1
|
Jurczyková T, Kmeťová E, Kačík F, Lexa M, Dědič D. Evaluating the Effectiveness of Cellulose-Based Surfactants in Expandable Graphite Wood Coatings. Polymers (Basel) 2024; 16:2832. [PMID: 39408542 PMCID: PMC11478889 DOI: 10.3390/polym16192832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study deals with the design of modern environmentally friendly and non-toxic flame retardants based on expandable graphite 25 K + 180 (EG) modified by cellulose ethers (Lovose TS 20, Tylose MH 300, Klucel H) and nanocellulose (CNC) that are biocompatible with wood and, therefore, are a prerequisite for an effective surfactant for connecting EG to wood. The effectiveness of the formulations and surfactants was verified using a radiant heat source test. The cohesion of the coating to the wood surface and the cohesion of the expanded graphite layer were also assessed. The fire efficiency of the surfactants varied greatly. Still, in combination with EG, they were all able to provide sufficient protection-the total relative mass loss was, in all cases, in the range of 7.38-7.83% (for untreated wood it was 88.67 ± 1.33%), and the maximum relative burning rate decreased tenfold compared to untreated wood, i.e., to 0.04-0.05%·s-1. Good results were achieved using Klucel H + EG and CNC + EG formulations. Compared to Klucel H, CNC provides significantly better cohesion of the expanded layer, but its high price increases the cost of the fireproof coating.
Collapse
Affiliation(s)
- Tereza Jurczyková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| | - Elena Kmeťová
- Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia;
| | - Martin Lexa
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| | - Daniel Dědič
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16000 Prague, Czech Republic; (M.L.); (D.D.)
| |
Collapse
|
2
|
Hu S, Yue F, Peng F, Zhou X, Chen Y, Song T, Qi H. Lysine-mediated surface modification of cellulose nanocrystal films for multi-channel anti-counterfeiting. Carbohydr Polym 2024; 340:122315. [PMID: 38858028 DOI: 10.1016/j.carbpol.2024.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Utilizing advanced multiple channels for information encryption offers a powerful strategy to achieve high-capacity and highly secure data protection. Cellulose nanocrystals (CNCs) offer a sustainable resource for developing information protection materials. In this study, we present an approach that is easy to implement and adapt for the covalent attachment of various fluorescence molecules onto the surface of CNCs using the Mannich reaction in aqueous-based medium. Through the use of the Mannich reaction-based surface modification technique, we successfully achieved multi-color fluorescence in the resulting CNCs. The resulting CNC derivatives were thoroughly characterized by two dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron (XPS) spectroscopy. Notably, the optical properties of CNCs were well maintained after modification, resulting in films exhibiting blue and red structural colors. This enables the engineering of highly programmable and securely encoded anti-counterfeit labels. Moreover, subsequent coating of the modified CNCs with MXene yielded a highly secure encrypted matrix, offering advanced security and encryption capabilities under ultraviolet, visible, and near-infrared wavelengths. This CNC surface-modification enables the development of multimodal security labels with potential applications across various practical scenarios.
Collapse
Affiliation(s)
- Songnan Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
3
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Yadav C, Lee JM, Mohanty P, Li X, Jang WD. Graft onto approaches for nanocellulose-based advanced functional materials. NANOSCALE 2023; 15:15108-15145. [PMID: 37712254 DOI: 10.1039/d3nr03087c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.
Collapse
Affiliation(s)
- Chandravati Yadav
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Jeong-Min Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.
| |
Collapse
|
5
|
Yuan X, Yao W, Ji D, Liu L, Lin Y, Zeng H, Jin T, Xu K, Du G, Zhang L. Synthesis of corn bract cellulose-based Au 3+ fluorescent probe and its application in composite membranes. Int J Biol Macromol 2023; 242:124600. [PMID: 37105254 DOI: 10.1016/j.ijbiomac.2023.124600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
To achieve real-time monitoring of Au3+, a corn bract cellulose-based fluorescent probe MAC-1 for was synthesized. MAC-1 showed good fluorescence properties in DMF-H2O (1:9, v/v, pH = 7.4) solution, showed a fluorescence emission peak at 520 nm with quenching fluorescence properties for Au3+. The structure of MAC-1 was analyzed by SEM (Sample microstructure images), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), 1H NMR, Elemental analysis, EDS, Mapping and TG (Thermogravimetry) were analyzed. The fluorescence properties of the probe were also characterized by UV spectrophotometer and fluorescence spectrophotometer. The results showed that the recognition of Au3+ by the probe MAC-1 exhibited high selectivity and high sensitivity. Moreover, it is highly resistant to interference and has a short response time, which can be rapidly responded within 1 min. In addition, to improve the practical application of the probe, the probe was prepared as a fluorescent composite film and the fluorescence effect shown by the fluorescent composite film is consistent with the fluorescence change of the probe MAC-1 itself. The fluorescent composite film also has excellent selectivity and good overall physical and mechanical properties. This study provides a meaningful reference for the detection of Au3+ and further expands the application field of agroforestry waste.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Wentao Yao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Decai Ji
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Heyang Zeng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
6
|
A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications. MICROMACHINES 2022; 13:mi13081224. [PMID: 36014146 PMCID: PMC9416338 DOI: 10.3390/mi13081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022]
Abstract
Microfluidics is used in many applications ranging from chemistry, medicine, biology and biomedical research, and the ability to measure pH values in-situ is an important parameter for creating and monitoring environments within a microfluidic chip for many such applications. We present a portable, optical fibre-based sensor for monitoring the pH based on the fluorescent intensity change of an acrylamidofluorescein dye, immobilized on the tip of a multimode optical fibre, and its performance is evaluated in-situ in a microfluidic channel. The sensor showed a sigmoid response over the pH range of 6.0–8.5, with a maximum sensitivity of 0.2/pH in the mid-range at pH 7.5. Following its evaluation, the sensor developed was used in a single microfluidic PDMS channel and its response was monitored for various flow rates within the channel. The results thus obtained showed that the sensor is sufficiently robust and well-suited to be used for measuring the pH value of the flowing liquid in the microchannel, allowing it to be used for a number of practical applications in ‘lab-on-a-chip’ applications where microfluidics are used. A key feature of the sensor is its simplicity and the ease of integrating the sensor with the microfluidic channel being probed.
Collapse
|
7
|
Srivastava P, Tavernaro I, Genger C, Welker P, Hübner O, Resch-Genger U. Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Anal Chem 2022; 94:9656-9664. [PMID: 35731967 DOI: 10.1021/acs.analchem.2c00944] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0-9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, Luisencarée, 10115 Berlin, Germany
| | - Oskar Hübner
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| |
Collapse
|
8
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
9
|
Rizzo R, Onesto V, Forciniti S, Chandra A, Prasad S, Iuele H, Colella F, Gigli G, Del Mercato LL. A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens Bioelectron 2022; 212:114401. [PMID: 35617754 DOI: 10.1016/j.bios.2022.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
The detection of extracellular pH at single cell resolution is challenging and requires advanced sensibility. Sensing pH at high spatial and temporal resolution might provide crucial information in understanding the role of pH and its fluctuations in a wide range of physio-pathological cellular processes, including cancer. Here, a method to embed silica-based fluorescent pH sensors into alginate-based three-dimensional (3D) microgels tumour models, coupled with a computational method for fine data analysis, is presented. By means of confocal laser scanning microscopy, live-cell time-lapse imaging of 3D alginate microgels was performed and the extracellular pH metabolic variations were monitored in both in vitro 3D mono- and 3D co-cultures of tumour and stromal pancreatic cells. The results show that the extracellular pH is cell line-specific and time-dependent. Moreover, differences in pH were also detected between 3D monocultures versus 3D co-cultures, thus suggesting the existence of a metabolic crosstalk between tumour and stromal cells. In conclusion, the system has the potential to image multiple live cell types in a 3D environment and to decipher in real-time their pH metabolic interplay under controlled experimental conditions, thus being also a suitable platform for drug screening and personalized medicine.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
10
|
Nahum V, Domb AJ. Solid Lipid Microspheres Decorated Nanoparticles As Drug Carriers. Int J Pharm 2022; 621:121797. [PMID: 35525470 DOI: 10.1016/j.ijpharm.2022.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
While Pickering emulsions have been known since 1906, where oil droplets are dispersed in aqueous media owing to nanoparticles decorating each oil droplet, no solid lipid microparticles decorated with nanoparticles have been described. These Solid-Pickering microparticles are surfactant-free micro-scale spherical active agent carriers composed of beeswax as a natural solid lipid with chitosan and starch nanoparticles embedded in the surface. Microparticles of this type were made by dispersing molten lipid in hot aqueous media containing dispersed nanoparticles to create microdroplets. Once the droplets are cooled below the melting point of the lipid, the microparticles of spherical form are obtained. The novel system allows encapsulation of active agents within a solid lipid core which is slowly released over time. It has been demonstrated through encapsulation of Ibuprofen and Lidocaine as a model poorly water-soluble drugs and an extended-release profile (for at least a week) was achieved. These Solid Pickering microparticles can be used in food, medicine, agriculture, and personal care products.
Collapse
Affiliation(s)
- Victoria Nahum
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Fluorescence Labeling of Cellulose Nanocrystals—A Facile and Green Synthesis Route. Polymers (Basel) 2022; 14:polym14091820. [PMID: 35566986 PMCID: PMC9099464 DOI: 10.3390/polym14091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient chemical modification of cellulose nanocrystals (CNCs) by grafting commonly involves aprotic solvents, toxic reactants, harsh reaction conditions, or catalysts, which have negative effects on the particle character, reduced dispersibility and requires further purification, if products are intended for biomedical applications. This work, in contrast, presents a robust, facile, and green synthesis protocol for the grafting of an amino-reactive fluorophore like fluorescein isothiocyanate (FITC) on aqueous CNCs, combining and modifying existent approaches in a two-step procedure. Comparably high grafting yields were achieved, which were confirmed by thermogravimetry, FTIR, and photometry. The dispersive properties were confirmed by DLS, AF4-MALS, and TEM studies. The presented route is highly suitable for the introduction of silane-bound organic groups and offers a versatile platform for further modification routes of cellulose-based substrates.
Collapse
|
12
|
Babi M, Fatona A, Li X, Cerson C, Jarvis VM, Abitbol T, Moran-Mirabal JM. Efficient Labeling of Nanocellulose for High-Resolution Fluorescence Microscopy Applications. Biomacromolecules 2022; 23:1981-1994. [PMID: 35442640 DOI: 10.1021/acs.biomac.1c01698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visualization of naturally derived cellulose nanofibrils (CNFs) and nanocrystals (CNCs) within nanocomposite materials is key to the development of packaging materials, tissue culture scaffolds, and emulsifying agents, among many other applications. In this work, we develop a versatile and efficient two-step approach based on triazine and azide-alkyne click-chemistry to fluorescently label nanocelluloses with a variety of commercially available dyes. We show that this method can be used to label bacterial cellulose fibrils, plant-derived CNFs, carboxymethylated CNFs, and CNCs with Cy5 and fluorescein derivatives to high degrees of labeling using minimal amounts of dye while preserving their native morphology and crystalline structure. The ability to tune the labeling density with this method allowed us to prepare optimized samples that were used to visualize nanostructural features of cellulose through super-resolution microscopy. The efficiency, cost-effectiveness, and versatility of this method make it ideal for labeling nanocelluloses and imaging them through advanced microscopy techniques for a broad range of applications.
Collapse
Affiliation(s)
- Mouhanad Babi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Ayodele Fatona
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Xiang Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Christine Cerson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Victoria M Jarvis
- McMaster Analytical X-ray Diffraction Facility, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Tiffany Abitbol
- RISE Research Institutes of Sweden, Stockholm 114 28, Sweden
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Centre for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
13
|
Direct organocatalytic thioglycolic acid esterification of cellulose nanocrystals: a simple entry to click chemistry on the surface of nanocellulose. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
14
|
Lytic polysaccharide monooxygenases and cellulases on the production of bacterial cellulose nanocrystals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Recycling Oryza sativa wastes into poly-imidazolium acetic acid-tagged nanocellulose Schiff base supported Pd nanoparticles for applications in cross-coupling reactions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Shi Z, Li S, Li M, Gan L, Huang J. Surface modification of cellulose nanocrystals towards new materials development. J Appl Polym Sci 2021. [DOI: 10.1002/app.51555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenxu Shi
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Shufang Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Mingxia Li
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft‐Matter Material Chemistry and Function Manufacturing Southwest University Chongqing China
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials‐Oriented Chemical Engineering of Xinjiang Bintuan Shihezi University Shihezi, Xinjiang China
| |
Collapse
|
17
|
Li N, Wang Y, Guo Y, Ji Z, Zhang Z, Yu J, Zhang L. Surface modified cellulose nanocrystalline hybrids actualizing efficient and precise delivery of doxorubicin into nucleus with: In vitro and in vivo evaluation. J Appl Polym Sci 2021. [DOI: 10.1002/app.51536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Na Li
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
- Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Yiwei Wang
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
| | - Yuqi Guo
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
- Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine Henan Provincial People's Hospital; People's Hospital of Zhengzhou University Zhengzhou China
| | - Zhenyu Ji
- Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Zhuangli Zhang
- Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering, East China Normal University Shanghai China
| | - Lianzhong Zhang
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
- Henan Provincial People's Hospital People's Hospital of Henan University Zhengzhou China
| |
Collapse
|
18
|
Khanjanzadeh H, Park BD. Covalent immobilization of bromocresol purple on cellulose nanocrystals for use in pH-responsive indicator films. Carbohydr Polym 2021; 273:118550. [PMID: 34560962 DOI: 10.1016/j.carbpol.2021.118550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
This study developed pH-indicator films by combining esterified cellulose nanocrystals (e-CNCs) with activated bromocresol purple (a-BCP) via covalent bonding for pH-sensitive color-changing applications. The e-CNC/a-BCP particles were incorporated into cellulose acetate polymer to prepare pH-sensitive color changing films. Binding of a-BCP to e-CNCs was proven by attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Colorimetric analysis showed that films containing 10% or 15% e-CNC/a-BCP particles had critical color changes either at pH 4-5, or pH 7-8. The films with 10% e-CNC/a-BCP particles also revealed excellent leaching resistance under acidic conditions. Color changes were reversible between pH 2 and 10. These pH-indicator films had visible color changes in response to pH variations, color reversibility, leaching resistance, and sufficient rigidity even though mechanical properties decreased as the e-CNC/a-BCP content increased from 0% to 15%.
Collapse
Affiliation(s)
- Hossein Khanjanzadeh
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
19
|
Bernier A, Tobias T, Nguyen H, Kumar S, Tuga B, Imtiaz Y, Smith CW, Sunasee R, Ckless K. Vascular and Blood Compatibility of Engineered Cationic Cellulose Nanocrystals in Cell-Based Assays. NANOMATERIALS 2021; 11:nano11082072. [PMID: 34443903 PMCID: PMC8399684 DOI: 10.3390/nano11082072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
An emerging interest regarding nanoparticles (NPs) concerns their potential immunomodulatory and pro-inflammatory activities, as well as their impact in the circulatory system. These biological activities of NPs can be related to the intensity and type of the responses, which can raise concerns about adverse side effects and limit the biomedical applicability of these nanomaterials. Therefore, the purpose of this study was to investigate the impact of a library of cationic cellulose nanocrystals (CNCs) in the human blood and endothelial cells using cell-based assays. First, we evaluated whether the cationic CNCs would cause hemolysis and aggregation or alteration on the morphology of red blood cells (RBC). We observed that although these nanomaterials did not alter RBC morphology or cause aggregation, at 24 h exposure, a mild hemolysis was detected mainly with unmodified CNCs. Then, we analyzed the effect of various concentrations of CNCs on the cell viability of human umbilical vein endothelial cells (HUVECs) in a time-dependent manner. None of the cationic CNCs caused a dose-response decrease in the cell viability of HUVEC at 24 h or 48 h of exposure. The findings of this study, together with the immunomodulatory properties of these cationic CNCs previously published, support the development of engineered cationic CNCs for biomedical applications, in particular as vaccine nanoadjuvants.
Collapse
|
20
|
|
21
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
22
|
Chen PY, Hsu C, Venkatesan M, Tseng YL, Cho CJ, Han ST, Zhou Y, Chiang WH, Kuo CC. Enhanced electrical and thermal properties of semi-conductive PANI-CNCs with surface modified CNCs. RSC Adv 2021; 11:11444-11456. [PMID: 35423653 PMCID: PMC8695952 DOI: 10.1039/d0ra10663a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are the most commonly used natural polymers for biomaterial synthesis. However, their low dispersibility, conductivity, and poor compatibility with the hydrophobic matrix hinder their potential applications. Therefore, we grafted sulfate half-ester and carboxylic functional groups onto CNC surfaces (S-CNC and C-CNC) to overcome these shortcomings. The effect of the dopants, surfactant ratios, and properties of CNCs on the thermal stability, conductivity, and surface morphology of polyaniline (PANI)-doped CNC nanocomposites were investigated through emulsion and in situ polymerization. The higher electrical conductivity and well-dispersed morphology of SCNC-PANI30 (1.1 × 10-2 S cm-1) but lower thermal stability than that of CCNC-PANI30 (T 0: 189 °C) nanocomposites are highly related to dispersibility of S-CNCs. However, after 4-dodecylbenzenesulfonic acid (DBSA) was added, the conductivity and thermal stability of SCNC/PANI increased up to 2.5 × 10-1 S cm-1 and 192 °C with almost no particle aggregation because of the increase in charge dispersion. The proposed biodegradable, renewable, and surface-modified S-CNC and C-CNC can be used in high-thermal-stability applications such as food packaging, optical films, reinforcement fillers, flexible semiconductors, and electromagnetic materials.
Collapse
Affiliation(s)
- Po-Yun Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Chieh Hsu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Yen-Lin Tseng
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University Shenzhen P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University Shenzhen P. R. China
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology 10607 Taipei Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology Taipei 10608 Taiwan +886-2-27317174 +886-2-27712171 ext. 2407
| |
Collapse
|
23
|
Enhanced Gas Separation Prowess Using Functionalized Lignin-Free Lignocellulosic Biomass/Polysulfone Composite Membranes. MEMBRANES 2021; 11:membranes11030202. [PMID: 33805589 PMCID: PMC8001956 DOI: 10.3390/membranes11030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
Delignified lignocellulosic biomass was functionalized with amine groups. Then, the pretreated lignin-free date pits cellulose and the amine-functionalized-date pits cellulose (0–5 wt%) were incorporated into a polysulfone polymer matrix to fabricate composite membranes. The amine groups give additional hydrogen bonding to those existing from the hydroxyl groups in the date pits cellulose. The approach gives an efficient avenue to enhance the CO2 molecules’ transport pathways through the membrane matrix. The interactions between phases were investigated via Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), whereas pure gases (CO2 and N2) were used to evaluate the gas separation performances. Additionally, the thermal and mechanical properties of the fabricated composites were tested. The pure polysulfone membrane achieved an optimum separation performance at 4 Bar. The optimum separation performance for the composite membranes is achieved at 2 wt%. About 32% and 33% increments of the ideal CO2/N2 selectivity is achieved for the lignin-free date pits cellulose composite membrane and the amine-functionalized-date pits cellulose composite membrane, respectively.
Collapse
|
24
|
Hori Y, Enomoto Y, Kimura S, Iwata T. Synthesis of α‐1,3‐ and β‐1,3‐glucan esters with carbon–carbon double bonds and their surface modification. POLYM INT 2020. [DOI: 10.1002/pi.6157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuki Hori
- Science of Polymeric Materials, Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences, University of Tokyo Tokyo Japan
| | - Yukiko Enomoto
- Science of Polymeric Materials, Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences, University of Tokyo Tokyo Japan
| | - Satoshi Kimura
- Science of Polymeric Materials, Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences, University of Tokyo Tokyo Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences Graduate School of Agricultural and Life Sciences, University of Tokyo Tokyo Japan
| |
Collapse
|
25
|
Raja S, Hamouda AEI, de Toledo MAS, Hu C, Bernardo MP, Schalla C, Leite LSF, Buhl EM, Dreschers S, Pich A, Zenke M, Mattoso LHC, Sechi A. Functionalized Cellulose Nanocrystals for Cellular Labeling and Bioimaging. Biomacromolecules 2020; 22:454-466. [PMID: 33284004 DOI: 10.1021/acs.biomac.0c01317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.
Collapse
Affiliation(s)
- Sebastian Raja
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil.,Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Ahmed E I Hamouda
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Marcelo A S de Toledo
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Chaolei Hu
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Marcela P Bernardo
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil.,Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Carmen Schalla
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Liliane S F Leite
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Stephan Dreschers
- Klinik für Kinder- und Jugendmedizin, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, Aachen D-52074, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| | - Luiz H C Mattoso
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, São Carlos-SP 13560-970, Brazil
| | - Antonio Sechi
- Institute of Biomedical Engineering, Dept. of Cell Biology, RWTH Aachen University, Pauwelsstraße, 30, Aachen D-52074, Germany
| |
Collapse
|
26
|
Muthukumar V, Kulathu Iyer S. A simple and optically responsive chemosensor for the detection of Al3+ and Cr3+: In live cells and real sample analysis. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
28
|
Ehrlich K, Choudhary TR, Ucuncu M, Megia-Fernandez A, Harrington K, Wood HAC, Yu F, Choudhury D, Dhaliwal K, Bradley M, Tanner MG. Time-Resolved Spectroscopy of Fluorescence Quenching in Optical Fibre-Based pH Sensors. SENSORS 2020; 20:s20216115. [PMID: 33121191 PMCID: PMC7663438 DOI: 10.3390/s20216115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Numerous optodes, with fluorophores as the chemical sensing element and optical fibres for light delivery and collection, have been fabricated for minimally invasive endoscopic measurements of key physiological parameters such as pH. These flexible miniaturised optodes have typically attempted to maximize signal-to-noise through the application of high concentrations of fluorophores. We show that high-density attachment of carboxyfluorescein onto silica microspheres, the sensing elements, results in fluorescence energy transfer, manifesting as reduced fluorescence intensity and lifetime in addition to spectral changes. We demonstrate that the change in fluorescence intensity of carboxyfluorescein with pH in this "high-density" regime is opposite to that normally observed, with complex variations in fluorescent lifetime across the emission spectra of coupled fluorophores. Improved understanding of such highly loaded sensor beads is important because it leads to large increases in photostability and will aid the development of compact fibre probes, suitable for clinical applications. The time-resolved spectral measurement techniques presented here can be further applied to similar studies of other optodes.
Collapse
Affiliation(s)
- Katjana Ehrlich
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.C.); (M.G.T.)
- EPSRC Proteus IRC Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (T.R.C.); (K.D.); (M.B.)
- Correspondence:
| | - Tushar R. Choudhary
- EPSRC Proteus IRC Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (T.R.C.); (K.D.); (M.B.)
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Muhammed Ucuncu
- School of Chemistry, EaStChem, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FF, UK; (M.U.); (A.M.-F.)
| | - Alicia Megia-Fernandez
- School of Chemistry, EaStChem, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FF, UK; (M.U.); (A.M.-F.)
| | - Kerrianne Harrington
- Centre for Photonics and Photonic Materials, University of Bath, Claverton Down, Bath BA27AY, UK; (K.H.); (H.A.C.W.); (F.Y.)
| | - Harry A. C. Wood
- Centre for Photonics and Photonic Materials, University of Bath, Claverton Down, Bath BA27AY, UK; (K.H.); (H.A.C.W.); (F.Y.)
| | - Fei Yu
- Centre for Photonics and Photonic Materials, University of Bath, Claverton Down, Bath BA27AY, UK; (K.H.); (H.A.C.W.); (F.Y.)
| | - Debaditya Choudhury
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.C.); (M.G.T.)
| | - Kev Dhaliwal
- EPSRC Proteus IRC Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (T.R.C.); (K.D.); (M.B.)
| | - Mark Bradley
- EPSRC Proteus IRC Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (T.R.C.); (K.D.); (M.B.)
- School of Chemistry, EaStChem, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FF, UK; (M.U.); (A.M.-F.)
| | - Michael G. Tanner
- Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.C.); (M.G.T.)
- EPSRC Proteus IRC Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (T.R.C.); (K.D.); (M.B.)
| |
Collapse
|
29
|
Alkabli J, El-Sayed W, Elshaarawy RF, Khedr AI. Upgrading Oryza sativa wastes into multifunctional antimicrobial and antibiofilm nominees; Ionic Metallo-Schiff base-supported cellulosic nanofibers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Zhang H, Chan-Park MB, Wang M. Functional Polymers and Polymer-Dye Composites for Food Sensing. Macromol Rapid Commun 2020; 41:e2000279. [PMID: 32840324 DOI: 10.1002/marc.202000279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Indexed: 12/19/2022]
Abstract
The sensitive, safe, and portable detection of food spoilage is becoming unprecedentedly important because it is closely related to the public health and economic development, particularly given the globalization of food supply chain. However, the existing approaches for food monitoring are still limited to meet these requirements. To address this challenge, much research has been done to develop an ideal food sensor that can indicate food quality in real-time in a sensitive and reliable way. So far, many sensors such as time-temperature indicators, smart trademarks, colorimetric tags, electronic noses, and electronic tongues, have been developed and even commercialized. In this feature article, the recent progress of food sensors based on functional polymers, including the molecular design of polymer structures, sensing mechanisms, and relevant processing techniques to fabricate a variety of food sensor devices is reviewed.
Collapse
Affiliation(s)
- Hang Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
31
|
Navarro JRG, Rostami J, Ahlinder A, Mietner JB, Bernin D, Saake B, Edlund U. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles. Biomacromolecules 2020; 21:1952-1961. [PMID: 32223221 DOI: 10.1021/acs.biomac.0c00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper investigates a strategy to convert hydrophilic cellulose nanofibrils (CNF) into a hydrophobic highly cross-linked network made of cellulose nanofibrils and inorganic nanoparticles. First, the cellulose nanofibrils were chemically modified through an esterification reaction to produce a nanocellulose-based macroinitiator. Barium titanate (BaTiO3, BTO) nanoparticles were surface-modified by introducing a specific monomer on their outer-shell surface. Finally, we studied the ability of the nanocellulose-based macroinitiator to initiate a single electron transfer living radical polymerization of stearyl acrylate (SA) in the presence of the surface-modified nanoparticles. The BTO nanoparticles will transfer new properties to the nanocellulose network and act as a cross-linking agent between the nanocellulose fibrils, while the monomer (SA) directly influences the hydrophilic-lipophilic balance. The pristine CNF and the nanoparticle cross-linked CNF are characterized by FTIR, SEM, and solid-state 13C NMR. Rheological and dynamic mechanical analyses revealed a high dregee of cross-linking.
Collapse
Affiliation(s)
| | - Jowan Rostami
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| | - Astrid Ahlinder
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| | | | - Diana Bernin
- Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Bodo Saake
- Institute of Wood Science, Universität Hamburg, Hamburg, Germany
| | - Ulrica Edlund
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| |
Collapse
|
32
|
Combined stabilizers prepared from cellulose nanocrystals and styrene-maleic anhydride to microencapsulate phase change materials. Carbohydr Polym 2020; 234:115923. [DOI: 10.1016/j.carbpol.2020.115923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/25/2019] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
|
33
|
Ganguly K, Patel DK, Dutta SD, Shin WC, Lim KT. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int J Biol Macromol 2020; 155:456-469. [PMID: 32222290 DOI: 10.1016/j.ijbiomac.2020.03.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Cellulose nanocrystals (CNCs) have received a significant amount of attention from the researchers. It is used as a nanomaterial for various applications due to its excellent physiochemical properties for the last few decades. Self-assembly is a phenomenon where autonomous reorganization of randomly oriented species occurs elegantly. Self-assembly is responsible for the formation of the hierarchical cholesteric structure of CNCs. This process is highly influenced by several factors, such as the surface chemistry of the nanoparticles, intermolecular forces, and the fundamental laws of thermodynamics. Various conventional experimental designs and molecular dynamics (MD) studies have been applied to determine the possible mechanism of self-assembly in CNCs. Different external factors, like pH, temperature, magnetic/electric fields, vacuum, also influence the self-assembly process in CNCs. Notably, better responses have been observed in CNCs-grafted polymer nanocomposites. These functionalized CNCs with stimuli-responsive self-assembly have immense practical applications in modern biotechnology and medicine. Herein, we have concisely discussed the mechanism of the self-assembled CNCs in the presence of different external factors such as pH, temperature, electric/magnetic fields, and their biomedical applications.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Woo-Chul Shin
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
34
|
Zhang Z, Liu G, Li X, Zhang S, Lü X, Wang Y. Design and Synthesis of Fluorescent Nanocelluloses for Sensing and Bioimaging Applications. Chempluschem 2020; 85:487-502. [DOI: 10.1002/cplu.201900746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Zhao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education Shaanxi Key Laboratory of Physico-Inorganic Chemistry College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 Shaanxi China
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Gang Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Xinping Li
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Xingqiang Lü
- Chemical Engineering InstituteNorthwest University Xi'an 710127 Shaanxi China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education Shaanxi Key Laboratory of Physico-Inorganic Chemistry College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 Shaanxi China
| |
Collapse
|
35
|
Navon Y, Jean B, Coche-Guérente L, Dahlem F, Bernheim-Groswasser A, Heux L. Deposition of Cellulose Nanocrystals onto Supported Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1474-1483. [PMID: 31904979 DOI: 10.1021/acs.langmuir.9b02888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of cellulose nanocrystals (CNCs) on a supported lipid bilayer (SLB) was investigated at different length scales. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to probe the bilayer formation and to show for the first time the CNC deposition onto the SLB. Specifically, classical QCM-D measurements gave estimation of the adsorbed hydrated mass and the corresponding film thickness, whereas complementary experiments using D2O as the solvent allowed the quantitative determination of the hydration of the CNC layer, showing a high hydration value. Scanning force microscopy (SFM) and total internal reflection fluorescence microscopy (TIRF) were used to probe the homogeneity of the deposited layers, revealing the structural details at the particle and film length scales, respectively, thus giving information on the effect of CNC concentration on the surface coverage. The results showed that the adsorption of CNCs on the supported lipid membrane depended on lipid composition, CNC concentration, and pH conditions, and that the binding process was governed by electrostatic interactions. Under suitable conditions, a uniform film was formed, with thickness corresponding to a CNC monolayer, which provides the basis for a relevant 2D model of a primary plant cell wall.
Collapse
Affiliation(s)
- Yotam Navon
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
- Department of Chemical Engineering, Ilse Kats Institute for Nanoscale Science and Technology , Ben Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Bruno Jean
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | | | - Franck Dahlem
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | - Anne Bernheim-Groswasser
- Department of Chemical Engineering, Ilse Kats Institute for Nanoscale Science and Technology , Ben Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Laurent Heux
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| |
Collapse
|
36
|
Zhang E, Wang S, Su X, Han S. Imaging stressed organellesviasugar-conjugated color-switchable pH sensors. Analyst 2020; 145:1319-1327. [DOI: 10.1039/c9an02441g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sugar-conjugated pH sensors discriminate stressed lysosomes in different cell starvation conditionsviared-to-green fluorescence switch.
Collapse
Affiliation(s)
- Enkang Zhang
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| | - Siyu Wang
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| | - Xinhui Su
- Department of Nuclear Medicine
- Zhongshan Hospital of Xiamen University
- Xiamen
- China
| | - Shoufa Han
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- the Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
| |
Collapse
|
37
|
Fan XM, Yu HY, Wang DC, Yao J, Lin H, Tang CX, Tam KC. Designing Highly Luminescent Cellulose Nanocrystals with Modulated Morphology for Multifunctional Bioimaging Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48192-48201. [PMID: 31789013 DOI: 10.1021/acsami.9b13687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spherical cellulose nanocrystals (SCNs) and rod-shaped cellulose nanocrystals (RCNs) were extracted from different cellulose materials. The two shape forms of cellulose nanocrystals (CNs) were designed with a combination of isothiocyanate (FITC), and both the obtained FITC-SCNs and FITC-RCNs exhibited high fluorescence brightness. The surfaces of SCNs and RCNs were subjected to a secondary imino group by a Schiff reaction and then covalently bonded to the isothiocyanate group of FITC through a secondary imino group to obtain fluorescent cellulose nanocrystals (FITC-CNs). The absolute ζ-potential and dispersion stability of FITC-CNs (FITC-SCNs and FITC-RCNs) were improved, which also promoted the increase in the fluorescence quantum yield. FITC-RCNs had a fluorescence quantum yield of 30.7%, and FITC-SCNs had a morphological advantage (better dispersion, etc.), resulting in a higher fluorescence quantum yield of 35.9%. Cell cytotoxicity experiments demonstrated that the process of FITC-CNs entering mouse osteoblasts (MC3T3) did not destroy the cell membrane, showing good biocompatibility. On the other hand, FITC-CNs with good dispersibility can significantly enhance poly(vinyl alcohol) (PVA) and poly(lactic acid) (PLA); their mechanical properties were improved (the highest sample reached to 243%) and their fluorescent properties were imparted. This study provides a simple surface functionalization method to produce high-luminance fluorescent materials for bioimaging, multifunctional nanoenhancement/dispersion marking, and anticounterfeiting materials.
Collapse
Affiliation(s)
- Xue-Meng Fan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Hangzhou 310018 , China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Duan-Chao Wang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Haitao Lin
- School of Biological and Chemical Engineering , Guangxi University of Science and Technology , Liuzhou 545006 , China
| | - Chun-Xia Tang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo N2L 3G1 , Ontario , Canada
| |
Collapse
|
38
|
Wang N, Yu X, Deng T, Zhang K, Yang R, Li J. Two-Photon Excitation/Red Emission, Ratiometric Fluorescent Nanoprobe for Intracellular pH Imaging. Anal Chem 2019; 92:583-587. [DOI: 10.1021/acs.analchem.9b04782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinyan Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
39
|
Shazali NAH, Zaidi NE, Ariffin H, Abdullah LC, Ghaemi F, Abdullah JM, Takashima I, Nik Abd Rahman NMA. Characterization and Cellular Internalization of Spherical Cellulose Nanocrystals (CNC) into Normal and Cancerous Fibroblasts. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3251. [PMID: 31590332 PMCID: PMC6803863 DOI: 10.3390/ma12193251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The aim was to isolate cellulose nanocrystals (CNC) from commercialized oil palm empty fruit bunch cellulose nanofibre (CNF) through sulphuric acid hydrolysis and explore its safeness as a potential nanocarrier. Successful extraction of CNC was confirmed through a field emission scanning electron microscope (FESEM) and attenuated total reflection Fourier transmission infrared (ATR-FTIR) spectrometry analysis. For subsequent cellular uptake study, the spherical CNC was covalently tagged with fluorescein isothiocyanate (FITC), resulting in negative charged FITC-CNC nanospheres with a dispersity (Ð) of 0.371. MTT assay revealed low degree cytotoxicity for both CNC and FITC-CNC against C6 rat glioma and NIH3T3 normal fibroblasts up to 50 µg/mL. FITC conjugation had no contribution to the particle's toxicity. Through confocal laser scanning microscope (CLSM), synthesized FITC-CNC manifested negligible cellular accumulation, indicating a poor non-selective adsorptive endocytosis into studied cells. Overall, an untargeted CNC-based nanosphere with less cytotoxicity that posed poor selectivity against normal and cancerous cells was successfully synthesized. It can be considered safe and suitable to be developed into targeted nanocarrier.
Collapse
Affiliation(s)
- Nur Aima Hafiza Shazali
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorzaileen Eileena Zaidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hidayah Ariffin
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Bioprocess, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ferial Ghaemi
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jafri Malin Abdullah
- Brain Mapping and Neuroinformatics Unit, Centre for Neuroscience Services and Research (P3Neuro), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Nik Mohd Afizan Nik Abd Rahman
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
40
|
Cui Y, Huang H, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y. Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization. Carbohydr Polym 2019; 223:115102. [PMID: 31426952 DOI: 10.1016/j.carbpol.2019.115102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Cellulose nanocrystals (CNCs) are a novel type of natural nanomaterials that have attracted tremendous research interest for various applications especially in the biomedical fields owing to their natural origin, biodegradable potential, remarkable biocompatibility and massive reactive hydroxyl groups. In this work, a novel strategy has been developed for fabrication of luminescent CNCs with aggregation-induced emission (AIE) feature for the first time through a facile one-step Ce(IV) redox polymerization for direct surface grafting of AIE dye (PhE) and hydrophilic monomer Poly(ethylene glycol) monomethyl ether acrylate (PEGMA) on CNCs. Various characterization techniques would demonstrate the successful preparation of resultant CNC-PhE-PEGMA with uniform nanoscale size, remarkable fluorescent properties and extremely low cytotoxicity. Furthermore, compared with conventional modification strategy of CNCs, Ce(IV) redox polymerization only need moderate temperature and can operate in aqueous solution utilizing surface hydroxyl groups of CNCs as polymerization activity sites. More importantly, CNC-PhE-PEGMA show desirable fluorescent properties and can be used for cell dyeing, indicating their potential for biomedical applications.
Collapse
Affiliation(s)
- Yi Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, PR China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
41
|
Alimohammadzadeh R, Osong SH, Rafi AA, Dahlström C, Cordova A. Sustainable Surface Engineering of Lignocellulose and Cellulose by Synergistic Combination of Metal-Free Catalysis and Polyelectrolyte Complexes. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900018. [PMID: 31565387 PMCID: PMC6607423 DOI: 10.1002/gch2.201900018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Indexed: 06/10/2023]
Abstract
A sustainable strategy for synergistic surface engineering of lignocellulose and cellulose fibers derived from wood by synergistic combination of metal-free catalysis and renewable polyelectrolyte (PE) complexes is disclosed. The strategy allows for improvement and introduction of important properties such as strength, water resistance, and fluorescence to the renewable fibers and cellulosic materials. For example, the "green" surface engineering significantly increases the strength properties (up to 100% in Z-strength) of chemi-thermomechanical pulp (CTMP) and bleached sulphite pulp (BSP)-derived sheets. Next, performing an organocatalytic silylation with a nontoxic organic acid makes the corresponding lignocellulose and cellulose sheets hydrophobic. A selective color modification of polysaccharides is developed by combining metal-free catalysis and thiol-ene click chemistry. Next, fluorescent PE complexes based on cationic starch (CS) and carboxymethylcellulose (CMC) are prepared and used for modification of CTMP or BSP in the presence of a metal-free catalyst. Laser-scanning confocal microscopy reveals that the PE-strength additive is evenly distributed on the CTMP and heterogeneously on the BSP. The fluorescent CS distribution on the CTMP follows the lignin distribution of the lignocellulosic fibers.
Collapse
Affiliation(s)
- Rana Alimohammadzadeh
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Sinke H. Osong
- Department of Chemical EngineeringMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Abdolrahim A. Rafi
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Christina Dahlström
- Department of Chemical EngineeringMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| | - Armando Cordova
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10851 70SundsvallSweden
| |
Collapse
|
42
|
Aalbers GJW, Boott CE, D’Acierno F, Lewis L, Ho J, Michal CA, Hamad WY, MacLachlan MJ. Post-modification of Cellulose Nanocrystal Aerogels with Thiol–Ene Click Chemistry. Biomacromolecules 2019; 20:2779-2785. [DOI: 10.1021/acs.biomac.9b00533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guus J. W. Aalbers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Charlotte E. Boott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Francesco D’Acierno
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lev Lewis
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Joseph Ho
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Carl A. Michal
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wadood Y. Hamad
- FPInnovations, 2665 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark J. MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
43
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Meschini S, Pellegrini E, Maestri CA, Condello M, Bettotti P, Condello G, Scarpa M. In vitro toxicity assessment of hydrogel patches obtained by cation‐induced cross‐linking of rod‐like cellulose nanocrystals. J Biomed Mater Res B Appl Biomater 2019; 108:687-697. [DOI: 10.1002/jbm.b.34423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Stefania Meschini
- National Center for Drug Research and EvaluationIstituto Superiore di Sanità Rome Italy
| | - Evelin Pellegrini
- National Center for Drug Research and EvaluationIstituto Superiore di Sanità Rome Italy
| | - Cecilia Ada Maestri
- Nanoscience Laboratory, Department of PhysicsUniversity of Trento Trento Italy
- Centre for Integrative BiologyUniversity of Trento Trento Italy
| | - Maria Condello
- National Center for Drug Research and EvaluationIstituto Superiore di Sanità Rome Italy
| | - Paolo Bettotti
- Nanoscience Laboratory, Department of PhysicsUniversity of Trento Trento Italy
| | - Giancarlo Condello
- Graduate Institute of Sports Training, Institute of Sports SciencesUniversity of Taipei Taipei Taiwan
| | - Marina Scarpa
- Nanoscience Laboratory, Department of PhysicsUniversity of Trento Trento Italy
| |
Collapse
|
45
|
Ye X, Wang H, Yu L, Zhou J. Aggregation-Induced Emission (AIE)-Labeled Cellulose Nanocrystals for the Detection of Nitrophenolic Explosives in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E707. [PMID: 31067707 PMCID: PMC6567080 DOI: 10.3390/nano9050707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022]
Abstract
Aggregation-induced emission (AIE) active cellulose nanocrystals (TPE-CNCs) were synthesized by attaching tetraphenylethylene (TPE) to cellulose nanocrystals (CNCs). The structure and morphology of TPE-CNCs were characterized by FT-IR, XRD, ζ-potential measurements, elemental analysis, TEM, atomic force microscopy (AFM), and dynamic laser light scattering (DLS). Fluorescent properties of TPE-CNCs were also further studied. Unlike aggregation-caused quenching (ACQ), TPE-CNCs emitted weak fluorescence in the dilute suspensions, while emitting efficiently in the aggregated states. The AIE mechanism of TPE-CNCs was attributed to the restriction of an intramolecular rotation (RIR) process in the aggregated states. TPE-CNCs displayed good dispersity in water and stable fluorescence, which was reported through the specific detection of nitrophenolic explosives in aqueous solutions by a fluorescence quenching assay. The fluorescence emissions of TPE-CNCs showed quantitative and sensitive responses to picric acid (PA), 2,4-dinitro-phenol (DNP), and 4-nitrophenol (NP), and the detection limits were 220, 250, and 520 nM, respectively. Fluorescence quenching occurred through a static mechanism via the formation of a nonfluorescent complex between TPE-CNCs and nitrophenolic analytes. A fluorescence lifetime measurement revealed that the quenching was a static process. The results demonstrated that TPE-CNCs were excellent sensors for the detection of nitrophenolic explosives in aqueous systems, which has great potential applications in chemosensing and bioimaging.
Collapse
Affiliation(s)
- Xiu Ye
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Haoying Wang
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Lisha Yu
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Jinping Zhou
- Department of Chemistry, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
46
|
Purington E, Bousfield D, Gramlich WM. Fluorescent Dye Adsorption in Aqueous Suspension to Produce Tagged Cellulose Nanofibers for Visualization on Paper. CELLULOSE (LONDON, ENGLAND) 2019; 26:5117-5131. [PMID: 31130782 PMCID: PMC6532663 DOI: 10.1007/s10570-019-02439-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Cellulose nanofibers (CNFs) have great potential to be a layer in packaging materials because of their good barrier properties. When paper is coated with CNFs, they are difficult to distinguish from the base sheet. This issue creates challenges when trying to determine where CNFs migrate relative to the paper fibers during coating and drying. A three- dimensional analysis is possible by using confocal laser scanning microscopy (CLSM) if CNFs can be tagged with fluorescently active groups. In this study, CNFs were fluorescently tagged through adsorption of fluorescent dyes such as fluorescein isothiocyanate (FITC) and thioflavin by mixing with CNFs in their native suspension followed by purification. The adsorbed dye remained attached during typical coating procedures, low pH values, and high ionic strengths, but not for high pH and in contact with acetone. CNFs were also covalently tagged with FITC following methods reported in the literature as a comparison to already established methods for tagging cellulose nanocrystals (CNCs). Images of never dried samples indicated that covalently tagging CNFs altered the state of the fines dispersion, while dye adsorption did not. Coatings of the adsorbed dye tagged CNFs on paper were successfully imaged by CLSM since the concentration of dye in the water phase was low enough to provide a good contrast between regions of CNFs and paper. With this method, the location and potential migration of CNFs coated on paper were successfully determined for the first time to the best of our knowledge. CNF based coatings with solids larger than 2.8% were found to have a distinct layer of CNFs at the paper surface with little CNFs penetrating into the paper structure, but lower solids result in significant penetration into the paper.
Collapse
Affiliation(s)
- Emilia Purington
- Department of Chemical and Biological Engineering, Paper Surface Science Program, University of Maine, Orono, ME 04469
| | - Douglas Bousfield
- Department of Chemical and Biological Engineering, Paper Surface Science Program, University of Maine, Orono, ME 04469
| | - William M Gramlich
- Department of Chemistry, Paper Surface Science Program, University of Maine, Orono, ME 04469
| |
Collapse
|
47
|
Sitterli A, Heinze T. Studies about reactive ene-functionalized dextran derivatives for Thiol-ene click reactions. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Zhao J, Ding L, Sui X, Mao Z, Xu H, Zhong Y, Zhang L, Chen Z, Wang B. Bio-based polymer colorants from nonaqueous reactive dyeing of regenerated cellulose for plastics and textiles. Carbohydr Polym 2019; 206:734-741. [DOI: 10.1016/j.carbpol.2018.11.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/16/2018] [Accepted: 11/17/2018] [Indexed: 01/24/2023]
|
49
|
Yunessnia lehi A, Shagholani H, Ghorbani M, Nikpay A, Soleimani lashkenari M, Soltani M. Chitosan nanocapsule-mounted cellulose nanofibrils as nanoships for smart drug delivery systems and treatment of avian trichomoniasis. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Xue Y, Wan Z, Ouyang X, Qiu X. Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1044-1051. [PMID: 30624925 DOI: 10.1021/acs.jafc.8b05286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lignin is a kind of natural fluorescent polymer material. However, the application based on the fluorescent property of lignin was rarely reported. Herein, a noncovalent lignin-based fluorescence resonance energy transfer (FRET) system was readily constructed by physical blending method with spirolactam rhodamine B (SRhB) and lignosulfonate (LS) as the acceptor and donor groups, respectively. The FRET behavior, self-assembly, and energy transfer mechanism of SRhB/LS composite were systematically studied. It was demonstrated that LS could be used as a convenient aptamer as energy donor to construct water-soluble ratiometric sensors because of its inherent property of intramicelle energy transfer cascades. Our results not only present a facile and general strategy for producing lignin-based functional material but also provide a fundamental understanding about lignin fluorescence to promote the functional and high-valued applications of lignin fluorescence characteristic.
Collapse
Affiliation(s)
- Yuyuan Xue
- College of Chemistry and Chemical Engineering , Taiyuan University of Technology , Taiyuan 030024 , P. R. China
| | | | | | | |
Collapse
|