1
|
Müller M, Germer P, Andexer JN. Biocatalytic One-Carbon Transfer – A Review. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThis review provides an overview of different C1 building blocks as substrates of enzymes, or part of their cofactors, and the resulting functionalized products. There is an emphasis on the broad range of possibilities of biocatalytic one-carbon extensions with C1 sources of different oxidation states. The identification of uncommon biosynthetic strategies, many of which might serve as templates for synthetic or biotechnological applications, towards one-carbon extensions is supported by recent genomic and metabolomic progress and hence we refer principally to literature spanning from 2014 to 2020.1 Introduction2 Methane, Methanol, and Methylamine3 Glycine4 Nitromethane5 SAM and SAM Ylide6 Other C1 Building Blocks7 Formaldehyde and Glyoxylate as Formaldehyde Equivalents8 Cyanide9 Formic Acid10 Formyl-CoA and Oxalyl-CoA11 Carbon Monoxide12 Carbon Dioxide13 Conclusions
Collapse
|
2
|
Casajus H, Lagarde A, Nauton L, Ocal N, Leremboure M, Fessner WD, Duguet N, Charmantray F, Hecquet L. Cleavage of Aliphatic α-Hydroxy Ketones by Evolved Transketolase from Geobacillus stearothermophilus. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hubert Casajus
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Nazim Ocal
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Nicolas Duguet
- Univ Lyon, Université Claude-Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), F-69100 Villeurbanne, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Clermont INP, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
4
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
5
|
Morris P, García-Arrazola R, Rios-Solis L, Dalby PA. Biophysical characterization of the inactivation of E. coli transketolase by aqueous co-solvents. Sci Rep 2021; 11:23584. [PMID: 34880340 PMCID: PMC8654844 DOI: 10.1038/s41598-021-03001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Transketolase (TK) has been previously engineered, using semi-rational directed evolution and substrate walking, to accept increasingly aliphatic, cyclic, and then aromatic substrates. This has ultimately led to the poor water solubility of new substrates, as a potential bottleneck to further exploitation of this enzyme in biocatalysis. Here we used a range of biophysical studies to characterise the response of both E. coli apo- and holo-TK activity and structure to a range of polar organic co-solvents: acetonitrile (AcCN), n-butanol (nBuOH), ethyl acetate (EtOAc), isopropanol (iPrOH), and tetrahydrofuran (THF). The mechanism of enzyme deactivation was found to be predominantly via solvent-induced local unfolding. Holo-TK is thermodynamically more stable than apo-TK and yet for four of the five co-solvents it retained less activity than apo-TK after exposure to organic solvents, indicating that solvent tolerance was not simply correlated to global conformational stability. The co-solvent concentrations required for complete enzyme inactivation was inversely proportional to co-solvent log(P), while the unfolding rate was directly proportional, indicating that the solvents interact with and partially unfold the enzyme through hydrophobic contacts. Small amounts of aggregate formed in some cases, but this was not sufficient to explain the enzyme inactivation. TK was found to be tolerant to 15% (v/v) iPrOH, 10% (v/v) AcCN, or 6% (v/v) nBuOH over 3 h. This work indicates that future attempts to engineer the enzyme to better tolerate co-solvents should focus on increasing the stability of the protein to local unfolding, particularly in and around the cofactor-binding loops.
Collapse
Affiliation(s)
- Phattaraporn Morris
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
- Chemical Metrology and Biometry Department, National Institute of Metrology, 3/4-5 Moo 3, Klong 5, Klong Luang, 12120, Pathumthani, Thailand
| | - Ribia García-Arrazola
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, UK
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, King's Buildings, Edinburgh, EH9 3JL, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Cárdenas-Fernández M, Subrizi F, Dobrijevic D, Hailes HC, Ward JM. Characterisation of a hyperthermophilic transketolase from Thermotoga maritima DSM3109 as a biocatalyst for 7-keto-octuronic acid synthesis. Org Biomol Chem 2021; 19:6493-6500. [PMID: 34250527 PMCID: PMC8317047 DOI: 10.1039/d1ob01237a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Transketolase (TK) is a fundamentally important enzyme in industrial biocatalysis which carries out a stereospecific carbon-carbon bond formation, and is widely used in the synthesis of prochiral ketones. This study describes the biochemical and molecular characterisation of a novel and unusual hyperthermophilic TK from Thermotoga maritima DSM3109 (TKtmar). TKtmar has a low protein sequence homology compared to the already described TKs, with key amino acid residues in the active site highly conserved. TKtmar has a very high optimum temperature (>90 °C) and shows pronounced stability at high temperature (e.g. t1/2 99 and 9.3 h at 50 and 80 °C, respectively) and in presence of organic solvents commonly used in industry (DMSO, acetonitrile and methanol). Substrate screening showed activity towards several monosaccharides and aliphatic aldehydes. In addition, for the first time, TK specificity towards uronic acids was achieved with TKtmar catalysing the efficient conversion of d-galacturonic acid and lithium hydroxypyruvate into 7-keto-octuronic acid, a very rare C8 uronic acid, in high yields (98%, 49 mM).
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK. and School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Fabiana Subrizi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Liu Q, Xie X, Tang M, Tao W, Shi T, Zhang Y, Huang T, Zhao Y, Deng Z, Lin S. One-Pot Asymmetric Synthesis of an Aminodiol Intermediate of Florfenicol Using Engineered Transketolase and Transaminase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyue Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mancheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanzhen Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Casajus H, Lagarde A, Leremboure M, De Dios Miguel T, Nauton L, Thery V, Fessner W, Duguet N, Charmantray F, Hecquet L. Enzymatic Synthesis of Aliphatic Acyloins Catalyzed by Thermostable Transketolase. ChemCatChem 2020. [DOI: 10.1002/cctc.202001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hubert Casajus
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und Biochemie Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon 1 CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS) F-69100 Villeurbanne France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont Institut de Chimie de Clermont-Ferrand (ICCF) F-63000 Clermont-Ferrand France
| |
Collapse
|
9
|
Wilkinson HC, Dalby PA. Fine-tuning the activity and stability of an evolved enzyme active-site through noncanonical amino-acids. FEBS J 2020; 288:1935-1955. [PMID: 32897608 DOI: 10.1111/febs.15560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023]
Abstract
Site-specific saturation mutagenesis within enzyme active sites can radically alter reaction specificity, though often with a trade-off in stability. Extending saturation mutagenesis with a range of noncanonical amino acids (ncAA) potentially increases the ability to improve activity and stability simultaneously. Previously, an Escherichia coli transketolase variant (S385Y/D469T/R520Q) was evolved to accept aromatic aldehydes not converted by wild-type. The aromatic residue Y385 was critical to the new acceptor substrate binding, and so was explored here beyond the natural aromatic residues, to probe side chain structure and electronics effects on enzyme function and stability. A series of five variants introduced decreasing aromatic ring electron density at position 385 in the order para-aminophenylalanine (pAMF), tyrosine (Y), phenylalanine (F), para-cyanophenylalanine (pCNF) and para-nitrophenylalanine (pNTF), and simultaneously modified the hydrogen-bonding potential of the aromatic substituent from accepting to donating. The fine-tuning of residue 385 yielded variants with a 43-fold increase in specific activity for 50 mm 3-HBA and 100% increased kcat (pCNF), 290% improvement in Km (pNTF), 240% improvement in kcat /Km (pAMF) and decreased substrate inhibition relative to Y. Structural modelling suggested switching of the ring-substituted functional group, from donating to accepting, stabilised a helix-turn (D259-H261) through an intersubunit H-bond with G262, to give a 7.8 °C increase in the thermal transition mid-point, Tm , and improved packing of pAMF. This is one of the first examples in which both catalytic activity and stability are simultaneously improved via site-specific ncAA incorporation into an enzyme active site, and further demonstrates the benefits of expanding designer libraries to include ncAAs.
Collapse
Affiliation(s)
- Henry C Wilkinson
- Department of Biochemical Engineering, University College London, London, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
10
|
Ocal N, L’enfant M, Charmantray F, Pollegioni L, Martin J, Auffray P, Collin J, Hecquet L. d-Serine as a Key Building Block: Enzymatic Process Development and Smart Applications within the Cascade Enzymatic Concept. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nazim Ocal
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, Università degli Studi dell’Insubria, 21100 Varese, Italy
| | - Juliette Martin
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Pascal Auffray
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Jérôme Collin
- Protéus by Seqens, 70 Allée Graham Belln, F-30035 Nîmes, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Lorillière M, Guérard‐Hélaine C, Gefflaut T, Fessner W, Clapés P, Charmantray F, Hecquet L. Convergent
in situ
Generation of Both Transketolase Substrates
via
Transaminase and Aldolase Reactions for Sequential One‐Pot, Three‐Step Cascade Synthesis of Ketoses. ChemCatChem 2019. [DOI: 10.1002/cctc.201901756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Christine Guérard‐Hélaine
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Thierry Gefflaut
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität Darmstadt Darmstadt 64287 Germany
| | - Pere Clapés
- Biotransformation and Bioactive Molecules GroupInstituto de Química Avanzada de Cataluña IQAC-CSIC Jordi Barcelona 08034 Spain
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA ClermontInstitut de Chimie de Clermont-Ferrand (ICCF) Clermont-Ferrand F63000 France
| |
Collapse
|
12
|
Yu H, Hernández López RI, Steadman D, Méndez‐Sánchez D, Higson S, Cázares‐Körner A, Sheppard TD, Ward JM, Hailes HC, Dalby PA. Engineering transketolase to accept both unnatural donor and acceptor substrates and produce α‐hydroxyketones. FEBS J 2019; 287:1758-1776. [DOI: 10.1111/febs.15108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering University College London UK
| | | | | | | | - Sally Higson
- Department of Chemistry University College London UK
| | | | | | - John M. Ward
- Department of Biochemical Engineering University College London UK
| | | | - Paul A. Dalby
- Department of Biochemical Engineering University College London UK
| |
Collapse
|
13
|
Lorillière M, Dumoulin R, L’enfant M, Rambourdin A, Thery V, Nauton L, Fessner WD, Charmantray F, Hecquet L. Evolved Thermostable Transketolase for Stereoselective Two-Carbon Elongation of Non-Phosphorylated Aldoses to Naturally Rare Ketoses. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marion Lorillière
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Romain Dumoulin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Mélanie L’enfant
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Agnès Rambourdin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Vincent Thery
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Baierl A, Theorell A, Mackfeld U, Marquardt P, Hoffmann F, Moers S, Nöh K, Buchholz PCF, Pleiss J, Pohl M. Towards a Mechanistic Understanding of Factors Controlling the Stereoselectivity of Transketolase. ChemCatChem 2018. [DOI: 10.1002/cctc.201800299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Baierl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Axel Theorell
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Ursula Mackfeld
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Philipp Marquardt
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | | | - Stephanie Moers
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical Biochemistry; University of Stuttgart; 70569 Stuttgart Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry; University of Stuttgart; 70569 Stuttgart Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| |
Collapse
|
15
|
Marsden SR, Gjonaj L, Eustace SJ, Hanefeld U. Separating Thermodynamics from Kinetics-A New Understanding of the Transketolase Reaction. ChemCatChem 2017; 9:1808-1814. [PMID: 28919932 PMCID: PMC5573996 DOI: 10.1002/cctc.201601649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/17/2017] [Indexed: 11/20/2022]
Abstract
Transketolase catalyzes asymmetric C−C bond formation of two highly polar compounds. Over the last 30 years, the reaction has unanimously been described in literature as irreversible because of the concomitant release of CO2 if using lithium hydroxypyruvate (LiHPA) as a substrate. Following the reaction over a longer period of time however, we have now found it to be initially kinetically controlled. Contrary to previous suggestions, for the non‐natural conversion of synthetically more interesting apolar substrates, the complete change of active‐site polarity is therefore not necessary. From docking studies it was revealed that water and hydrogen‐bond networks are essential for substrate binding, thus allowing aliphatic aldehydes to be converted in the charged active site of transketolase.
Collapse
Affiliation(s)
- Stefan R Marsden
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| | - Lorina Gjonaj
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| | - Stephen J Eustace
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie Technische Universiteit Delftvan der Maasweg 92629 HZ Delft The Netherlands
| |
Collapse
|
16
|
Yu H, Yan Y, Zhang C, Dalby PA. Two strategies to engineer flexible loops for improved enzyme thermostability. Sci Rep 2017; 7:41212. [PMID: 28145457 PMCID: PMC5286519 DOI: 10.1038/srep41212] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
Flexible sites are potential targets for engineering the stability of enzymes. Nevertheless, the success rate of the rigidifying flexible sites (RFS) strategy is still low due to a limited understanding of how to determine the best mutation candidates. In this study, two parallel strategies were applied to identify mutation candidates within the flexible loops of Escherichia coli transketolase (TK). The first was a “back to consensus mutations” approach, and the second was computational design based on ΔΔG calculations in Rosetta. Forty-nine single variants were generated and characterised experimentally. From these, three single-variants I189H, A282P, D143K were found to be more thermostable than wild-type TK. The combination of A282P with H192P, a variant constructed previously, resulted in the best all-round variant with a 3-fold improved half-life at 60 °C, 5-fold increased specific activity at 65 °C, 1.3-fold improved kcat and a Tm increased by 5 °C above that of wild type. Based on a statistical analysis of the stability changes for all variants, the qualitative prediction accuracy of the Rosetta program reached 65.3%. Both of the two strategies investigated were useful in guiding mutation candidates to flexible loops, and had the potential to be used for other enzymes.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, United Kingdom
| | - Yihan Yan
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, United Kingdom
| | - Cheng Zhang
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, United Kingdom
| | - Paul A Dalby
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, United Kingdom
| |
Collapse
|
17
|
Affaticati PE, Dai SB, Payongsri P, Hailes HC, Tittmann K, Dalby PA. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes. Sci Rep 2016; 6:35716. [PMID: 27767080 PMCID: PMC5073344 DOI: 10.1038/srep35716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022] Open
Abstract
The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies.
Collapse
Affiliation(s)
- Pierre E Affaticati
- Department of Biochemical Engineering, Gordon Street, University College London, WC1H 0AH, UK
| | - Shao-Bo Dai
- Albrecht-von-Haller Institute, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Panwajee Payongsri
- Department of Biochemical Engineering, Gordon Street, University College London, WC1H 0AH, UK
| | - Helen C Hailes
- Department of Chemistry, 20 Gordon Street, University College London, WC1H 0AJ, UK
| | - Kai Tittmann
- Albrecht-von-Haller Institute, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Paul A Dalby
- Department of Biochemical Engineering, Gordon Street, University College London, WC1H 0AH, UK
| |
Collapse
|
18
|
Giovannini PP, Bortolini O, Massi A. Thiamine-Diphosphate-Dependent Enzymes as Catalytic Tools for the Asymmetric Benzoin-Type Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| |
Collapse
|
19
|
Richter C, Berndt F, Kunde T, Mahrwald R. Decarboxylative Cascade Reactions of Dihydroxyfumaric Acid: A Preparative Approach to the Glyoxylate Scenario. Org Lett 2016; 18:2950-3. [DOI: 10.1021/acs.orglett.6b01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Celin Richter
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Falko Berndt
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Tom Kunde
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| | - Rainer Mahrwald
- Institute of Chemistry, Humboldt-University, Brook-Taylor Str. 2, 12489 Berlin, Germany
| |
Collapse
|
20
|
Ali G, Moreau T, Forano C, Mousty C, Prevot V, Charmantray F, Hecquet L. Chiral Polyol Synthesis Catalyzed by a Thermostable Transketolase Immobilized on Layered Double Hydroxides in Ionic liquids. ChemCatChem 2015. [DOI: 10.1002/cctc.201500524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ghina Ali
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Thomas Moreau
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Claude Forano
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Christine Mousty
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Vanessa Prevot
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Franck Charmantray
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| | - Laurence Hecquet
- Institut de Chimie de Clermont-Ferrand; Clermont Université, Université Blaise Pascal, BP 10448; 63000 Clermont-Ferrand France
- CNRS, UMR 6296; ICCF; 63177 Aubière France
| |
Collapse
|
21
|
Abdoul Zabar J, Lorillière M, Yi D, Saravanan T, Devamani T, Nauton L, Charmantray F, Hélaine V, Fessner WD, Hecquet L. Engineering a Thermostable Transketolase for Unnatural Conversion of (2S
)-Hydroxyaldehydes. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Sehl T, Maugeri Z, Rother D. Multi-step synthesis strategies towards 1,2-amino alcohols with special emphasis on phenylpropanolamines. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Payongsri P, Steadman D, Hailes HC, Dalby PA. Second generation engineering of transketolase for polar aromatic aldehyde substrates. Enzyme Microb Technol 2015; 71:45-52. [DOI: 10.1016/j.enzmictec.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
24
|
Yi D, Saravanan T, Devamani T, Charmantray F, Hecquet L, Fessner WD. A thermostable transketolase evolved for aliphatic aldehyde acceptors. Chem Commun (Camb) 2015; 51:480-3. [DOI: 10.1039/c4cc08436e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed evolution of a thermostable transketolase yields catalysts with significant improvement in activity, enantioselectivity and substrate scope.
Collapse
Affiliation(s)
- Dong Yi
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Thangavelu Saravanan
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Titu Devamani
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| | - Franck Charmantray
- Clermont Université
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- CNRS UMR 6296
- ICCF
| | - Laurence Hecquet
- Clermont Université
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- CNRS UMR 6296
- ICCF
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
25
|
The modular structure of ThDP-dependent enzymes. Proteins 2014; 82:2523-37. [DOI: 10.1002/prot.24615] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
|
26
|
Hailes HC, Rother D, Müller M, Westphal R, Ward JM, Pleiss J, Vogel C, Pohl M. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J 2013; 280:6374-94. [DOI: 10.1111/febs.12496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Helen C. Hailes
- Department of Chemistry; Christopher Ingold Laboratories; University College London; UK
| | - Dörte Rother
- IBG-1: Biotechnology; Forschungszentrum Jülich Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Germany
| | | | - John M. Ward
- Department of Biochemical Engineering; University College London; UK
| | - Jürgen Pleiss
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| | - Constantin Vogel
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| | - Martina Pohl
- IBG-1: Biotechnology; Forschungszentrum Jülich Germany
| |
Collapse
|
27
|
Andrews FH, McLeish MJ. Using site-saturation mutagenesis to explore mechanism and substrate specificity in thiamin diphosphate-dependent enzymes. FEBS J 2013; 280:6395-411. [DOI: 10.1111/febs.12459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Forest H. Andrews
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; IN USA
| | - Michael J. McLeish
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; IN USA
| |
Collapse
|
28
|
|
29
|
|
30
|
Yi D, Devamani T, Abdoul-Zabar J, Charmantray F, Helaine V, Hecquet L, Fessner WD. A pH-Based High-Throughput Assay for Transketolase: Fingerprinting of Substrate Tolerance and Quantitative Kinetics. Chembiochem 2012; 13:2290-300. [DOI: 10.1002/cbic.201200364] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/05/2022]
|
31
|
Galman JL, Steadman D, Haigh LD, Hailes HC. Investigating the reaction mechanism and organocatalytic synthesis of α,α'-dihydroxy ketones. Org Biomol Chem 2012; 10:2621-8. [PMID: 22362361 DOI: 10.1039/c2ob06939c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic TK one-pot reaction using hydroxypyruvate and aldehydes to generate α,α'-dihydroxy ketones in water has recently been described. To investigate this tertiary-amine mediated reaction mechanism two approaches were used. Firstly, (13)C labelled lithium hydroxypyruvate was synthesised and used to establish where hydroxypyruvate is incorporated in the product. In separate experiments reaction intermediates were also successfully intercepted and structurally identified using ESI-MS with tandem mass spectrometry ESI-MS/MS. These studies indicated that two mechanisms appear to be operating, one involving the addition of the tertiary amine catalyst to hydroxypyruvate, the other an aldol-based mechanism. Since the first mechanism may enable facial stereodifferentiation in the addition of intermediates to the aldehyde, a preliminary study on the use of chiral catalysts was performed and the first asymmetric organocatalytic synthesis of α,α'-dihydroxy ketones in aqueous media achieved, in up to 50% ee, using a quinine ether catalyst.
Collapse
Affiliation(s)
- James L Galman
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | | | | |
Collapse
|
32
|
Payongsri P, Steadman D, Strafford J, MacMurray A, Hailes HC, Dalby PA. Rational substrate and enzyme engineering of transketolase for aromatics. Org Biomol Chem 2012; 10:9021-9. [DOI: 10.1039/c2ob25751c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Strafford J, Payongsri P, Hibbert EG, Morris P, Batth SS, Steadman D, Smith MEB, Ward JM, Hailes HC, Dalby PA. Directed evolution to re-adapt a co-evolved network within an enzyme. J Biotechnol 2011; 157:237-45. [PMID: 22154561 PMCID: PMC3657141 DOI: 10.1016/j.jbiotec.2011.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/19/2011] [Accepted: 11/22/2011] [Indexed: 12/04/2022]
Abstract
We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve kcat 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network.
Collapse
Affiliation(s)
- John Strafford
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jahromi RRF, Morris P, Martinez-Torres RJ, Dalby PA. Structural stability of E. coli transketolase to temperature and pH denaturation. J Biotechnol 2011; 155:209-16. [PMID: 21723889 DOI: 10.1016/j.jbiotec.2011.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/07/2011] [Accepted: 06/17/2011] [Indexed: 11/15/2022]
Abstract
We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism.
Collapse
Affiliation(s)
- Raha R F Jahromi
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, UK
| | | | | | | |
Collapse
|
35
|
|