1
|
Willans M, Hollings A, Boseley RE, Munyard T, Ellison GC, Hackett MJ. The application of X-ray fluorescence microscopy and micro-XANES spectroscopy to study neuro-metallomics. J Inorg Biochem 2025; 262:112744. [PMID: 39341704 DOI: 10.1016/j.jinorgbio.2024.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This early career research highlight provides a review of my own research program over the last decade, a time frame that encompasses my transition from postdoctoral fellowships to independent researcher. As an analytical chemist and applied spectroscopist, the central theme of my research program over this time has been protocol development at synchrotron facilities, with the main objective to investigate brain metal homeostasis during both brain health and brain disease. I will begin my review with an overview of brain metal homeostasis, before introducing analytical challenges associated with its study. I will then provide a brief summary of the two main X-ray techniques I have used to study brain metal homeostasis, X-ray fluorescence microscopy (XFM) and X-ray absorption near edge structure spectroscopy (XANES). The review then finishes with a summary of my main research contributions using these two techniques, put in the context of the results from others in the field.
Collapse
Affiliation(s)
- Meg Willans
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Ashley Hollings
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Rhiannon E Boseley
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Thomas Munyard
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Gaewyn C Ellison
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
2
|
Shao Y, Wang Y, Li X, Zhao D, Qin S, Shi Z, Wang Z. Dietary zinc supplementation in breeding pigeons improves the carcass traits of squabs through regulating antioxidant capacity and myogenic regulatory factor expression. Poult Sci 2023; 102:102809. [PMID: 37729680 PMCID: PMC10514450 DOI: 10.1016/j.psj.2023.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 09/22/2023] Open
Abstract
The purpose of this experiment was to explore the effects of zinc supplementation in breeding pigeons diet on carcass traits, meat quality, antioxidant capacity and mRNA expressions of myogenic regulatory factors of squabs. A total of 120 healthy White King pigeons were randomly assigned to 5 treatments, each involving 8 replicates. The experiment lasted for 46 d (18-d incubation period of eggs and 28-d growth period of squabs). The 5 groups were 0, 30, 60, 90, and 120 mg/kg zinc addition. Results showed that the 28-d body weight, breast muscle yield, zinc content in crop milk and myogenic factor 6 (MyF6) abundance of breast muscle were linearly increased (P < 0.050), but the abdominal fat yield linearly decreased (P = 0.040) with increasing dietary zinc supplementation. Both the linear (P < 0.050) and quadratic responses (P < 0.001) were observed in copper zinc superoxide dismutase (Cu-Zn SOD), total antioxidant capacity (T-AOC) and malondialdehyde (MDA) contents in liver and breast muscle. The 28-d body weight was increased by 90 mg/kg zinc supplementation (P < 0.05), and there is no significant difference between 90 and 120 mg/kg zinc addition. The breast muscle yield, Cu-Zn SOD and T-AOC contents in breast muscle and liver, zinc contents in crop milk and breast muscle, MyF6 mRNA expression in breast muscle were higher (P < 0.05) in the group supplemented with 120 mg/kg zinc than the control. The abdominal fat yield was numerically lowest, and MDA contents in breast muscle and liver were significantly lowest in the group fed 120 mg/kg zinc (P < 0.05). However, the meat quality traits were not affected (P > 0.05) by zinc supplementation, except for shear force. It should be stated dietary zinc supplementation at the level of 120 mg/kg for breeding pigeons increased body weight and breast muscle yield of squabs, which may be associated with the up-regulating MyF6 mRNA expression and antioxidant capacity in liver and breast muscle.
Collapse
Affiliation(s)
- Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yangyang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Xing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dongdong Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Shizhen Qin
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Zhaoguo Shi
- Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
3
|
Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z, Lei A. Cuproptosis: Harnessing Transition Metal for Cancer Therapy. ACS NANO 2023; 17:19581-19599. [PMID: 37820312 DOI: 10.1021/acsnano.3c07775] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Transition metal elements, such as copper, play diverse and pivotal roles in oncology. They act as constituents of metalloenzymes involved in cellular metabolism, function as signaling molecules to regulate the proliferation and metastasis of tumors, and are integral components of metal-based anticancer drugs. Notably, recent research reveals that excessive copper can also modulate the occurrence of programmed cell death (PCD), known as cuprotosis, in cancer cells. This modulation occurs through the disruption of tumor cell metabolism and the induction of proteotoxic stress. This discovery uncovers a mode of interaction between transition metals and proteins, emphasizing the intricate link between copper homeostasis and tumor metabolism. Moreover, they provide innovative therapeutic strategies for the precise diagnosis and treatment of malignant tumors. At the crossroads of chemistry and oncology, we undertake a comprehensive review of copper homeostasis in tumors, elucidating the molecular mechanisms underpinning cuproptosis. Additionally, we summarize current nanotherapeutic approaches that target cuproptosis and provide an overview of the available laboratory and clinical methods for monitoring this process. In the context of emerging concepts, challenges, and opportunities, we emphasize the significant potential of nanotechnology in the advancement of this field.
Collapse
Affiliation(s)
- Wuyin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Wentao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zishan Hang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Yueying Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, P. R. China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
4
|
Mehta R, Kumar S. ESIPT-based dual-emissive perimidine derivative as a rapid and sensitive sensor for Cu 2+ and Al 3+: Construction of memory device, 2-to-1 encoder and 1-to-2 decoder. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122471. [PMID: 36801732 DOI: 10.1016/j.saa.2023.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
An ESIPT based fluorescent perimidine derivative oPSDAN was developed and characterized by 1H NMR, 13C NMR and mass spectroscopy. The study of the photo-physical properties of the sensor unveiled its selectivity and sensitivity towards Cu2+ and Al3+ ions. The sensing of ions was accompanied by colorimetric change (for Cu2+) as well as emission turn-off response. The binding stoichiometries of sensor oPSDAN with Cu2+ ion and Al3+ ions were determined to be 2:1 and 1:1, respectively. The binding constants and detection limits for Cu2+ and Al3+ were calculated from the UV-vis and fluorescence titration profiles as, 7.1 × 104 M-1, 1.9 × 104 M-1 and 9.89 nM, 1.5 × 10-8 M, respectively. The mechanism was established by 1H NMR as well as mass titrations and was supported by DFT and TD-DFT calculations. The UV-vis and fluorescence spectral results were further utilized for construction of memory device, encoder and decoder. Sensor-oPSDAN was also tested for determining Cu2+ ions in drinking water.
Collapse
Affiliation(s)
- Ruhi Mehta
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India.
| |
Collapse
|
5
|
Wang Z, Zhao D, Qin S, Shi Z, Li X, Wang Y, Shao Y. Effects of Dietary Supplementation with Iron in Breeding Pigeons on the Blood Iron Status, Tissue Iron Content, and Full Expression of Iron-Containing Enzymes of Squabs. Biol Trace Elem Res 2022:10.1007/s12011-022-03530-x. [PMID: 36542305 DOI: 10.1007/s12011-022-03530-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
This study was aimed at investigating the effects of diet iron levels on the blood iron status, tissue iron content, mRNA levels, and the activity of iron-containing enzymes in different tissues of squabs. A total of 120 pairs of healthy Silver Feather King parental pigeons with similar average body weight and egg production were randomly divided into 5 groups with 8 replicates and 3 pairs of pigeons per replicate. The five groups of breeding pigeons were fed an iron-unsupplemented basal diet and basal diet supplemented with 75, 150, 300, and 600 mg iron/kg, respectively. The diets were fed in the form of granular feed based on corn, soybean meal, wheat, and sorghum. A broken line model was used for regression analysis. The results showed that plasma iron (PI), serum ferritin, iron contents in crop milk and liver, liver catalase (CAT) activity, and heart succinate dehydrogenase (SDH) activity were affected by iron levels (P < 0.05). And PI, serum ferritin, iron content in crop milk, and heart SDH activity increased quadratically (P < 0.05), but the iron content and CAT activity in the liver decreased quadratically (P < 0.005) as dietary iron level increased. According to the broken-line model of serum ferritin fitting (P < 0.002), the optimal dietary iron level of breeding pigeons was estimated to be 193 mg/kg. In conclusion, serum ferritin is a sensitive index to evaluate the iron requirement of the breeding pigeon with two squabs, and the recommended iron supplemental level is 193 mg/kg.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongdong Zhao
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Shizhen Qin
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Zhaoguo Shi
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Xing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yangyang Wang
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Liu Y, Zhang X, Lei S, Huang P, Lin J. In vivo ion visualization achieved by activatable organic photoacoustic probes. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Wang Y, Wei X, Liu JH, Wu CX, Zhang X, Chen ML, Wang JH. Cryogenic Laser Ablation in a Rapid Cooling Chamber Ensures Excellent Elemental Imaging in Fresh Biological Tissues. Anal Chem 2022; 94:8547-8553. [PMID: 35653437 DOI: 10.1021/acs.analchem.2c01736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laser ablation inductively coupled plasma mass spectrometry imaging of biologically significant targets largely relies on maintaining the original structures of samples. The temperature regulation capability of the ablation cell is crucial. Herein, a rapid cooling cryogenic sample cell (RCCSC) was developed. In the RCCSC chamber, the temperature reduces to -20 °C in 4 min with a minimum 10 h variation of ±0.1 °C at -26 °C. Improvements on the precision were achieved for the elements of interest in NIST 612 and spiked agarose gel under cryogenic conditions. The limits of detection improved by up to 1.57, 1.70, 3.26, and 1.33 fold for 63Cu, 66Zn, 57Fe, and 140Ce in agarose gel, respectively, were obtained under cryogenic conditions compared with those at room temperature. In a time period of testing (10 h), the cryogenic ablation maintains the native state of biological tissues with a high water content to ensure better elemental imaging by reducing thermal effects in ablation and suppressing evaporation of water. The rapid cooling cryogenic ablation significantly improves elemental imaging, as demonstrated by the imaging of various elements in coriander leaves. The present study may provide further insights into elemental distributions in fresh biological samples.
Collapse
Affiliation(s)
- Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jin-Hui Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Cheng-Xin Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
8
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Wang T, Bi M, Wu J, Li X, Meng Y, Yin Z, Hang W. Single-Cell Mass Spectrometry Imaging of TiO2 Nanoparticles with Subcellular Resolution. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Zhao Y, Cheng P, Yang H, Wang M, Meng D, Zhu Y, Zheng R, Li T, Zhang A, Tan S, Huang T, Bian J, Zhan X, Weiss PS, Yang Y. Towards High-Performance Semitransparent Organic Photovoltaics: Dual-Functional p-Type Soft Interlayer. ACS NANO 2022; 15:13220-13229. [PMID: 34932319 DOI: 10.1021/acsnano.1c02922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semitransparent organic photovoltaics (OPVs) have drawn significant attention for their promising potential in the field of building integrated photovoltaics such as energy-generating greenhouses. However, the conflict between the need to attain satisfying average visible transmittances for greenhouse applications and the need to maintain high power conversion efficiencies is limiting the commercialization of semitransparent OPVs. A major manifestation of this issue is the undermining of charge carrier extraction efficiency when opaque, visible-light-absorbing electrodes are substituted with semitransparent ones. Here, we incorporated a dual-function p-type compatible interlayer to modify the interface of the hole-transporting layer and the ultrathin electrode of the semitransparent devices. We find that the p-type interlayer not only enhances the charge carrier extraction of the electrode but also increases the light transmittance in the wavelength range of 400-450 nm, which covers most of the photosynthetic absorption spectrum. The modified semitransparent devices reach a power conversion efficiency of 13.7% and an average visible transmittance of 22.2%.
Collapse
Affiliation(s)
| | | | - Hangbo Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, China
| | | | | | | | - Tengfei Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | | - Jiming Bian
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, School of Physics, Dalian, 116024, China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
11
|
Fujishiro H, Sumino M, Sumi D, Umemoto H, Tsuneyama K, Matsukawa T, Yokoyama K, Himeno S. Spatial localization of cadmium and metallothionein in the kidneys of mice at the early phase of cadmium accumulation. J Toxicol Sci 2022; 47:507-517. [DOI: 10.2131/jts.47.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Miharu Sumino
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Hitomi Umemoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takehisa Matsukawa
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
12
|
Yu Y, Wang X, Jia X, Feng Z, Zhang L, Li H, He J, Shen G, Ding X. Aptamer Probes Labeled with Lanthanide-Doped Carbon Nanodots Permit Dual-Modal Fluorescence and Mass Cytometric Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102812. [PMID: 34719883 PMCID: PMC8693039 DOI: 10.1002/advs.202102812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/07/2021] [Indexed: 05/11/2023]
Abstract
High-dimensional imaging mass cytometry (IMC) enables simultaneous quantification of over 35 biomarkers on one tissue section. However, its limited resolution and ultralow acquisition speed remain major issues for general clinical application. Meanwhile, conventional immunofluorescence microscopy (IFM) allows sub-micrometer resolution and rapid identification of the region of interest (ROI), but only operates with low multiplicity. Herein, a series of lanthanide-doped blue-, green-, and red-fluorescent carbon nanodots (namely, B-Cdots(Ln1 ), G-Cdots(Ln2 ), and R-Cdots(Ln3 )) as fluorescence and mass dual-modal tags are developed. Coupled with aptamers, B-Cdots(159 Tb)-A10-3.2, G-Cdots(165 Ho)-AS1411, and R-Cdots(169 Tm)-SYL3C dual-functional aptamer probes, which are then multiplexed with commercially available Maxpar metal-tagged antibodies for analyzing clinical formalin-fixed, paraffin-embedded (FFPE) prostatic adenocarcinoma (PaC) tissue, are further synthesized. The rapid identification of ROI with IFM using fluorescence signals and subsequent multiplexed detection of in situ ROI with IMC using the same tissue section is demonstrated. Dual-modal probes save up to 90% IMC blind scanning time for a standard 3.5 mm × 3.5 mm overall image. Meanwhile, the IFM provides refined details and topological spatial distributions for the functional proteins at optical resolution, which compensates for the low resolution of the IMC imaging.
Collapse
Affiliation(s)
- Youyi Yu
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xin Wang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xiaolong Jia
- Department of UrologyNingbo First HospitalNingbo Hospital of Zhejiang UniversityNingboZhejiang Province315700China
| | - Zijian Feng
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Lulu Zhang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Hongxia Li
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jie He
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Guangxia Shen
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
13
|
Ungerer A, Staufer T, Schmutzler O, Körnig C, Rothkamm K, Grüner F. X-ray-Fluorescence Imaging for In Vivo Detection of Gold-Nanoparticle-Labeled Immune Cells: A GEANT4 Based Feasibility Study. Cancers (Basel) 2021; 13:5759. [PMID: 34830917 PMCID: PMC8616134 DOI: 10.3390/cancers13225759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The growing field of cellular therapies in regenerative medicine and oncology calls for more refined diagnostic tools that are able to investigate and monitor the function and success of said therapies. X-ray Fluorescence Imaging (XFI) can be applied for molecular imaging with nanoparticles, such as gold nanoparticles (GNPs), which can be used in immune cell tracking. We present a Monte Carlo simulation study on the sensitivity of detection and associated radiation dose estimations in an idealized setup of XFI in human-sized objects. Our findings demonstrate the practicability of XFI in human-sized objects, as immune cell tracking with a minimum detection limit of 4.4 × 105 cells or 0.86 μg gold in a cubic volume of 1.78 mm3 can be achieved. Therefore, our results show that the current technological developments form a good basis for high sensitivity XFI.
Collapse
Affiliation(s)
- Arthur Ungerer
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy and Radiation Oncology, Medical Faculty, University of Hamburg, Martinistraße 52, 20246 Hamburg, Germany; (A.U.); (K.R.)
- Universität Hamburg and Center for Free-Electron Laser Science (CFEL), Institute for Experimental Physics, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (O.S.); (C.K.)
| | - Theresa Staufer
- Universität Hamburg and Center for Free-Electron Laser Science (CFEL), Institute for Experimental Physics, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (O.S.); (C.K.)
| | - Oliver Schmutzler
- Universität Hamburg and Center for Free-Electron Laser Science (CFEL), Institute for Experimental Physics, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (O.S.); (C.K.)
| | - Christian Körnig
- Universität Hamburg and Center for Free-Electron Laser Science (CFEL), Institute for Experimental Physics, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (O.S.); (C.K.)
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy and Radiation Oncology, Medical Faculty, University of Hamburg, Martinistraße 52, 20246 Hamburg, Germany; (A.U.); (K.R.)
| | - Florian Grüner
- Universität Hamburg and Center for Free-Electron Laser Science (CFEL), Institute for Experimental Physics, Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (T.S.); (O.S.); (C.K.)
| |
Collapse
|
14
|
Synaptic Zn 2+ potentiates the effects of cocaine on striatal dopamine neurotransmission and behavior. Transl Psychiatry 2021; 11:570. [PMID: 34750356 PMCID: PMC8575899 DOI: 10.1038/s41398-021-01693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine's pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.
Collapse
|
15
|
Anissa Somrani, Mohamed Z, Hajji M, Hamzaoui AH. Removal of Aluminium from (Li+‒Al3+) Aqueous Solutions by Adsorption onto Chitosan. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x2105014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
17
|
Yu Y, Dang J, Liu X, Wang L, Li S, Zhang T, Ding X. Metal-Labeled Aptamers as Novel Nanoprobes for Imaging Mass Cytometry Analysis. Anal Chem 2020; 92:6312-6320. [PMID: 32208602 DOI: 10.1021/acs.analchem.9b05159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Imaging mass cytometry (IMC) is an emerging imaging technology that exploits the multiplexed analysis capabilities of the CyTOF mass cytometer to make spatially resolved measurements for tissue sections. In a comprehensive view of tissue composition and marker distribution, recent developments of IMC require highly sensitive, multiplexed assays. Approaching the sensitivity of the IMC technique, we designed a novel type of biocompatible metal-labeled aptamer nanoprobe (MAP), named 167Er-A10-3.2. The small molecular probe was synthesized by conjugating 167Er-polymeric pentetic acid (167Er-DTPA) with an RNA aptamer A10-3.2. For demonstration, 167Er-A10-3.2 was applied for observing protein spatial distribution on prostatic epithelium cell of paraffin embedded Prostatic adenocarcinoma (PaC) tissue sections by IMC technology. The 167Er-A10-3.2 capitalizes on the ability of the aptamer to specifically bind target cancer cells as well as the small size of 167Er-A10-3.2 can accommodate multiple aptamer binding antigen labeled at high density. The detection signal of 167Er-A10-3.2 probe was 3-fold higher than that of PSMA antibody probe for a targeted cell under lower temperature epitope retrieval (37 °C) of PaC tissue. Furthermore, we successfully demonstrated the simultaneously staining ability of aptamer probes in IMC analysis. The successful imaging acquisition using aptamers probes in IMC technology may offer opportunity for the diagnosis of malignancies in the future.
Collapse
Affiliation(s)
- Youyi Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingqi Dang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiao Liu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liping Wang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanhe Li
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ting Zhang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
18
|
Grijalba N, Legrand A, Holler V, Bouvier-Capely C. A novel calibration strategy based on internal standard-spiked gelatine for quantitative bio-imaging by LA-ICP-MS: application to renal localization and quantification of uranium. Anal Bioanal Chem 2020; 412:3113-3122. [PMID: 32193588 PMCID: PMC7200646 DOI: 10.1007/s00216-020-02561-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 10/31/2022]
Abstract
Mass spectrometry imaging (MSI) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been employed for the elemental bio-distribution and quantification of uranium (U) in histological tissue sections of rodent kidneys. Kidneys were immediately immersed into 4% paraformaldehyde (PFA) solution for 24 h, Tissue-Tek O.C.T. Compound embedded and stored at - 80 °C until cutting in a cryostat, and mounted in gel-covered glass slides. In order to assure complete ablation of sample, sample preparation and laser conditions were carefully optimized. In this work, a new analytical methodology is presented for performing quantitative laser ablation analyses based on internal standard (thulium, Tm)-spiked gelatine (10% m/v) for correction of matrix effects, lack of tissue homogeneity, and instrumental drift. In parallel, matrix-matched laboratory standards, dosed at different concentrations of U, were prepared from a pool of rat kidneys. The quantitative images of cryo-sections revealed heterogeneous distribution of uranium within the renal tissue, because the cortical concentration was up to 120-fold higher than the medullary concentration. Graphical abstract.
Collapse
Affiliation(s)
- Nagore Grijalba
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France
| | - Alexandre Legrand
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France
| | - Valerie Holler
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France.
| | - Céline Bouvier-Capely
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE/SESANE/LRSI, BP17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
19
|
Environmetallomics: Systematically investigating metals in environmentally relevant media. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Thorkildsen RD, Johansson CB, Hogmalm J, Johansson PH, Røkkum M. Early Cup Loosening After Metal-on-Metal Total Joint Replacement of the Trapeziometacarpal Joint: A Retrieval Study. J Hand Surg Am 2020; 45:213-222. [PMID: 31537396 DOI: 10.1016/j.jhsa.2019.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the possible mechanisms behind early cup loosening in a metal-on-metal trapeziometacarpal joint replacement. METHODS The trapezia from 5 female patients were removed as part of a salvage procedure after a median of 22 months (range, 7-43 months) after implantation. Three osteoarthritic patients with symptomatic cup loosening and 2 with instability had a median age of 62 years (range, 59-65 years) at primary surgery. The trapezia with cups in situ were preserved and processed for histomorphometry. Studies with laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy with energy dispersive x-ray spectroscopy were also performed on 2 of the specimens. RESULTS In all 5 specimens, osteolytic lesions undermined the cups and were also seen at the cup edges, completely surrounding the loose cups. Large amounts of dark particular material were seen in the periprosthetic tissues, mostly internalized by macrophages. The presence of chrome and cobalt in these regions was confirmed. Four of the 5 cups showed marked or complete loss of hydroxyapatite. CONCLUSIONS We have found several possible explanations for the poor performance of this cup, including its cannulated design and metal-on-metal bearing. The changes seen are early and advanced, raising serious concerns about the implant and particularly the articulation. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic V.
Collapse
Affiliation(s)
- Rasmus D Thorkildsen
- Division of Orthopedic Surgery, Oslo University Hospital, Gothenburg, Sweden; Institute of Clinical Medicine, University of Oslo, Oslo, Norway, Gothenburg, Sweden.
| | - Carina B Johansson
- Department of Prosthodontics/Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Johan Hogmalm
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Petra H Johansson
- Department of Prosthodontics/Dental Materials Science, Institute of Odontology, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Magne Røkkum
- Division of Orthopedic Surgery, Oslo University Hospital, Gothenburg, Sweden; Institute of Clinical Medicine, University of Oslo, Oslo, Norway, Gothenburg, Sweden
| |
Collapse
|
21
|
Hartnell D, Andrews W, Smith N, Jiang H, McAllum E, Rajan R, Colbourne F, Fitzgerald M, Lam V, Takechi R, Pushie MJ, Kelly ME, Hackett MJ. A Review of ex vivo Elemental Mapping Methods to Directly Image Changes in the Homeostasis of Diffusible Ions (Na +, K +, Mg 2 +, Ca 2 +, Cl -) Within Brain Tissue. Front Neurosci 2020; 13:1415. [PMID: 32038130 PMCID: PMC6987141 DOI: 10.3389/fnins.2019.01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Diffusible ions (Na+, K+, Mg2+, Ca2+, Cl-) are vital for healthy function of all cells, especially brain cells. Unfortunately, the diffusible nature of these ions renders them difficult to study with traditional microscopy in situ within ex vivo brain tissue sections. This mini-review examines the recent progress in the field, using direct elemental mapping techniques to study ion homeostasis during normal brain physiology and pathophysiology, through measurement of ion distribution and concentration in ex vivo brain tissue sections. The mini-review examines the advantages and limitations of specific techniques: proton induced X-ray emission (PIXE), X-ray fluorescence microscopy (XFM), secondary ion mass spectrometry (SIMS), laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the sample preparation requirements to study diffusible ions with these methods.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Wendy Andrews
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Nicole Smith
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Haibo Jiang
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Erin McAllum
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Frederick Colbourne
- Department of Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AL, Canada
- Department of Psychology, Faculty of Arts, University of Alberta, Edmonton, AL, Canada
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - M. Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| |
Collapse
|
22
|
Morrell AP, Floyd H, W Mosselmans JF, Grover LM, Castillo-Michel H, Davis ET, Parker JE, Martin RA, Addison O. Improving our understanding of metal implant failures: Multiscale chemical imaging of exogenous metals in ex-vivo biological tissues. Acta Biomater 2019; 98:284-293. [PMID: 31173961 DOI: 10.1016/j.actbio.2019.05.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Biological exposures to micro- and nano-scale exogenous metal particles generated as a consequence of in-service degradation of orthopaedic prosthetics can result in severe adverse tissues reactions. However, individual reactions are highly variable and are not easily predicted, due to in part a lack of understanding of the speciation of the metal-stimuli which dictates cellular interactions and toxicity. Investigating the chemistry of implant derived metallic particles in biological tissue samples is complicated by small feature sizes, low concentrations and often a heterogeneous speciation and distribution. These challenges were addressed by developing a multi-scale two-dimensional X-ray absorption spectroscopic (XAS) mapping approach to discriminate sub-micron changes in particulate chemistry within ex-vivo tissues associated with failed CoCrMo total hip replacements (THRs). As a result, in the context of THRs, we demonstrate much greater variation in Cr chemistry within tissues compared with previous reports. Cr compounds including phosphate, hydroxide, oxide, metal and organic complexes were observed and correlated with Co and Mo distributions. This variability may help explain the lack of agreement between biological responses observed in experimental exposure models and clinical outcomes. The multi-scale 2D XAS mapping approach presents an essential tool in discriminating the chemistry in dilute biological systems where speciation heterogeneity is expected. SIGNIFICANCE: Metal implants are routinely used in healthcare but may fail following degradation in the body. Although specific implants can be identified as 'high-risk', our analysis of failures is limited by a lack of understanding of the chemistry of implant metals within the peri-prosthetic milieu. A new approach to identify the speciation and variability in speciation at sub-micron resolution, of dilute exogenous metals within biological tissues is reported; applied to understanding the failure of metallic (CoCrMo) total-hip-replacements widely used in orthopedic surgery. Much greater variation in Cr chemistry was observed compared with previous reports and included phosphate, hydroxide, oxide, metal and organic complexes. This variability may explain lack of agreement between biological responses observed in experimental exposure models and clinical outcomes.
Collapse
Affiliation(s)
| | - Hayley Floyd
- University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | - Owen Addison
- University of Birmingham, Birmingham B15 2TT, UK; University of Alberta, Edmonton, AB T6G, Canada.
| |
Collapse
|
23
|
Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9020093] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As a result of high doses of paramagnetic gadolinium (Gd) chelates administered in magnetic resonance imaging (MRI) exams, their unmetabolized excretion, and insufficient removal in wastewater treatment plants (WWTPs), large amounts of anthropogenic Gd (Gdanth) are released into surface water. The upward trend of gadolinium-based contrast agent (Gd-CA) administrations is expected to continue growing and consequently higher and higher anthropogenic Gd concentrations are annually recorded in water resources, which can pose a great threat to aquatic organisms and human beings. In addition, the feasibility of Gd retention in patients administered with Gd-CAs repeatedly, and even potentially fatal diseases, including nephrogenic systemic fibrosis (NSF), due to trace amounts of Gd have recently arisen severe health concerns. Thus, there is a need to investigate probable adverse health effects of currently marketed Gd-CAs meticulously and to modify the actual approach in using Gd contrast media in daily practice in order to minimize unknown possible health risks. Furthermore, the employment of enhanced wastewater treatment processes that are capable of removing the stable contrast agents, and the evaluation of the ecotoxicity of Gd chelates and human exposure to these emerging contaminants through dermal and ingestion pathways deserve more attention. On the other hand, point source releases of anthropogenic Gd into the aquatic environment presents the opportunity to assess surface water—groundwater interactions and trace the fate of wastewater plume as a proxy for the potential presence of other microcontaminants associated with treated wastewater in freshwater and marine systems.
Collapse
|
24
|
Gaur K, Vázquez-Salgado A, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera J, Fernández-Vega L, Carmona Sarabia L, Cruz García A, Pérez-Deliz F, Méndez Román J, Vega-Cartagena M, Loza-Rosas S, Rodriguez Acevedo X, Tinoco A. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018. [DOI: https://doi.org/10.3390/inorganics6040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
|
25
|
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR, Tinoco AD. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018; 6:126. [PMID: 33912613 PMCID: PMC8078164 DOI: 10.3390/inorganics6040126] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
Affiliation(s)
- Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Geraldo Duran-Camacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Josué A Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lauren Fernández-Vega
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lesly Carmona Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Angelys Cruz García
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Felipe Pérez-Deliz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - José A Méndez Román
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Melissa Vega-Cartagena
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
26
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
27
|
Clases D, Sperling M, Karst U. Analysis of metal-based contrast agents in medicine and the environment. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Jiménez-Lamana J, Szpunar J, Łobinski R. New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:245-270. [PMID: 29884968 DOI: 10.1007/978-3-319-90143-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single cells represent the basic building units of life, and thus their study is one the most important areas of research. However, classical analysis of biological cells eludes the investigation of cell-to-cell differences to obtain information about the intracellular distribution since it only provides information by averaging over a huge number of cells. For this reason, chemical analysis of single cells is an expanding area of research nowadays. In this context, metallomics research is going down to the single-cell level, where high-resolution high-sensitive analytical techniques are required. In this chapter, we present the latest developments and applications in the fields of single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS), mass cytometry, laser ablation (LA)-ICP-MS, nanoscale secondary ion mass spectrometry (nanoSIMS), and synchrotron X-ray fluorescence microscopy (SXRF) for single-cell analysis. Moreover, the capabilities and limitations of the current analytical techniques to unravel single-cell metabolomics as well as future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France.
| | - Joanna Szpunar
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| | - Ryszard Łobinski
- Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), UMR 5254, CNRS-UPPA, Pau, France
| |
Collapse
|
29
|
Dressler VL, Müller EI, Pozebon D. Bioimaging Metallomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:139-181. [DOI: 10.1007/978-3-319-90143-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
31
|
Chen Y, Lai B, Zhang Z, Cohen SM. The effect of metalloprotein inhibitors on cellular metal ion content and distribution. Metallomics 2017; 9:250-257. [PMID: 28168254 DOI: 10.1039/c6mt00267f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With metalloproteins garnering increased interest as therapeutic targets, designing target-specific metalloprotein inhibitors (MPi) is of substantial importance. However, in many respects, the development and evaluation of MPi lags behind that of conventional small molecule therapeutics. Core concerns around MPi, such as target selectivity and potential disruption of metal ion homeostasis linger. Herein, we used a suite of analytical methods, including energy-dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-OES), and synchrotron X-ray fluorescence microscopy (SXRF) to investigate the effect of several MPi on cellular metal ion distribution and homeostasis. The results reveal that at therapeutically relevant concentrations, the tested MPi have no significant effects on cellular metal ion content or distribution. In addition, the affinity of the metal-binding pharmacophore (MBP) utilized by the MPi does not have a substantial influence on the effect of the MPi on cellular metal distribution. These studies provide an important, original data set indicating that metal ion homeostasis is not notably perturbed by MPi, which should encourage the development of and aid in designing new MPi, guide MBP selection, and clarify the effect of MPi on the 'metallome'.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China. and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China. and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
32
|
Mirra S, Strianese M, Pellecchia C. A Cyclam-Based Fluorescent Ligand as a Molecular Beacon for Cu2+
and H2
S Detection. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Mirra
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
33
|
Thyssen GM, Holtkamp M, Kaulfürst-Soboll H, Wehe CA, Sperling M, von Schaewen A, Karst U. Elemental bioimaging by means of LA-ICP-OES: investigation of the calcium, sodium and potassium distribution in tobacco plant stems and leaf petioles. Metallomics 2017; 9:676-684. [PMID: 28504297 DOI: 10.1039/c7mt00003k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g-1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.
Collapse
Affiliation(s)
- G M Thyssen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mathieu E, Bernard AS, Delsuc N, Quévrain E, Gazzah G, Lai B, Chain F, Langella P, Bachelet M, Masliah J, Seksik P, Policar C. A Cell-Penetrant Manganese Superoxide Dismutase (MnSOD) Mimic Is Able To Complement MnSOD and Exerts an Antiinflammatory Effect on Cellular and Animal Models of Inflammatory Bowel Diseases. Inorg Chem 2017; 56:2545-2555. [PMID: 28198622 DOI: 10.1021/acs.inorgchem.6b02695] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inorganic complexes are increasingly used for biological and medicinal applications, and the question of the cell penetration and distribution of metallodrugs is key to understanding their biological activity. Oxidative stress is known to be involved in inflammation and in inflammatory bowel diseases for which antioxidative defenses are weakened. We report here the study of the manganese complex Mn1 mimicking superoxide dismutase (SOD), a protein involved in cell protection against oxidative stress, using an approach in inorganic cellular chemistry combining the investigation of Mn1 intracellular speciation using mass spectrometry and of its quantification and distribution using electron paramagnetic resonance and spatially resolved X-ray fluorescence with evaluation of its biological activity. More precisely, we have looked for and found the MS signature of Mn1 in cell lysates and quantified the overall manganese content. Intestinal epithelial cells activated by bacterial lipopolysaccharide were taken as a cellular model of oxidative stress and inflammation. DNBS-induced colitis in mice was used to investigate Mn1 activity in vivo. Mn1 exerts an intracellular antiinflammatory activity, remains at least partially coordinated, with diffuse distribution over the whole cell, and functionally complements mitochondrial MnSOD.
Collapse
Affiliation(s)
- Emilie Mathieu
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Anne-Sophie Bernard
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Nicolas Delsuc
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Elodie Quévrain
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Géraldine Gazzah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| | - Barry Lai
- X-ray Science Division, Argonne National Laboratory (ANL) , Argonne, Illinois 60439, United States
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Maria Bachelet
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Joelle Masliah
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France.,Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France
| | - Philippe Seksik
- Sorbonne Universites, UPMC Univ Paris 06 - Département de Chimie, Ecole Normale Superieure, PSL Research University - CNRS, INSERM, APHP, INRA, Laboratoire des Biomolecules (LBM), 27 rue de Chaligny, 75012 Paris, France.,Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Clotilde Policar
- Département de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
35
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Lee RFS, Theiner S, Meibom A, Koellensperger G, Keppler BK, Dyson PJ. Application of imaging mass spectrometry approaches to facilitate metal-based anticancer drug research. Metallomics 2017; 9:365-381. [DOI: 10.1039/c6mt00231e] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Detection and Analytical Capabilities for Trace Level of Carbon in High-Purity Metals by Laser-Induced Breakdown Spectroscopy with a Frequency Quintupled 213 nm Nd:YAG Laser. J CHEM-NY 2017. [DOI: 10.1155/2017/1095183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The laser-induced breakdown spectroscopy (LIBS) with a frequency quintupled 213 nm Nd:YAG laser was examined to the analysis of trace level of carbon (C) in high-purity metals and its detection and analytical capabilities were evaluated. Though C signal in a wavelength of 247.9 nm, which showed the highest sensitivity of C, could be obtained from Cd, Ti, and Zn ca. 7000 mg kg−1 C in Fe could not be detected due to the interferences from a lot of Fe spectra. Alternative C signal in a wavelength of 193.1 nm could not be also detected from Fe due to the insufficient laser output energy of the frequency quintupled 213 nm Nd:YAG laser. The depth analysis of C by LIBS was also demonstrated and the C in Cd and Zn was found to be contaminated in only surface area whereas the C in Ti was distributed in bulk. From these results, the frequency quintupled 213 nm Nd:YAG laser, which was adopted widely as a commercial laser ablation (LA) system coupled with inductively coupled plasma mass spectrometry (ICPMS) for trace element analysis in solid materials, could be used for C analysis to achieve simultaneous measurements for both C and trace elements in metals by LIBS and LA-ICPMS, respectively.
Collapse
|
38
|
|
39
|
Kille P, Morgan AJ, Powell K, Mosselmans JFW, Hart D, Gunning P, Hayes A, Scarborough D, McDonald I, Charnock JM. 'Venus trapped, Mars transits': Cu and Fe redox chemistry, cellular topography and in situ ligand binding in terrestrial isopod hepatopancreas. Open Biol 2016; 6:rsob.150270. [PMID: 26935951 PMCID: PMC4821242 DOI: 10.1098/rsob.150270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Woodlice efficiently sequester copper (Cu) in ‘cuprosomes' within hepatopancreatic ‘S' cells. Binuclear ‘B’ cells in the hepatopancreas form iron (Fe) deposits; these cells apparently undergo an apocrine secretory diurnal cycle linked to nocturnal feeding. Synchrotron-based µ-focus X-ray spectroscopy undertaken on thin sections was used to characterize the ligands binding Cu and Fe in S and B cells of Oniscus asellus (Isopoda). Main findings were: (i) morphometry confirmed a diurnal B-cell apocrine cycle; (ii) X-ray fluorescence (XRF) mapping indicated that Cu was co-distributed with sulfur (mainly in S cells), and Fe was co-distributed with phosphate (mainly in B cells); (iii) XRF mapping revealed an intimate morphological relationship between the basal regions of adjacent S and B cells; (iv) molecular modelling and Fourier transform analyses indicated that Cu in the reduced Cu+ state is mainly coordinated to thiol-rich ligands (Cu–S bond length 2.3 Å) in both cell types, while Fe in the oxidized Fe3+ state is predominantly oxygen coordinated (estimated Fe–O bond length of approx. 2 Å), with an outer shell of Fe scatterers at approximately 3.05 Å; and (v) no significant differences occur in Cu or Fe speciation at key nodes in the apocrine cycle. Findings imply that S and B cells form integrated unit-pairs; a functional role for secretions from these cellular units in the digestion of recalcitrant dietary components is hypothesized.
Collapse
Affiliation(s)
- P Kille
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - A J Morgan
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - K Powell
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - J F W Mosselmans
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - D Hart
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - P Gunning
- Smith and Nephew, Heslington, York Science Park, York YO10 5DF, UK
| | - A Hayes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - D Scarborough
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - I McDonald
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - J M Charnock
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
40
|
Gaucher JF, Reille-Seroussi M, Gagey-Eilstein N, Broussy S, Coric P, Seijo B, Lascombe MB, Gautier B, Liu WQ, Huguenot F, Inguimbert N, Bouaziz S, Vidal M, Broutin I. Biophysical Studies of the Induced Dimerization of Human VEGF Receptor 1 Binding Domain by Divalent Metals Competing with VEGF-A. PLoS One 2016; 11:e0167755. [PMID: 27942001 PMCID: PMC5152890 DOI: 10.1371/journal.pone.0167755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis is tightly regulated through the binding of vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). In this context, we showed that human VEGFR1 domain 2 crystallizes in the presence of Zn2+, Co2+ or Cu2+ as a dimer that forms via metal-ion interactions and interlocked hydrophobic surfaces. SAXS, NMR and size exclusion chromatography analyses confirm the formation of this dimer in solution in the presence of Co2+, Cd2+ or Cu2+. Since the metal-induced dimerization masks the VEGFs binding surface, we investigated the ability of metal ions to displace the VEGF-A binding to hVEGFR1: using a competition assay, we evidenced that the metals displaced the VEGF-A binding to hVEGFR1 extracellular domain binding at micromolar level.
Collapse
Affiliation(s)
- Jean-François Gaucher
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Marie Reille-Seroussi
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Sylvain Broussy
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Pascale Coric
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Bili Seijo
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Marie-Bernard Lascombe
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Benoit Gautier
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Wang-Quing Liu
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Florent Huguenot
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Nicolas Inguimbert
- Centre de Recherche Insulaire et Observatoire de l’Environnement USR CNRS 3278 CRIOBE, Université de Perpignan Via Domitia, Perpignan, France
| | - Serge Bouaziz
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Michel Vidal
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
- UF Pharmacocinétique et Pharmacochimie, hôpital Cochin, AP-HP, Paris, France
| | - Isabelle Broutin
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
41
|
Susnea I, Weiskirchen R. Trace metal imaging in diagnostic of hepatic metal disease. MASS SPECTROMETRY REVIEWS 2016; 35:666-686. [PMID: 25677057 DOI: 10.1002/mas.21454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The liver is the most central organ and the largest gland of the body that influences and controls a variety of metabolic and catabolic processes. It produces inconceivable many essential proteins, is responsible for the recovery of various food components, degrades toxins, mediates the bile production, and is involved in the excretion of unwanted metabolites. Several of these anabolic or catabolic functions of the liver depend on trace elements. These are either integral part of enzymes, cofactors, or act as chemical catalysts. Therefore, a lack of trace elements can lead to organ failure or systemic illness. Conversely, excessive hepatic trace element deposition resulting from genetic disorders, intoxication, extensive dietary supply, or long-term parenteral nutrition may cause hepatic inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma. Although specific serum parameters currently allow rough assessment of metal deficit and excess, the precise quantification of hepatic metal content in liver is presently only possible by different titration or staining techniques of biopsy specimens. Recently, novel innovative metal imaging techniques were developed that are on the way to replace these traditional methods. In the present review, we summarize the function of different trace elements in liver health and disease and discuss the present knowledge on how quantitative biometal imaging techniques such as synchrotron X-ray fluorescence microscopy, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry enrich diagnostics in the detection and quantification of hepatic metal disorders. We will further discuss sample preparation, sensitivity, spatial resolution, specificity, quantification strategies, and potential future applications of metal bioimaging in experimental research and clinical daily routine. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:666-686, 2016.
Collapse
Affiliation(s)
- Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074, Aachen, Germany.
| |
Collapse
|
42
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
43
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
44
|
Sharma RK, Maurya A, Rajamani P, Mehata MS, Kumar A. meta-Benziporphodimethenes: New Cell-Imaging Porphyrin Analogue Molecules. ChemistrySelect 2016. [DOI: 10.1002/slct.201600812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ravi Kumar Sharma
- Department of Applied Chemistry; Delhi Technological University; Bawana Road Delhi-42 India
| | - Anurag Maurya
- School of Environmental Sciences; Jawaharlal Nehru University; Delhi-67 India
| | - Paulraj Rajamani
- School of Environmental Sciences; Jawaharlal Nehru University; Delhi-67 India
| | - Mohan Singh Mehata
- Department of Applied Physics; Delhi Technological University; Bawana Road Delhi-42 India
| | - Anil Kumar
- Department of Applied Chemistry; Delhi Technological University; Bawana Road Delhi-42 India
| |
Collapse
|
45
|
Zhang G, Wang Z, Li Q, Zhou H, Zhu Y, Du Y. Quantitative imaging analysis and investigation of transmission loss in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry method. Talanta 2016; 154:486-91. [DOI: 10.1016/j.talanta.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 01/12/2023]
|
46
|
Jurowski K, Buszewski B, Piekoszewski W. Bioanalytics in Quantitive (Bio)imaging/Mapping of Metallic Elements in Biological Samples. Crit Rev Anal Chem 2016; 45:334-47. [PMID: 25996031 DOI: 10.1080/10408347.2014.941455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this article is to describe selected analytical techniques and their applications in the quantitative mapping/(bio)imaging of metals in biological samples. This work presents the advantages and disadvantages as well as the appropriate methods of scope for research. Distribution of metals in biological samples is currently one of the most important issues in physiology, toxicology, pharmacology, and other disciplines where functional information about the distribution of metals is essential. This issue is a subject of research in (bio)imaging/mapping studies, which use a variety of analytical techniques for the identification and determination of metallic elements. Increased interest in analytical techniques enabling the (bio)imaging of metals in a variety of biological material has been observed more recently. Measuring the distribution of trace metals in tissues after a drug dose or ingestion of poison-containing metals allows for the studying of pathomechanisms and the pathophysiology of various diseases and disorders related to the management of metals in human and animal systems.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Kraków , Kraków , Poland
| | | | | |
Collapse
|
47
|
Hachmöller O, Buzanich AG, Aichler M, Radtke M, Dietrich D, Schwamborn K, Lutz L, Werner M, Sperling M, Walch A, Karst U. Elemental bioimaging and speciation analysis for the investigation of Wilson's disease using μXRF and XANES. Metallomics 2016; 8:648-53. [DOI: 10.1039/c6mt00001k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Douglas DN, Managh AJ, Reid HJ, Sharp BL. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2015; 87:11285-94. [DOI: 10.1021/acs.analchem.5b02466] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David N. Douglas
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| | - Amy J. Managh
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| | - Helen J. Reid
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| | - Barry L. Sharp
- The Centre
for Analytical
Science, The Department of Chemistry, School of Science, Loughborough University, Epinal Way, Loughborough, Leicestershire, United Kingdom, LE11 3TU
| |
Collapse
|
49
|
Gundlach-Graham A, Burger M, Allner S, Schwarz G, Wang HAO, Gyr L, Grolimund D, Hattendorf B, Günther D. High-Speed, High-Resolution, Multielemental Laser Ablation-Inductively Coupled Plasma-Time-of-Flight Mass Spectrometry Imaging: Part I. Instrumentation and Two-Dimensional Imaging of Geological Samples. Anal Chem 2015; 87:8250-8. [DOI: 10.1021/acs.analchem.5b01196] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Marcel Burger
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Steffen Allner
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Gunnar Schwarz
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Hao A. O. Wang
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Luzia Gyr
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Daniel Grolimund
- microXAS
Beamline Project, Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bodo Hattendorf
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Detlef Günther
- Laboratory
of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| |
Collapse
|
50
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|