1
|
Balyan P, Farah MA, Al-Anazi KM, Ali A. Monosaccharide-Mediated Glycoxidation of Bovine Serum Albumin and Its Prevention by Nigella sativa. ACS OMEGA 2024; 9:41722-41731. [PMID: 39398181 PMCID: PMC11465645 DOI: 10.1021/acsomega.4c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/10/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
The substantial rise in metabolic illnesses that has occurred in both developed and developing countries over the last three decades has been linked to an increase in sugar-added foods and sweetened beverage intake. The significance of advanced glycation end products (AGEs) in the pathophysiology of metabolic diseases related to modern nutrition is an emerging issue. Spices and herbs can potentially be potent AGE production inhibitors due to their high polyphenol content. The inhibitory activity of an aqueous extract of Nigella sativa seeds (NS) on glucose- and fructose-mediated glycation of bovine serum albumin (BSA) was investigated. The glycation of proteins and its prevention using NS were assessed using spectrophotometry, spectrofluorometrics, and electrophoretic techniques. Additionally, the NBT assay, DNPH assay, Ellman assay, and thioflavin T assay were used to observe the biochemical alterations caused by glycated BSA. Molecular docking was employed to dock the BSA active site residues with inhibitors. Our data showed that NS protects against glucose- and fructose-mediated glycation and aggregation in vitro by inhibiting the formation of fructosamine, protein carbonyl content, free sulfhydryl groups, and fluorescent AGEs. Furthermore, NS also inhibited the production of β-cross-amyloid aggregates in proteins. It was interesting to note that the inhibition was found to be significantly higher in the Glu-BSA system, although the glycation product formed in the Fru-BSA system was higher compared to the Glu-induced protein system. It can be concluded that, by inhibiting AGE production, oxidation, and aggregation of the protein, NS may be an effective antiglycation drug for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Prairna Balyan
- Department
of Life Sciences, University of Mumbai, Vidyanagari, Santacruz E, Mumbai 400098, India
| | - Mohammad Abul Farah
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Department
of Life Sciences, University of Mumbai, Vidyanagari, Santacruz E, Mumbai 400098, India
| |
Collapse
|
2
|
Saeed M, Shoaib A, Tasleem M, Al-Shammary A, Kausar MA, El Asmar Z, Abdelgadir A, Sulieman AME, Ahmed EH, Zahin M, Ansari IA. Role of Alkannin in the Therapeutic Targeting of Protein-Tyrosine Phosphatase 1B and Aldose Reductase in Type 2 Diabetes: An In Silico and In Vitro Evaluation. ACS OMEGA 2024; 9:36099-36113. [PMID: 39220541 PMCID: PMC11359625 DOI: 10.1021/acsomega.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Alkannin is a plant-derived naphthoquinone that is isolated from the Boraginaceae family plants. In our previous studies, we found that shikonin, which is the R-enantiomer of alkannin, has potent antidiabetic activity by inhibiting the action of the aldose reductase (AR) enzyme and the protein-tyrosine phosphatase 1B (PTP1B). Therefore, in this study, we aim to explore the antidiabetic effect of alkannin targeting PTP1B and AR by employing in silico and in vitro techniques. For in silico, we used different parameters such as ADMET analysis, molecular docking, MD simulation, Root Mean Square Deviation (RMSD), protein-ligand mapping, and free binding energy calculation. The in vitro evaluation was done by assessing the inhibitory activity and enzyme kinetics of PTP1B and AR inhibition by alkannin. The in silico studies indicate that alkannin possesses favorable pharmacological properties and possesses strong binding affinity for diabetes target proteins. Hydrogen bonds (Val297, Ala299, Leu300, and Ser302) and hydrophobic interactions (Trp20, Val47, Tyr48, Trp79, Trp111, Phe122, Trp219, Val297, Cys298, Ala299, Leu300, and Leu301) are established by the compound, which potentially improves specificity and aids in the stabilization of the protein-ligand complex. The results from in vitro studies show a potent dose-dependent PTP1B inhibitory activity with an IC50 value of 19.47 μM, and toward AR it was estimated at 22.77 μM. Thus, from the results it is concluded that a low IC50 value of alkannin for both PTP1B and AR along with favorable pharmacological properties and optimal intra-molecular interactions indicates its utilization as a potential drug candidate for the management of diabetes and its end complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Ambreen Shoaib
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Munazzah Tasleem
- Center
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
| | - Asma Al-Shammary
- Department
of Public Health, College of Public Health and Health Informatics, University of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan Kausar
- Department
of Biochemistry, College of Medicine, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Zeina El Asmar
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Abdelmuhsin Abdelgadir
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Abdel Moneim E. Sulieman
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Enas Haridy Ahmed
- University
of Ha’il, Faculty of Medicine
Anatomy Department, Ha’il, KSA, Ain Shams University, Faculty
of Medicine Anatomy and Embryology Department, Cairo 11566, Egypt
| | - Maryam Zahin
- James
Graham
Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | | |
Collapse
|
3
|
Sakolish C, Moyer HL, Tsai HHD, Ford LC, Dickey AN, Wright FA, Han G, Bajaj P, Baltazar MT, Carmichael PL, Stanko JP, Ferguson SS, Rusyn I. Analysis of reproducibility and robustness of a renal proximal tubule microphysiological system OrganoPlate 3-lane 40 for in vitro studies of drug transport and toxicity. Toxicol Sci 2023; 196:52-70. [PMID: 37555834 PMCID: PMC10613961 DOI: 10.1093/toxsci/kfad080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Microphysiological systems are an emerging area of in vitro drug development, and their independent evaluation is important for wide adoption and use. The primary goal of this study was to test reproducibility and robustness of a renal proximal tubule microphysiological system, OrganoPlate 3-lane 40, as an in vitro model for drug transport and toxicity studies. This microfluidic model was compared with static multiwell cultures and tested using several human renal proximal tubule epithelial cell (RPTEC) types. The model was characterized in terms of the functional transport for various tubule-specific proteins, epithelial permeability of small molecules (cisplatin, tenofovir, and perfluorooctanoic acid) versus large molecules (fluorescent dextrans, 60-150 kDa), and gene expression response to a nephrotoxic xenobiotic. The advantages offered by OrganoPlate 3-lane 40 as compared with multiwell cultures are the presence of media flow, albeit intermittent, and increased throughput compared with other microfluidic models. However, OrganoPlate 3-lane 40 model appeared to offer only limited (eg, MRP-mediated transport) advantages in terms of either gene expression or functional transport when compared with the multiwell plate culture conditions. Although OrganoPlate 3-lane 40 can be used to study cellular uptake and direct toxic effects of small molecules, it may have limited utility for drug transport studies. Overall, this study offers refined experimental protocols and comprehensive comparative data on the function of RPETCs in traditional multiwell culture and microfluidic OrganoPlate 3-lane 40, information that will be invaluable for the prospective end-users of in vitro models of the human proximal tubule.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Allison N Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas 77843, USA
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Maria T Baltazar
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Safety & Environmental Assurance Centre (SEAC), Unilever, Bedfordshire MK44 1LQ, UK
| | - Jason P Stanko
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
4
|
Fernández-Puente E, Martín-Prieto E, Márquez CM, Palomero J. Effect of RONS-Induced Intracellular Redox Homeostasis in 6-NBDG/Glucose Uptake in C2C12 Myotubes and Single Isolated Skeletal Muscle Fibres. Int J Mol Sci 2023; 24:ijms24098082. [PMID: 37175789 PMCID: PMC10179233 DOI: 10.3390/ijms24098082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The glucose uptake in skeletal muscle is essential to produce energy through ATP, which is needed by this organ to maintain vital functions. The impairment of glucose uptake compromises the metabolism and function of skeletal muscle and other organs and is a feature of diabetes, obesity, and ageing. There is a need for research to uncover the mechanisms involved in the impairment of glucose uptake in skeletal muscle. In this study, we adapted, developed, optimised, and validated a methodology based on the fluorescence glucose analogue 6-NBDG, combined with a quantitative fluorescence microscopy image analysis, to determine the glucose uptake in two models of skeletal muscle cells: C2C12 myotubes and single fibres isolated from muscle. It was proposed that reactive oxygen and nitrogen species (RONS) and redox homeostasis play an important role in the modulation of intracellular redox signalling pathways associated with glucose uptake. In this study, we prove that the prooxidative intracellular redox environment under oxidative eustress produced by RONS such as hydrogen peroxide and nitric oxide improves glucose uptake in skeletal muscle cells. However, when oxidation is excessive, oxidative distress occurs, and cellular viability is compromised, although there might be an increase in the glucose uptake. Based on the results of this study, the determination of 6-NBDG/glucose uptake in myotubes and skeletal muscle cells is feasible, validated, and will contribute to improve future research.
Collapse
Affiliation(s)
- Escarlata Fernández-Puente
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eva Martín-Prieto
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Carlos Manuel Márquez
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Palomero
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
5
|
Gurumayum S, Bharadwaj S, Sheikh Y, Barge SR, Saikia K, Swargiary D, Ahmed SA, Thakur D, Borah JC. Taxifolin-3-O-glucoside from Osbeckia nepalensis Hook. mediates antihyperglycemic activity in CC1 hepatocytes and in diabetic Wistar rats via regulating AMPK/G6Pase/PEPCK signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115936. [PMID: 36403743 DOI: 10.1016/j.jep.2022.115936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osbeckia nepalensis Hook. f. is an ICMR documented plant well known for its antidiabetic uses among the folk people of Northeast Region of India. In-depth study with scientific substantiation of the plant may uphold the therapeutic potential against the treatment of type 2 diabetes mellitus (T2DM). AIM OF THE STUDY The present study evaluates the traditionally claimed prophylactic potential of O. nepalensis and its extracts along with the isolated compound taxifolin-3-O-glucoside (TG) against the downregulation of T2DM related hepatic gluconeogenesis through in vitro, in vivo and in silico conditions as a means of ameliorating hyperglycemia. MATERIALS AND METHODS Antidiabetic potential of O. nepalensis was carried out in both CC1 hepatocytes (in vitro) and STZ-induced diabetic male Wistar rats (in vivo). Enriched bioactive fraction and bioactive molecules were isolated through bioactivity-guided fractionation, yielding two major molecules, taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside. The bioactivity of taxifolin-3-O-glucoside was validated through immunoblotting techniques aided by in silico molecular docking and simulations. RESULTS Methanolic extract of O. nepalensis and taxifolin-3-O-glucoside (TG) isolated thereof enhanced the uptake of glucose in CC1 hepatocytes and downregulates the gluconeogenic enzymes (G6Pase and PEPCK) and its related transcription factors (FOXO1, HNF4α and PGC1α) through the stimulation of AMPK phosphorylation in in vitro condition. Moreover, in in vivo experiments, the in vitro most active fraction BuSFr1 (consisting of the two active major compounds taxifolin-3-O-glucoside and quercitin-3-O-rhamnoside) exhibited a substantial decrease in elevated blood glucose level and increase the glucose tolerance as well as plasma insulin level. In silico molecular docking and simulations for TG with the protein G6Pase inferred the docking sites and stability and showed taxifolin-3-O-glucoside as more potent and non-toxic as compared to quercitin-3-O-rhamnoside. CONCLUSION The traditionally claimed antidiabetic effect of O. nepalensis has been proved to be effective in lowering the blood glucose level through in vitro, in vivo and in silico analysis which will pave a way for the development of antidiabetic phytopharmaceutical drugs which can be validated through further clinical studies.
Collapse
Affiliation(s)
- Shalini Gurumayum
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India; Department of Biotechnology, Gauhati University, Guwahati, 14, Assam, India
| | - Simanta Bharadwaj
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Yunus Sheikh
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Sagar R Barge
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, India
| | - Deepsikha Swargiary
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Semim Akhtar Ahmed
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Institute of Advanced Study in Science and Technology, India
| | - Jagat C Borah
- Chemical Biology Laboratory 1, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
6
|
Lee HH, Jeong GW, Ye BJ, Yoo EJ, Son KS, Kim DK, Park HK, Kang BH, Lee-Kwon W, Kwon HM, Choi SY. TonEBP in Myeloid Cells Promotes Obesity-Induced Insulin Resistance and Inflammation Through Adipose Tissue Remodeling. Diabetes 2022; 71:2557-2571. [PMID: 36170666 PMCID: PMC9862453 DOI: 10.2337/db21-1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/20/2022] [Indexed: 02/05/2023]
Abstract
The phenotypic and functional plasticity of adipose tissue macrophages (ATMs) during obesity plays a crucial role in orchestration of adipose and systemic inflammation. Tonicity-responsive enhancer binding protein (TonEBP) (also called NFAT5) is a stress protein that mediates cellular responses to a range of metabolic insults. Here, we show that myeloid cell-specific TonEBP depletion reduced inflammation and insulin resistance in mice with high-fat diet-induced obesity but did not affect adiposity. This phenotype was associated with a reduced accumulation and a reduced proinflammatory phenotype of metabolically activated macrophages, decreased expression of inflammatory factors related to insulin resistance, and enhanced insulin sensitivity. TonEBP expression was elevated in the ATMs of obese mice, and Sp1 was identified as a central regulator of TonEBP induction. TonEBP depletion in macrophages decreased induction of insulin resistance-related genes and promoted induction of insulin sensitivity-related genes under obesity-mimicking conditions and thereby improved insulin signaling and glucose uptake in adipocytes. mRNA expression of TonEBP in peripheral blood mononuclear cells was positively correlated with blood glucose levels in mice and humans. These findings suggest that TonEBP in macrophages promotes obesity-associated systemic insulin resistance and inflammation, and downregulation of TonEBP may induce a healthy metabolic state during obesity.
Collapse
Affiliation(s)
- Hwan Hee Lee
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Gyu Won Jeong
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byeong Jin Ye
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Eun Jin Yoo
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Keoung Sun Son
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Kyung Park
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byoung Heon Kang
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyug Moo Kwon
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Corresponding author: Soo Youn Choi, , or Hyug Moo Kwon,
| | - Soo Youn Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department of Biology, Jeju National University, Jeju, Republic of Korea
- Corresponding author: Soo Youn Choi, , or Hyug Moo Kwon,
| |
Collapse
|
7
|
Hydrogen Sulfide Regulates Irisin and Glucose Metabolism in Myotubes and Muscle of HFD-Fed Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11071369. [PMID: 35883859 PMCID: PMC9311985 DOI: 10.3390/antiox11071369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Irisin, a novel myokine, is secreted by the muscle following proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) and is considered a novel regulator of glucose homeostasis. Cystathionine γ-lyase (CSE) produces hydrogen sulfide (H2S) and is involved in glucose homeostasis. We examined the hypothesis that H2S deficiency leads to decreased FNDC5 and irisin secretion, and thereby alters glucose metabolism. High-fat diet-fed mice exhibited elevated blood glucose and significantly reduced levels of CSE, H2S, and PGC-1α, with decreased FNDC5/irisin levels and increased oxidative stress in the muscle compared with those of normal diet-fed mice (control). High glucose or palmitate decreases CSE/PGC-1α/FNDC5 levels and glucose uptake in myotubes. Inhibitors (propargylglycine and aminooxyacetate) of H2S producing enzymes or CSE siRNA significantly decreased levels of H2S and FNDC5 along with PGC-1α; similar H2S-deficient conditions also resulted in decreased GLUT4 and glucose uptake. The levels of H2S, PGC-1α, and FNDC5 and glucose uptake were significantly upregulated after treatment with l-cysteine or an H2S donor. Myoblast differentiation showed upregulation of PGC-1α and FNDC5, which was consistent with the increased expression of CSE/H2S. These findings suggest that the upregulation of H2S levels can have beneficial effects on glucose homeostasis via activation of the PGC-1α/FNDC5/irisin signaling pathway.
Collapse
|
8
|
Chen X, Daniels NA, Cottrill D, Cao Y, Wang X, Li Y, Shriwas P, Qian Y, Archer MW, Whitticar NB, Jahan I, Nunemaker CS, Guo A. Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism. Diabetes Metab Syndr Obes 2021; 14:759-772. [PMID: 33658814 PMCID: PMC7917315 DOI: 10.2147/dmso.s284295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion. METHODS Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca2+]i using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis. RESULTS Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca2+]i of INS-1832/13 cells were diminished after the compound treatment. CONCLUSION The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca2+]i and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
Collapse
Affiliation(s)
- Xiaozhuo Chen
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Athens, OH, 45701, USA
| | - Nigel A Daniels
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Department of Specialty Medicine, Athens, OH, 45701, USA
| | - David Cottrill
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanyang Cao
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Xuan Wang
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yunsheng Li
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Pratik Shriwas
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
| | - Yanrong Qian
- The Edison Biotechnology Institute, Athens, OH, 45701, USA
| | - Michael W Archer
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Ishrat Jahan
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
| | - Craig S Nunemaker
- The Diabetes Institute at Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Athens, OH, 45701, USA
- Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Craig S Nunemaker Department of Biomedical Sciences, 1 Ohio University, Athens, OH, 45701, USATel +1 740-593-2387Fax +1 740-593-4795 Email
| | - Aili Guo
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, Sacramento, CA, 95817, USA
- Correspondence: Aili Guo Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, PSSB, G400, 4150 V St., Sacramento, CA, 95817, USATel +1 916-734-3730Fax +1 916-734-2292 Email
| |
Collapse
|
9
|
Naghiaee Y, Didehdar R, Pourrajab F, Rahmanian M, Heiranizadeh N, Mohiti A, Mohiti-Ardakani J. Metformin downregulates miR223 expression in insulin-resistant 3T3L1 cells and human diabetic adipose tissue. Endocrine 2020; 70:498-508. [PMID: 32970287 DOI: 10.1007/s12020-020-02459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
AIMS AND DESIGNS Metformin, an anti-diabetic drug, is the first line medication for the treatment of type 2 diabetes mellitus and some studies show its relationship with micro-RNAs. This study set up to determine the effect of metformin on miR223 expression and content of AKT/GLUT4 proteins in insulin resistant signaling in 3T3L1 cells and adipocyte of human diabetic patients. MATERIALS AND METHODS Subcutaneous adipose tissues were taken from newly diagnosed diabetic patients (HOMA-IR > 1.8), before and after three months treatment with 500 mg of metformin twice a day. Cellular homogenate was prepared and miR223 expression and AKT/GLUT4 protein expression were determined by quantitative real-time PCR and western blotting. The results were compared to insulin resistant 3T3L1 adipocytes that were treated with 10 mM Metformin. RESULTS MiR223 expression was significantly overexpressed both in insulin-resistant 3T3L1 adipocytes compared to non-insulin resistant adipocytes and in human diabetic adipose tissue, compared to non-diabetics (P value < 0.01). Metformin treatment downregulated miR223 expression in both adipocytes and human diabetic adipose tissue. In contrast the IRS/PI3-K/AKT pathway signaling components, Akt and GLUT4 increased in insulin-resistant 3T3L1 adipocytes and human diabetic adipose tissue after three months of metformin treatment. CONCLUSIONS Metformin reduced insulin resistance in adipocytes by reduction of miR223 expression and improving of IRS/Akt/GLUT4 signaling pathways. Plasma miR223 expression of human diabetic patients was reduced by metformin treatment. These results point to a novel mechanism of miR223 in insulin resistance.
Collapse
Affiliation(s)
- Yousof Naghiaee
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Didehdar
- Department of Biochemistry, Faculty of Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pourrajab
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Department of Endocrinology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Naeime Heiranizadeh
- Department of General Surgery, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azra Mohiti
- Department of Oral Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Mohiti-Ardakani
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Stadlbauer V, Lanzerstorfer P, Neuhauser C, Weber F, Stübl F, Weber P, Wagner M, Plochberger B, Wieser S, Schneckenburger H, Weghuber J. Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation: High Throughput or High Content? Int J Mol Sci 2020; 21:E7964. [PMID: 33120934 PMCID: PMC7662403 DOI: 10.3390/ijms21217964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Due to the global rise of type 2 diabetes mellitus (T2DM) in combination with insulin resistance, novel compounds to efficiently treat this pandemic disease are needed. Screening for compounds that induce the translocation of glucose transporter 4 (GLUT4) from the intracellular compartments to the plasma membrane in insulin-sensitive tissues is an innovative strategy. Here, we compared the applicability of three fluorescence microscopy-based assays optimized for the quantitation of GLUT4 translocation in simple cell systems. An objective-type scanning total internal reflection fluorescence (TIRF) microscopy approach was shown to have high sensitivity but only moderate throughput. Therefore, we implemented a prism-type TIR reader for the simultaneous analysis of large cell populations grown in adapted microtiter plates. This approach was found to be high throughput and have sufficient sensitivity for the characterization of insulin mimetic compounds in live cells. Finally, we applied confocal microscopy to giant plasma membrane vesicles (GPMVs) formed from GLUT4-expressing cells. While this assay has only limited throughput, it offers the advantage of being less sensitive to insulin mimetic compounds with high autofluorescence. In summary, the combined implementation of different fluorescence microscopy-based approaches enables the quantitation of GLUT4 translocation with high throughput and high content.
Collapse
Affiliation(s)
- Verena Stadlbauer
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (F.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (F.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Cathrina Neuhauser
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (F.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| | - Florian Weber
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria; (F.W.); (B.P.)
| | - Flora Stübl
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (F.S.)
| | - Petra Weber
- Institute of Applied Research, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany; (P.W.); (M.W.); (H.S.)
| | - Michael Wagner
- Institute of Applied Research, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany; (P.W.); (M.W.); (H.S.)
| | - Birgit Plochberger
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria; (F.W.); (B.P.)
| | - Stefan Wieser
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
| | - Herbert Schneckenburger
- Institute of Applied Research, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany; (P.W.); (M.W.); (H.S.)
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (F.S.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
| |
Collapse
|
11
|
Zhang J, Chen B, Liang J, Han J, Zhou L, Zhao R, Liu H, Dai H. Lanostane Triterpenoids with PTP1B Inhibitory and Glucose-Uptake Stimulatory Activities from Mushroom Fomitopsis pinicola Collected in North America. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10036-10049. [PMID: 32840371 DOI: 10.1021/acs.jafc.0c04460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A chemical investigation on the fruiting bodies of Fomitopsis pinicola led to the isolation and identification of 28 lanostane triterpenoids including 11 new compounds (1-11) and 17 known analogues (12-28). Their structures were elucidated by extensive one-dimensional NMR, two-dimensional NMR, and MS spectra. All isolates were tested for their anti-inflammatory activity, protein tyrosine phosphatase 1B (PTP1B) inhibitory activity in vitro, and effect on glucose uptake in insulin-resistant HepG2 cells. Compounds 1, 4, 22, 23, and 27 inhibited the nitric oxide released from the LPS-induced RAW 264.7 cell assay with IC50 values in the range of 21.4-27.2 μM. Compounds 18, 22, 23, and 28 showed strong PTP1B inhibitory activity with IC50 values in the range of 20.5-29.9 μM, comparable to that of the positive control of oleanolic acid (15.0 μM). Compounds 18 and 22 were confirmed to be good competitive inhibitors of PTP1B by kinetic analysis. In addition, compounds 18, 22, and 28 were found to stimulate glucose uptake in the insulin-resistant HepG2 cells in the dose from 6.25 to 100 μM. These findings indicated the potential of F. pinicola in the development of functional food or medicine for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Jinjin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jack Liang
- Eastern Health Center, 6801 Mission Street, Suite 208, Daly City 35206, California, United States
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ruilin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Descending Expression of miR320 in Insulin-Resistant Adipocytes Treated with Ascending Concentrations of Metformin. Biochem Genet 2020; 58:661-676. [PMID: 32367399 DOI: 10.1007/s10528-020-09964-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Some miRNAs are supposed to play a role in insulin resistance and metabolic disorders. Such miRNAs can be differentially expressed in response to a pharmacologic intervention for insulin resistance as a biomarker/risk factor for insulin resistance. This study aimed at determining the effect of Metformin on miR320 expression in insulin-resistant (IR) adipocytes. The 3T3L1 cells were expanded in DMEM, differentiated into adipocytes by differentiating medium, became resistant to insulin, and then were treated with ascending concentrations of Metformin. Quantitative real-time PCR was performed to profile the miR320 expression in 3T3L1 adipocytes, IR adipocytes, and Metformin-treated IR adipocytes. Compared to the normal adipocytes, IR adipocytes exhibited a significantly higher level of miR320 expression, however, in response to Metformin graded concentrations, IR adipocytes down-regulated miR320 and were almost at normal level. The maximum effect of Metformin was at 10 mM. In IR adipocytes, miR320 expression is over-expressed which can be down-regulated by Metformin treatment. The findings provide some information on a potentially new marker to determine insulin resistance and to predict response to insulin resistance therapy.
Collapse
|
13
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
14
|
Cheng Y, Shabir G, Li X, Fang L, Xu L, Zhang H, Li E. Development of a deep-red fluorescent glucose-conjugated bioprobe for in vivo tumor targeting. Chem Commun (Camb) 2020; 56:1070-1073. [PMID: 31872832 DOI: 10.1039/c9cc07363a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A C1-type d-glucose-conjugated fluorescent probe Glu-1-O-DCSN was synthesized and showed deep-red emission at 685 nm with a Stokes shift of up to 150 nm in DMSO. In in vitro live cell imaging, Glu-1-O-DCSN exhibited similar and competitive uptake behaviours to d-glucose and was selectively located in mitochondria. Furthermore, Glu-1-O-DCSN was successfully employed for in vivo hypermetabolic tumor targeting.
Collapse
Affiliation(s)
- Yinwei Cheng
- Department of Biochemistry and Molecular Biology, Comprehensive Building, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Guo S, Wang L, Chen D, Jiang B. Effects of a natural PTP1B inhibitor from Rhodomela confervoides on the amelioration of fatty acid-induced insulin resistance in hepatocytes and hyperglycaemia in STZ-induced diabetic rats. RSC Adv 2020; 10:3429-3437. [PMID: 35497760 PMCID: PMC9048848 DOI: 10.1039/c9ra10660j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
PTP1B is a key negative regulator of insulin signaling transduction, and the inhibition of PTP1B has emerged as a potential therapeutic strategy to treat T2DM. 3,4-Dibromo-5-(2-bromo-6-(ethoxymethyl)-3,4-dihydroxybenzyl)benzene-1,2-diol (BPN), a natural bromophenol isolated from marine red alga Rhodomela confervoides, was found to inhibit PTP1B activity in our previous study. Herein, we identified that BPN functioned as a competitive PTP1B inhibitor and enhanced phosphorylation of IRβ, IRS-1 and Akt in palmitate acid-induced insulin-resistant HepG2 cells. Moreover, 2-deoxyglucose uptake technology-based characterization demonstrated that BPN could stimulate glucose uptake in HepG2 cells. Furthermore, the effects of BPN against oxidative stress were investigated and showed that BPN attenuated oxidative stress by attenuating ROS generation. Finally, long-term oral administration of BPN at dose of 20 mg kg−1 significantly reduced blood glucose levels in streptozotocin-induced diabetic mice and no visible toxic effects were observed. Our work is thus expected to provide a natural uncharged PTP1B inhibitor that could be used as a potential lead compound for further research. A natural bromophenol BPN was identified as a competitive PTP1B inhibitor both in vitro and in vivo.![]()
Collapse
Affiliation(s)
- Shuju Guo
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Dong Chen
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
16
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
17
|
Abstract
Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary ‘moonlighting’ functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.
Collapse
|
18
|
Parsanathan R, Jain SK. Hydrogen sulfide increases glutathione biosynthesis, and glucose uptake and utilisation in C 2C 12 mouse myotubes. Free Radic Res 2018; 52:288-303. [PMID: 29378451 DOI: 10.1080/10715762.2018.1431626] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Diabetic patients have lower blood concentrations of hydrogen sulfide (H2S), L-cysteine (LC), and glutathione (GSH). Using C2C12 mouse myotubes as a model, this study investigates the hypothesis that the beneficial effects of LC supplementation are mediated by upregulation of the H2S status under diabetic conditions. Results show that exogenous administration of sodium hydrosulfide (NaHS, 10 or 20 µM; 6 hours), a H2S donor, significantly (p < .05) upregulates the gene expression of cystathionine-γ-lyase (CSE), LC transporter (Slc7a11/xCT), and the genes involved in GSH biosynthesis. Additionally, it reduces homocysteine (HCys), reactive oxygen species (ROS) production, and enhances cellular LC, H2S, and glucose uptake and utilisation in myoblasts. The use of CSE siRNA to induce deficient endogenous H2S production causes an increase in H2O2, ROS, HCys levels, and downregulation of GSH biosynthesis pathway enzymes. In additional, CSE knockdown downregulates glucose transporter type 4 (GLUT4) and gene expression of its key transcription factors, and reduces glucose uptake in C2C12 myotubes. CSE knockdown cells showed specific increases in the protein S-glutathionylation of LC transporter and GLUT4 along with increased total protein S-glutathionylation. Taken together, evidence from this study provides molecular insights into the importance of the CSE/H2S system in maintaining the cellular glutathione and glucose homeostasis in C2C12 myotubes.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- a Department of Pediatrics , Louisiana State University Health Sciences Centre , Shreveport , LA , USA
| | - Sushil K Jain
- a Department of Pediatrics , Louisiana State University Health Sciences Centre , Shreveport , LA , USA
| |
Collapse
|
19
|
Vormann MK, Gijzen L, Hutter S, Boot L, Nicolas A, van den Heuvel A, Vriend J, Ng CP, Nieskens TTG, van Duinen V, de Wagenaar B, Masereeuw R, Suter-Dick L, Trietsch SJ, Wilmer M, Joore J, Vulto P, Lanz HL. Nephrotoxicity and Kidney Transport Assessment on 3D Perfused Proximal Tubules. AAPS JOURNAL 2018; 20:90. [DOI: 10.1208/s12248-018-0248-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
|
20
|
Maslanka R, Kwolek-Mirek M, Zadrag-Tecza R. Consequences of calorie restriction and calorie excess for the physiological parameters of the yeast Saccharomyces cerevisiae cells. FEMS Yeast Res 2018; 17:4628043. [PMID: 29145638 DOI: 10.1093/femsyr/fox087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Glucose plays an important role in cell metabolism and has an impact on cellular physiology. Changes in glucose availability may strongly influence growth rate of the cell size, cell metabolism and the rate of generation of cellular by-products, such as reactive oxygen species. The positive effect of low glucose concentration conditions-calorie restriction is observed in a wide range of species, including the Saccharomyces cerevisiae yeast, yet little is known about the effect of high glucose concentrations-calorie excess. Such analysis seems to be particularly important due to recently common problem of diabetes and obesity. The effect of glucose on morphological and physiological parameters of the yeast cell was conducted using genetic alteration (disruption of genes involved in glucose signalling) and calorie restriction and calorie excess conditions. The results show a significant relationship among extracellular glucose concentration, cell size and reactive oxygen species generation in yeast cells. Furthermore, the results obtained through the use of mutant strains with disorders in glucose signalling pathways suggest that the intracellular level of glucose is more important than its extracellular concentration. These data also suggest that the calorie excess as a factor, which has a significant impact on cell physiology, requires further comprehensive analyses.
Collapse
Affiliation(s)
- Roman Maslanka
- University of Rzeszow, Faculty of Biology and Agriculture, Department of Biochemistry and Cell Biology, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Magdalena Kwolek-Mirek
- University of Rzeszow, Faculty of Biology and Agriculture, Department of Biochemistry and Cell Biology, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- University of Rzeszow, Faculty of Biology and Agriculture, Department of Biochemistry and Cell Biology, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
21
|
Manna P, Achari AE, Jain SK. 1,25(OH)2-vitamin D3 upregulates glucose uptake mediated by SIRT1/IRS1/GLUT4 signaling cascade in C2C12 myotubes. Mol Cell Biochem 2017; 444:103-108. [DOI: 10.1007/s11010-017-3235-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
|
22
|
Palmer CS, Henstridge DC, Yu D, Singh A, Balderson B, Duette G, Cherry CL, Anzinger JJ, Ostrowski M, Crowe SM. Emerging Role and Characterization of Immunometabolism: Relevance to HIV Pathogenesis, Serious Non-AIDS Events, and a Cure. THE JOURNAL OF IMMUNOLOGY 2017; 196:4437-44. [PMID: 27207806 DOI: 10.4049/jimmunol.1600120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/20/2016] [Indexed: 01/18/2023]
Abstract
Immune cells cycle between a resting and an activated state. Their metabolism is tightly linked to their activation status and, consequently, functions. Ag recognition induces T lymphocyte activation and proliferation and acquisition of effector functions that require and depend on cellular metabolic reprogramming. Likewise, recognition of pathogen-associated molecular patterns by monocytes and macrophages induces changes in cellular metabolism. As obligate intracellular parasites, viruses manipulate the metabolism of infected cells to meet their structural and functional requirements. For example, HIV-induced changes in immune cell metabolism and redox state are associated with CD4(+) T cell depletion, immune activation, and inflammation. In this review, we highlight how HIV modifies immunometabolism with potential implications for cure research and pathogenesis of comorbidities observed in HIV-infected patients, including those with virologic suppression. In addition, we highlight recently described key methods that can be applied to study the metabolic dysregulation of immune cells in disease states.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia;
| | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Di Yu
- Laboratory of Molecular Immunomodulation, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease and Research, Indian Institute of Science, Bangalore 560012, India
| | - Brad Balderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Gabriel Duette
- Instituto de Investigaciones Biomedicas en Retrovirus y SIDA, Facultad de Medicina, C1121ABG Buenos Aires, Argentina
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Victoria 3004, Australia; School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2000, South Africa; and
| | - Joshua J Anzinger
- Department of Microbiology, University of the West Indies, Mona, Jamaica
| | - Matias Ostrowski
- Instituto de Investigaciones Biomedicas en Retrovirus y SIDA, Facultad de Medicina, C1121ABG Buenos Aires, Argentina
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia; Infectious Diseases Department, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| |
Collapse
|
23
|
Kwak HJ, Choi HE, Cheon HG. 5-LO inhibition ameliorates palmitic acid-induced ER stress, oxidative stress and insulin resistance via AMPK activation in murine myotubes. Sci Rep 2017; 7:5025. [PMID: 28694473 PMCID: PMC5504062 DOI: 10.1038/s41598-017-05346-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/02/2017] [Indexed: 01/10/2023] Open
Abstract
Leukotriene B4 (LTB4) production via the 5-lipoxygenase (5-LO) pathway contributes to the development of insulin resistance in adipose and hepatic tissues, but the role of LTB4 in skeletal muscle is relatively unknown. Here, the authors investigated the role of LTB4 in C2C12 myotubes in palmitic acid (PA)-induced ER stress, inflammation and insulin resistance. PA (750 μM) evoked lipotoxicity (ER stress, oxidative stress, inflammation and insulin resistance) in association with LTB4 production. 5-LO inhibition reduced all the lipotoxic effects induced by PA. On the other hand, PA did not induce cysteinyl leukotrienes (CysLTs), which themselves had no effect on ER stress and inflammation. The beneficial effects of 5-LO suppression from PA-induced lipotoxicity were related with AMPK activation. In ob/ob mice, once daily oral administration of zileuton (50, 100 mg/kg) for 5 weeks improved insulin resistance, increased AMPK phosphorylation, and reduced LTB4 and ER stress marker expression in skeletal muscle. These results show that 5-LO inhibition by either zileuton or 5-LO siRNA protects C2C12 myotubes from PA-induced lipotoxicity, at least partly via AMPK activation, and suggest that the in vivo insulin-sensitizing effects of zileuton are in part attributable to its direct action on skeletal muscle via LTB4 downregulation followed by AMPK activation.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- Department of Pharmacology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmacology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea. .,Gachon Medical Research Institute, Gil Medical Center, Incheon, 21565, Republic of Korea.
| |
Collapse
|
24
|
Hosokawa K, Hamada Y, Fujiya A, Murase M, Maekawa R, Niwa Y, Izumoto T, Seino Y, Tsunekawa S, Arima H. S100B impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase in rodent muscle cells. Am J Physiol Endocrinol Metab 2017; 312:E471-E481. [PMID: 28174179 DOI: 10.1152/ajpendo.00328.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
S100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Glycolytic metabolites were investigated by enzyme assays or metabolome analysis, and insulin signaling was assessed by Western blot analysis. Enzyme activity and poly(ADP-ribosyl)ation of GAPDH was evaluated by an enzyme assay and immunoprecipitation followed by dot blot with an anti-poly(ADP-ribose) antibody, respectively. S100B significantly decreased glucose consumption, glucose analog uptake, and lactate production in L6 cells, in either the presence or absence of insulin. In contrast, S100B had no effect on glycogen accumulation and insulin signaling. Metabolome analysis revealed that S100B increased the concentration of glycolytic intermediates upstream of GAPDH. S100B impaired GAPDH activity and increased poly(ADP-ribosyl)ated GAPDH proteins. The effects of S100B on glucose metabolism were mostly canceled by a poly(ADP-ribose) polymerase inhibitor. Similar results were obtained in C2C12 myotube cells. We conclude that S100B as a humoral factor may impair glycolysis in muscle cells independent of insulin action, and the effect may be attributed to the inhibition of GAPDH activity from enhanced poly(ADP-ribosyl)ation of the enzyme.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Enzyme Induction/drug effects
- Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
- Glycolysis/drug effects
- Hexokinase/chemistry
- Hexokinase/genetics
- Hexokinase/metabolism
- Insulin/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/enzymology
- Myoblasts/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerases/chemistry
- Poly(ADP-ribose) Polymerases/metabolism
- Protein Processing, Post-Translational/drug effects
- Rats
- Recombinant Proteins/metabolism
- S100 Calcium Binding Protein beta Subunit/genetics
- S100 Calcium Binding Protein beta Subunit/metabolism
Collapse
Affiliation(s)
- Kaori Hosokawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Hamada
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | - Atsushi Fujiya
- Department of Diabetology and Nephrology, Ogaki Municipal Hospital, Ogaki City, Gifu Prefecture, Japan
| | - Masatoshi Murase
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuya Maekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Niwa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Izumoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; and
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
25
|
Cho H, Um J, Lee JH, Kim WH, Kang WS, Kim SH, Ha HH, Kim YC, Ahn YK, Jung DW, Williams DR. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes. Sci Rep 2017; 7:44186. [PMID: 28272459 PMCID: PMC5341156 DOI: 10.1038/srep44186] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly impacts on human health and patient numbers are predicted to rise. Discovering novel drugs and targets for treating T2DM is a research priority. In this study, we investigated targeting of the glycolysis enzyme, enolase, using the small molecule ENOblock, which binds enolase and modulates its non-glycolytic ‘moonlighting’ functions. In insulin-responsive cells ENOblock induced enolase nuclear translocation, where this enzyme acts as a transcriptional repressor. In a mammalian model of T2DM, ENOblock treatment reduced hyperglycemia and hyperlipidemia. Liver and kidney tissue of ENOblock-treated mice showed down-regulation of known enolase target genes and reduced enolase enzyme activity. Indicators of secondary diabetic complications, such as tissue apoptosis, inflammatory markers and fibrosis were inhibited by ENOblock treatment. Compared to the well-characterized anti-diabetes drug, rosiglitazone, ENOblock produced greater beneficial effects on lipid homeostasis, fibrosis, inflammatory markers, nephrotoxicity and cardiac hypertrophy. ENOblock treatment was associated with the down-regulation of phosphoenolpyruvate carboxykinase and sterol regulatory element-binding protein-1, which are known to produce anti-diabetic effects. In summary, these findings indicate that ENOblock has potential for therapeutic development to treat T2DM. Previously considered as a ‘boring’ housekeeping gene, these results also implicate enolase as a novel drug target for T2DM.
Collapse
Affiliation(s)
- Haaglim Cho
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Wan Seok Kang
- Cell Regeneration Research Center, Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, 671 Jebong-ro, Dong-gu, Gwangju, 501-757, Korea
| | - So Hun Kim
- Division of Endocrinology and Metabolism, Inha University School of Medicine, 400-711, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 540950, Republic of Korea
| | - Yong-Chul Kim
- Drug Discovery Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Young-Keun Ahn
- Cell Regeneration Research Center, Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, 671 Jebong-ro, Dong-gu, Gwangju, 501-757, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
26
|
Manna P, Achari AE, Jain SK. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch Biochem Biophys 2017; 615:22-34. [DOI: 10.1016/j.abb.2017.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
|
27
|
Nguyen PH, Choi HS, Ha TKQ, Seo JY, Yang JL, Jung DW, Williams DR, Oh WK. Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation. Bioorg Med Chem Lett 2017; 27:40-44. [DOI: 10.1016/j.bmcl.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
28
|
Seo YS, Shon MY, Kong R, Kang OH, Zhou T, Kim DY, Kwon DY. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:231-240. [PMID: 27260409 DOI: 10.1016/j.jep.2016.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Meyer, Araliaceae) has been used as a traditional medicine for thousands of years for the treatment of a wide variety of diseases, including diabetes. Processed ginseng named Black ginseng exhibits more potent biological activities than white and red ginseng. The aim of this study was to investigate the effects of black ginseng extract (GBG05-FF) on hyperglycemia and glucose tolerance in streptozotocin (STZ)-induced diabetic mice. MATERIALS AND METHODS Black ginseng was produced by a repeated steaming and drying process, subsequent extraction with 70% ethanol, filtration, and lyophilization. The effect of GBG05-FF on glucose uptake and related protein expression and phosphorylation were determined in C2C12 cells. Furthermore, we evaluated the anti-diabetic effects of GBG05-FF in STZ-induced diabetic mice. RESULTS GBG05-FF significantly (p<0.05) increased glucose uptake in C2C12 myotubes via AMPK, Sirt1 and PI3-K pathway. In addition, GBG05-FF improved the fasting blood glucose levels and glucose tolerance in STZ-induced diabetic mice. GBG05-FF decreased blood parameters such as glycated hemoglobin, triglyceride and total cholesterol. Quantitative RT-PCR assay revealed that in the STZ-induced diabetic mice treated with GBG05-FF, the expression of hepatic genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase)), glycogenolysis (liver glycogen phosphorylase (LGP)) and glycogenesis (glycogen synthase (GS)) was suppressed, while the expression of the genes involved in glucose uptake (glucose transporter (GLUT) 1, GLUT4) and β-oxidation (acyl-CoA oxidase (ACO), carnitine palmitoyl transferase 1a (CPT1a), mitochondrial medium chain acyl-CoA dehydrogenase (MCAD)) in muscle were increased. GBG05-FF delayed diabetes-associated muscle atrophy by activating mTOR. The major bioactive compounds including ginsenoside Rg1, Rg3(S), Rg3(R), Rg5, Rk1 and Rh4 were evaluated for glucose uptake effect in C2C12 myotubes; the data indicated that Rh4 significantly (p<0.05) increased glucose uptake. CONCLUSION Collectively, the results suggested that GBG05-FF is a potentially useful agent for treatment of diabetes by increasing glucose uptake.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Glycated Hemoglobin/metabolism
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Insulin/blood
- Liver/drug effects
- Liver/enzymology
- Male
- Mice, Inbred ICR
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Panax/chemistry
- Panax/classification
- Phosphorylation
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Signal Transduction/drug effects
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Mi-Yae Shon
- International Ginseng and Herb Research Institute, Geumsan, 312-804, Republic of Korea
| | - Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Do-Yeon Kim
- International Ginseng and Herb Research Institute, Geumsan, 312-804, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea.
| |
Collapse
|
29
|
Liemburg-Apers DC, Schirris TJJ, Russel FGM, Willems PHGM, Koopman WJH. Mitoenergetic Dysfunction Triggers a Rapid Compensatory Increase in Steady-State Glucose Flux. Biophys J 2016; 109:1372-86. [PMID: 26445438 DOI: 10.1016/j.bpj.2015.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/13/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022] Open
Abstract
ATP can be produced in the cytosol by glycolytic conversion of glucose (GLC) into pyruvate. The latter can be metabolized into lactate, which is released by the cell, or taken up by mitochondria to fuel ATP production by the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) system. Altering the balance between glycolytic and mitochondrial ATP generation is crucial for cell survival during mitoenergetic dysfunction, which is observed in a large variety of human disorders including cancer. To gain insight into the kinetic properties of this adaptive mechanism we determined here how acute (30 min) inhibition of OXPHOS affected cytosolic GLC homeostasis. GLC dynamics were analyzed in single living C2C12 myoblasts expressing the fluorescent biosensor FLII(12)Pglu-700μδ6 (FLII). Following in situ FLII calibration, the kinetic properties of GLC uptake (V1) and GLC consumption (V2) were determined independently and used to construct a minimal mathematical model of cytosolic GLC dynamics. After validating the model, it was applied to quantitatively predict V1 and V2 at steady-state (i.e., when V1 = V2 = Vsteady-state) in the absence and presence of OXPHOS inhibitors. Integrating model predictions with experimental data on lactate production, cell volume, and O2 consumption revealed that glycolysis and mitochondria equally contribute to cellular ATP production in control myoblasts. Inhibition of OXPHOS induced a twofold increase in Vsteady-state and glycolytic ATP production flux. Both in the absence and presence of OXPHOS inhibitors, GLC was consumed at near maximal rates, meaning that GLC consumption is rate-limiting under steady-state conditions. Taken together, we demonstrate here that OXPHOS inhibition increases steady-state GLC uptake and consumption in C2C12 myoblasts. This activation fully compensates for the reduction in mitochondrial ATP production, thereby maintaining the balance between cellular ATP supply and demand.
Collapse
Affiliation(s)
- Dania C Liemburg-Apers
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, Nijmegen, The Netherlands; Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, Nijmegen, The Netherlands; Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Systems Biology and Bioenergetics, Radboud University and Radboud University Medical Center, Nijmegen, The Netherlands; Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Ha BG, Park JE, Shon YH. Stimulatory Effect of Balanced Deep-Sea Water Containing Chitosan Oligosaccharides on Glucose Uptake in C2C12 Myotubes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:475-484. [PMID: 27215753 DOI: 10.1007/s10126-016-9709-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Deep-sea water (DSW) and chitosan oligosaccharides (COS) have recently drawn much attention because of their potential medical and pharmaceutical applications. Balanced DSW (BDSW) was prepared by mixing DSW mineral extracts and desalinated water. This study investigated the effects of BDSW, COS, and BDSW containing COS on glucose uptake and their mode of action in mature C2C12 myotubes. BDSW and COS increased glucose uptake in a dose-dependent manner. BDSW containing COS synergistically increased glucose uptake; this was dependent on the activation of insulin receptor substrate 1 and protein kinase C in insulin-dependent signaling pathways as well as liver kinase B1, AMP-activated protein kinase, and mammalian target of rapamycin in insulin-independent signaling pathways. Quantitative real-time polymerase chain reaction revealed that the expressions of the following genes related to glucose uptake were elevated: glucose transporter 4 (GLUT4), insulin-responsive aminopeptidase, and vesicle-associated membrane protein 2 for abundant proteins of GLUT4 storage vesicles (GSVs); syntaxin 4 and soluble N-ethylmaleimide-sensitive factor attachment protein 23 for trafficking between the plasma membrane and GSVs; and syntaxin 6 and syntaxin 16 for trafficking between GSVs and the trans-Golgi network. Taken together, these results suggest BDSW containing COS has a greater stimulatory effect on glucose uptake than BDSW or COS alone. Moreover, this effect is mediated by the stimulation of diverse signaling pathways via the activation of main signaling molecules related to GSV trafficking.
Collapse
Affiliation(s)
- Byung Geun Ha
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea
| | - Jung-Eun Park
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea
| | - Yun Hee Shon
- Bio-Medical Research Institute, Kyungpook National University Hospital, 50 Samduk 2ga Jung-gu, Daegu, 700-721, South Korea.
| |
Collapse
|
31
|
The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice. Biomed Pharmacother 2016; 81:111-119. [DOI: 10.1016/j.biopha.2016.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
|
32
|
Jo A, Jung J, Kim E, Park SB. A high-content screening platform with fluorescent chemical probes for the discovery of first-in-class therapeutics. Chem Commun (Camb) 2016; 52:7433-45. [PMID: 27166145 DOI: 10.1039/c6cc02587k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phenotypic screening has emerged as a promising approach to discover novel first-in-class therapeutic agents. Rapid advances in phenotypic screening systems facilitate a high-throughput unbiased evaluation of compound libraries. However, limited sets of phenotypic changes are utilized in high-content screening, which require extensive genetic engineering. Therefore, it is critical to develop new chemical probes that can reflect phenotypic changes in any type of cells, especially primary cells, tissues, and organisms. Herein, we introduce our continuous efforts in the development of fluorescent bioprobes and their application to phenotypic screening. In addition, we emphasize the importance of the phenotype-based approach in conjunction with target identification at an early stage of research to accelerate the discovery of therapeutics with new modes of action.
Collapse
Affiliation(s)
- Ala Jo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | | | | | | |
Collapse
|
33
|
Zhang X, Tian J, Li J, Huang L, Wu S, Liang W, Zhong L, Ye J, Ye F. A novel protein tyrosine phosphatase 1B inhibitor with therapeutic potential for insulin resistance. Br J Pharmacol 2016; 173:1939-49. [PMID: 26990621 DOI: 10.1111/bph.13483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Insulin-sensitizing drugs are currently limited, and identifying new candidates is a challenge. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling, and its inhibition is anticipated to improve insulin resistance. Here, the pharmacological properties of CX08005, a novel PTP1B inhibitor, were investigated. EXPERIMENTAL APPROACH Recombinant hPTP1B protein was used to study enzyme activity and mode of inhibition. Docking simulation explored the interactions between CX08005 and PTP1B. Insulin sensitivity was evaluated by glucose tolerance test (GTT) in diet-induced obese (DIO) and KKAy mice; glucose-stimulated insulin secretion (GSIS), homeostasis model assessment of insulin resistance index (HOMA-IR) and whole-body insulin sensitivity (ISWB ) were also determined. A hyperinsulinaemic-euglycaemic clamp was performed to evaluate insulin-stimulated glucose disposal in both whole-body and insulin-sensitive tissues. Furthermore, CX08005's effects on muscle, fat and liver cells were determined in vitro. KEY RESULTS CX08005 competitively inhibited PTP1B by binding to the catalytic P-loop through hydrogen bonds. In DIO mice, CX08005 ameliorated glucose intolerance dose-dependently (50-200 mg·kg(-1) ·day(-1) ) and decreased the HOMA-IR. In KKAy mice, CX08005 (50 mg·kg(-1) ·day(-1) ) improved glucose intolerance, GSIS, ISWB and hyperglycaemia. CX08005 also enhanced insulin-stimulated glucose disposal, increased glucose infusion rate and glucose uptake in muscle and fat in DIO mice (hyperinsulinaemic-euglycaemic clamp test). CX08005 enhanced insulin-induced glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and increased phosphorylation of IRβ/IRS1 and downstream molecules in hepatocytes in a dose- and insulin-dependent manner respectively. CONCLUSIONS AND IMPLICATIONS Our results strongly suggest that CX08005 directly enhances insulin action in vitro and in vivo through competitive inhibition of PTP1B.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liwei Huang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Song Wu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Liang
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangwei Zhong
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University, Louisiana, LA, USA
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Kwak HJ, Choi HE, Jang J, Park SK, Bae YA, Cheon HG. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism. Cell Signal 2016; 28:788-97. [PMID: 27049873 DOI: 10.1016/j.cellsig.2016.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
Bortezomib is an anti-cancer agent that induces ER stress by inhibiting proteasomal degradation. However, the effects of bortezomib appear to be dependent on its concentration and cellular context. Since ER stress is closely related to type 2 diabetes, the authors examined the effects of bortezomib on palmitic acid (PA)-induced ER stress in C2C12 murine myotubes. At low concentrations (<20nM), bortezomib protected myotubes from PA (750μM)-induced ER stress and inflammation. Either tunicamycin or thapsigargin-induced ER stress was also reduced by bortezomib. In addition, reduced glucose uptake and Akt phosphorylation induced by PA were prevented by co-treating bortezomib (10nM) both in the presence or absence of insulin. These protective effects of bortezomib were found to be associated with reduced JNK phosphorylation. Furthermore, bortezomib-induced AMPK phosphorylation, and the protective effects of bortezomib were diminished by AMPK knockdown, suggesting that AMPK activation underlies the effects of bortezomib. The in vivo administration of bortezomib at nontoxic levels (at 50 or 200μg/kg, i.p.) twice weekly for 5weeks to ob/ob mice improved insulin resistance, increased AMPK phosphorylation, reduced ER stress marker levels, and JNK inhibition in skeletal muscle. The study shows that bortezomib reduces ER stress, inflammation, and insulin resistance in vitro and in vivo, and suggests that bortezomib has novel applications for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Jinsun Jang
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Soo Kyung Park
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Young-An Bae
- Department of Microbiology, Gachon University, Incheon 406-799, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Incheon 405-760, Republic of Korea.
| |
Collapse
|
35
|
Lanzerstorfer P, Stadlbauer V, Chtcheglova LA, Haselgrübler R, Borgmann D, Wruss J, Hinterdorfer P, Schröder K, Winkler SM, Höglinger O, Weghuber J. Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy. Br J Pharmacol 2015; 171:5237-51. [PMID: 25039620 PMCID: PMC4262000 DOI: 10.1111/bph.12845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/18/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose Insulin stimulates the transport of glucose in target tissues by triggering the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Resistance to insulin, the major abnormality in type 2 diabetes, results in a decreased GLUT4 translocation efficiency. Thus, special attention is being paid to search for compounds that are able to enhance this translocation process in the absence of insulin. Experimental Approach Total internal reflection fluorescence (TIRF) microscopy was applied to quantify GLUT4 translocation in highly insulin-sensitive CHO-K1 cells expressing a GLUT4-myc-GFP fusion protein. Key Results Using our approach, we demonstrated GLUT4 translocation modulatory properties of selected substances and identified novel potential insulin mimetics. An increase in the TIRF signal was found to correlate with an elevated glucose uptake. Variations in the expression level of the human insulin receptor (hInsR) showed that the insulin mimetics identified stimulate GLUT4 translocation by a mechanism that is independent of the presence of the hInsR. Conclusions and Implications Taken together, the results indicate that TIRF microscopy is an excellent tool for the quantification of GLUT4 translocation and for identifying insulin mimetic drugs.
Collapse
Affiliation(s)
- Peter Lanzerstorfer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Wels, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli-Berg FM, Mauro C. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol 2015; 13:e1002202. [PMID: 26181372 PMCID: PMC4504715 DOI: 10.1371/journal.pbio.1002202] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/16/2015] [Indexed: 12/24/2022] Open
Abstract
Lactate has long been considered a “waste” by-product of cell metabolism, and it accumulates at sites of inflammation. Recent findings have identified lactate as an active metabolite in cell signalling, although its effects on immune cells during inflammation are largely unexplored. Here we ask whether lactate is responsible for T cells remaining entrapped in inflammatory sites, where they perpetuate the chronic inflammatory process. We show that lactate accumulates in the synovia of rheumatoid arthritis patients. Extracellular sodium lactate and lactic acid inhibit the motility of CD4+ and CD8+ T cells, respectively. This selective control of T cell motility is mediated via subtype-specific transporters (Slc5a12 and Slc16a1) that we find selectively expressed by CD4+ and CD8+ subsets, respectively. We further show both in vitro and in vivo that the sodium lactate-mediated inhibition of CD4+ T cell motility is due to an interference with glycolysis activated upon engagement of the chemokine receptor CXCR3 with the chemokine CXCL10. In contrast, we find the lactic acid effect on CD8+ T cell motility to be independent of glycolysis control. In CD4+ T helper cells, sodium lactate also induces a switch towards the Th17 subset that produces large amounts of the proinflammatory cytokine IL-17, whereas in CD8+ T cells, lactic acid causes the loss of their cytolytic function. We further show that the expression of lactate transporters correlates with the clinical T cell score in the synovia of rheumatoid arthritis patients. Finally, pharmacological or antibody-mediated blockade of subtype-specific lactate transporters on T cells results in their release from the inflammatory site in an in vivo model of peritonitis. By establishing a novel role of lactate in control of proinflammatory T cell motility and effector functions, our findings provide a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders. High levels of lactate that accumulate in chronic inflammatory sites can trigger unfavorable responses in infiltrating T cells; reducing T cells' sensitivity to lactate might offer therapeutic solutions to chronic inflammatory disorders. Acidity is a feature of inflammatory sites such as arthritic synovia, atherosclerotic plaques, and tumor microenvironments and results in part from the accumulation of lactate as a product of glycolysis under hypoxic conditions. Recently it has emerged that lactate may be more than just a bystander and might act to modulate the immune-inflammatory response. Here we report just such activity: lactate inhibits T cell motility by interfering with glycolysis that is required for T cells to migrate, it causes T cells to produce higher amounts of the proinflammatory cytokine IL-17, and it triggers loss of cytolytic activity. These phenomena are hallmark features of T cells in chronic inflammatory infiltrates. The functional changes depend on the expression of specific lactate transporters by different subsets of T cells, namely the sodium lactate transporter Slc5a12 in CD4+ T cells and the lactic acid transporter Slc16a1 in CD8+ T cells. We propose that T cells entering inflammatory sites sense high concentrations of lactate via their specific transporters. Loss of motility leads to their entrapment at the site, where through their increased production of inflammatory cytokines yet decreased cytolytic capacity, they add detrimentally to chronic inflammation. Targeting lactate transporters and/or metabolic pathways on T cells could deliver novel, invaluable therapeutics for the treatment of widespread chronic inflammatory disorders.
Collapse
Affiliation(s)
- Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Vidalba Rocher-Ros
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Fulvio D’Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Elliot J. Bland
- Queen Mary Innovation Ltd, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Chemical genetics and its application to moonlighting in glycolytic enzymes. Biochem Soc Trans 2015; 42:1756-61. [PMID: 25399602 DOI: 10.1042/bst20140201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycolysis is an ancient biochemical pathway that breaks down glucose into pyruvate to produce ATP. The structural and catalytic properties of glycolytic enzymes are well-characterized. However, there is growing appreciation that these enzymes participate in numerous moonlighting functions that are unrelated to glycolysis. Recently, chemical genetics has been used to discover novel moonlighting functions in glycolytic enzymes. In the present mini-review, we introduce chemical genetics and discuss how it can be applied to the discovery of protein moonlighting. Specifically, we describe the application of chemical genetics to uncover moonlighting in two glycolytic enzymes, enolase and glyceraldehyde dehydrogenase. This led to the discovery of moonlighting roles in glucose homoeostasis, cancer progression and diabetes-related complications. Finally, we also provide a brief overview of the latest progress in unravelling the myriad moonlighting roles for these enzymes.
Collapse
|
38
|
Nguyen PH, Ji DJ, Han YR, Choi JS, Rhyu DY, Min BS, Woo MH. Selaginellin and biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella tamariscina and their glucose uptake stimulatory effects. Bioorg Med Chem 2015; 23:3730-7. [DOI: 10.1016/j.bmc.2015.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 01/29/2023]
|
39
|
TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPARγ2. Sci Rep 2015; 5:10937. [PMID: 26042523 PMCID: PMC4455245 DOI: 10.1038/srep10937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023] Open
Abstract
TonEBP is a key transcription factor in cellular adaptation to hypertonic stress, and also in macrophage activation. Since TonEBP is involved in inflammatory diseases such as rheumatoid arthritis and atherosclerosis, we asked whether TonEBP played a role in adipogenesis and insulin resistance. Here we report that TonEBP suppresses adipogenesis and insulin signaling by inhibiting expression of the key transcription factor PPARγ2. TonEBP binds to the PPARγ2 promoter and blocks the epigenetic transition of the locus which is required for the activation of the promoter. When TonEBP expression is reduced, the epigenetic transition and PPARγ2 expression are markedly increased leading to enhanced adipogenesis and insulin response while inflammation is reduced. Thus, TonEBP is an independent determinant of adipose insulin sensitivity and inflammation. TonEBP is an attractive therapeutic target for insulin resistance in lieu of PPARγ agonists.
Collapse
|
40
|
|
41
|
Liu ZQ, Liu T, Chen C, Li MY, Wang ZY, Chen RS, Wei GX, Wang XY, Luo DQ. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicol Appl Pharmacol 2015; 285:61-70. [PMID: 25796170 DOI: 10.1016/j.taap.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China; College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Ting Liu
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Chuan Chen
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ming-Yan Li
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Zi-Yu Wang
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Ruo-Song Chen
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Gui-Xiang Wei
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Xiao-Yi Wang
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Du-Qiang Luo
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
42
|
Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. JOURNAL OF NATURAL PRODUCTS 2015; 78:34-42. [PMID: 25559759 DOI: 10.1021/np5005856] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As part of an ongoing search for new antidiabetic agents from medicinal plants, three new (2, 4, and 5) and two known selaginellin derivatives (1 and 3) were isolated from a methanol extract of Selaginella tamariscina. The structures of the new compounds were determined by spectroscopic data analysis. All isolates showed strong glucose uptake stimulatory effects in 3T3-L1 adipocyte cells at a concentration of 5 μM. Furthermore, these compounds were found to possess inhibitory effects on PTP1B enzyme activity with IC50 values ranging from 4.6 ± 0.1 to 21.6 ± 1.5 μM. Compound 2 showed the greatest potency, with an IC50 value of 4.6 ± 0.1 μM, when compared with the positive control (ursolic acid, IC50 = 3.5 ± 0.1 μM). Therefore, these selaginellin derivatives may have value as new lead compounds for the development of agents against type 2 diabetes.
Collapse
Affiliation(s)
- Phi-Hung Nguyen
- College of Pharmacy, Catholic University of Daegu , Gyeongsan 712-702, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Adams JP, Holder AL, Catchpole B. Recombinant canine single chain insulin analogues: Insulin receptor binding capacity and ability to stimulate glucose uptake. Vet J 2014; 202:436-42. [DOI: 10.1016/j.tvjl.2014.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
44
|
Zaman RT, Kosuge H, Pratx G, Carpenter C, Xing L, McConnell MV. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques. PLoS One 2014; 9:e108108. [PMID: 25233472 PMCID: PMC4169475 DOI: 10.1371/journal.pone.0108108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/19/2014] [Indexed: 12/02/2022] Open
Abstract
Background Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)–the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1) developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2) validating the system on ex vivo murine plaques. Methods A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG) and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose (6-NBDG), respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed. Results Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs) exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs) (2.6×104±1.4×103 vs. 5.4×103±1.3×103 A.U., P = 0.008). Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6×102±2.7×101 vs. 3.8×101±5.9 A.U., P = 0.002). The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs. Conclusions This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a promising novel fluorescent probe for detecting macrophage-rich atherosclerotic plaques.
Collapse
Affiliation(s)
- Raiyan T. Zaman
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Radiation Physics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Hisanori Kosuge
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Guillem Pratx
- Division of Radiation Physics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Colin Carpenter
- Division of Radiation Physics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lei Xing
- Division of Radiation Physics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael V. McConnell
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
45
|
Jung DW, Hong YJ, Kim SY, Kim WH, Seo S, Lee JE, Shen H, Kim YC, Williams DR. 5-Nitro-5'hydroxy-indirubin-3'oxime is a novel inducer of somatic cell transdifferentiation. Arch Pharm (Weinheim) 2014; 347:806-18. [PMID: 25363410 DOI: 10.1002/ardp.201400223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Patient-derived cell transplantation is an attractive therapy for regenerative medicine. However, this requires effective strategies to reliably differentiate patient cells into clinically useful cell types. Herein, we report the discovery that 5-nitro-5'hydroxy-indirubin-3'oxime (5'-HNIO) is a novel inducer of cell transdifferentiation. 5'-HNIO induced muscle transdifferentiation into adipogenic and osteogenic cells. 5'-HNIO was shown to inhibit aurora kinase A, which is a known cell fate regulator. 5'-HNIO produced a favorable level of transdifferentiation compared to other aurora kinase inhibitors and induced transdifferentiation across cell lineage boundaries. Significantly, 5'-HNIO treatment produced direct transdifferentiation without up-regulating potentially oncogenic induced pluripotent stem cell (iPSC) reprogramming factors. Thus, our results demonstrate that 5'-HNIO is an attractive molecular tool for cell transdifferentiation and cell fate research.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e102095. [PMID: 25013896 PMCID: PMC4094501 DOI: 10.1371/journal.pone.0102095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.
Collapse
|
47
|
Maeda A, Kai K, Ishii M, Ishii T, Akagawa M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK-Aymice. Mol Nutr Food Res 2014; 58:1177-89. [DOI: 10.1002/mnfr.201300675] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Ayumi Maeda
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Kenji Kai
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Megumi Ishii
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, and Global COE Program; University of Shizuoka; Shizuoka Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry; Division of Applied Life Science; Graduate School of Life and Environmental Sciences; Osaka Prefecture University; Sakai Japan
| |
Collapse
|
48
|
Jo A, Park J, Park SB. Exploiting the mechanism of cellular glucose uptake to develop an image-based high-throughput screening system in living cells. Chem Commun (Camb) 2013; 49:5138-40. [PMID: 23628794 DOI: 10.1039/c3cc41529e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biophysical understanding of cellular glucose uptake led us to the development of an image-based high-throughput screening system by using a fluorescent glucose bioprobe, GB2. The accuracy, robustness, and practicality of our image-based HTS system were demonstrated through the pilot screening and the subsequent in vitro confirmation.
Collapse
Affiliation(s)
- Ala Jo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
49
|
Nguyen PH, Yang JL, Uddin MN, Park SL, Lim SI, Jung DW, Williams DR, Oh WK. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. JOURNAL OF NATURAL PRODUCTS 2013; 76:2080-2087. [PMID: 24224843 DOI: 10.1021/np400533h] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As part of our ongoing search for new antidiabetic agents from medicinal plants, we found that a methanol extract of Morinda citrifolia showed potential stimulatory effects on glucose uptake in 3T3-L1 adipocyte cells. Bioassay-guided fractionation of this active extract yielded two new lignans (1 and 2) and three new neolignans (9, 10, and 14), as well as 10 known compounds (3-8, 11-13, and 15). The absolute configurations of compounds 9, 10, and 14 were determined by ECD spectra analysis. Compounds 3, 6, 7, and 15 showed inhibitory effects on PTP1B enzyme with IC50 values of 21.86 ± 0.48, 15.01 ± 0.20, 16.82 ± 0.42, and 4.12 ± 0.09 μM, respectively. Furthermore, compounds 3, 6, 7, and 15 showed strong stimulatory effects on 2-NBDG uptake in 3T3-L1 adipocyte cells. This study indicated the potential of compounds 3, 6, 7, and 15 as lead molecules for antidiabetic agents.
Collapse
Affiliation(s)
- Phi-Hung Nguyen
- College of Pharmacy, Chosun University , Gwangju 501-759, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice. Mar Drugs 2013; 11:4193-212. [PMID: 24172214 PMCID: PMC3853723 DOI: 10.3390/md11114193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water to give a final hardness of 500–2000. Mice given an HFD with BDSW showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that BDSW improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that BDSW recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with BDSW. BDSW increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. BDSW stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that BDSW has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake.
Collapse
|