaki S, Gong J. Heterogeneous Molecular Systems for Photocatalytic CO2Reduction with Water Oxidation. Angew Chem Int Ed Engl 2016; 55:14924-14950. [DOI: 10.1002/anie.201600395] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| | - Shinji Inagaki
- Toyota Central R&D Laboratories, Inc.; Nagakute Aichi 480-1192 Japan
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300072 China
| |
Collapse
|
46
|
Yamamoto M, Tanaka K. Artificial Molecular Photosynthetic Systems: Towards Efficient Photoelectrochemical Water Oxidation. Chempluschem 2016; 81:1028-1044. [DOI: 10.1002/cplu.201600236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Masanori Yamamoto
- Department of Molecular Engineering; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Koji Tanaka
- Advanced Chemical Technology Center in Kyoto; Institute for Integrated Cell-Material Sciences; Kyoto University; Jibucho 105, Fushimi-ku Kyoto 612-8374 Japan
| |
Collapse
|
47
|
Gujral SS, Simonov AN, Fang X, Higashi M, Abe R, Spiccia L. Solar Water Oxidation by Multicomponent TaON Photoanodes Functionalized with Nickel Oxide. Chempluschem 2016; 81:1107-1115. [DOI: 10.1002/cplu.201600242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Satnam Singh Gujral
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science Monash University Melbourne VIC 3800 Australia
| | - Alexandr N. Simonov
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science Monash University Melbourne VIC 3800 Australia
| | - Xi‐Ya Fang
- Monash Centre for Electron Microscopy Monash University Melbourne VIC 3800 Australia
| | - Masanobu Higashi
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Leone Spiccia
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science Monash University Melbourne VIC 3800 Australia
| |
Collapse
|
48
|
Chandra D, Tsuriya R, Sato T, Takama D, Abe N, Kajita M, Li D, Togashi T, Kurihara M, Saito K, Yui T, Yagi M. Characterization of Interfacial Charge-Transfer Photoexcitation of Polychromium-Oxo-Electrodeposited TiO2
as an Earth-Abundant Photoanode for Water Oxidation Driven by Visible Light. Chempluschem 2016; 81:1116-1122. [DOI: 10.1002/cplu.201600288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Debraj Chandra
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Ryougen Tsuriya
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Tsubasa Sato
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Daisuke Takama
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Naoto Abe
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Masashi Kajita
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Dong Li
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Takanari Togashi
- Department of Material and Biological Chemistry; Faculty of Science; Yamagata University; 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Masato Kurihara
- Department of Material and Biological Chemistry; Faculty of Science; Yamagata University; 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Kenji Saito
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Tatsuto Yui
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| |
Collapse
|
49
|
Silicon Compound Decorated Photoanode for Performance Enhanced Visible Light Driven Water Splitting. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Ho PY, Zheng B, Mark D, Wong WY, McCamant DW, Eisenberg R. Chromophoric Dyads for the Light-Driven Generation of Hydrogen: Investigation of Factors in the Design of Multicomponent Photosensitizers for Proton Reduction. Inorg Chem 2016; 55:8348-58. [DOI: 10.1021/acs.inorgchem.6b00496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Po-Yu Ho
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Institute
of Molecular Functional Materials, Department of Chemistry, and Institute
of Advanced Materials, Hong Kong Baptist University, Waterloo
Road, Kowloon Tong, Hong
Kong, P. R. China
- HKBU Institute
of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - Bo Zheng
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Daniel Mark
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Wai-Yeung Wong
- Institute
of Molecular Functional Materials, Department of Chemistry, and Institute
of Advanced Materials, Hong Kong Baptist University, Waterloo
Road, Kowloon Tong, Hong
Kong, P. R. China
- HKBU Institute
of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, P. R. China
| | - David W. McCamant
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Richard Eisenberg
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|