1
|
Zheng Y, Zhang T, Chang M, Xia L, Chen L, Ding L, Chen Y, Wu R. Sonoactivated Z-Scheme Heterojunction for Enhanced Sonodynamic Mitophagy Inhibition and Triple Negative Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413601. [PMID: 39617984 DOI: 10.1002/adma.202413601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Indexed: 01/30/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as a potent therapeutic modality to generate intratumoral toxic reactive oxygen species (ROS) in combating refractory triple-negative breast cancer (TNBC). However, its therapeutic efficacy is compromised due to pro-survival cancer-cell mitophagy to mitigate mitochondrial oxidative damage. Here, an "all-in-one" tumor-therapeutic strategy that integrates nanosonosensitizer-augmented noninvasive SDT with mitophagy inhibition is reported. This is achieved using a rationally constructed sonoactivated liquid Z-scheme heterojunction that connects sonosensitizer PtCu3 nanocages and mitophagy-blocking sonosensitizer BP nanosheets via an amphipathic organic linker (PEI-PEG5000-C18). The conjugated electron mediator (M, Cp*Rh(phen)Cl) is strategically positioned between the 2 sonosensitizers to facilitate electron transfer. This M-based Z-scheme configuration prolongs the separation of sonoactivated electron-hole pairs, leading to efficient ROS generation upon ultrasound stimulation. Importantly, Cu2+ released from PtCu3 expedites BP degradation by reducing phosphorus vacancy formation energy, improving the overall biodegradability of BP-M-PtCu3 and favoring phosphate ions production. These ions elevate lysosomal pH, inhibiting the hydrolysis of damaged mitochondria within autophagic lysosomes, thus preventing cancer cell self-preservation under oxidative stress and effectively eliminating TNBC. It is believe that the M-based sonoactivated Z-scheme heterojunction will be a promising sonosensitizer structure, and the sonodynamic mitophagy inhibition strategy offers valuable prospects for cancer treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Tianhu Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| |
Collapse
|
2
|
Zăgrean-Tuza C, Matei A, Silaghi-Dumitrescu R. A biomimetic assay for antioxidant reactivity, based on liposomes and myoglobin. J Inorg Biochem 2024; 258:112613. [PMID: 38815361 DOI: 10.1016/j.jinorgbio.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Antioxidant assays are typically based on non-physiologically relevant reagents. We describe here a quantitative assay based on the inhibition of the liposome autooxidation in the presence of myoglobin (ILA-Mb), an oxidative process with direct biomedical relevance. Additional advantages of the assay include the use of standard and readily available reagents (lecithin and myoglobin) and the applicability to lipophilic antioxidants. The ILA-Mb assay is based on previously reported qualitative or semi-quantitative ones that employed cytochrome c instead of myoglobin. A number of antioxidants are tested, and their IC50 parameters are discussed and interpreted to involve direct interaction with both myoglobin and the liposomes.
Collapse
Affiliation(s)
- Cezara Zăgrean-Tuza
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Alina Matei
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Putnam ST, Rodríguez-López J. Real-time investigation of reactive oxygen species and radicals evolved from operating Fe-N-C electrocatalysts during the ORR: potential dependence, impact on degradation, and structural comparisons. Chem Sci 2024; 15:10036-10045. [PMID: 38966386 PMCID: PMC11220586 DOI: 10.1039/d4sc01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Abstract
Improving the stability of platinum-group-metal-free (PGM-free) catalysts is a critical roadblock to the development of economically feasible energy storage and conversion technologies. Fe-N-C catalysts, the most promising class of PGM-free catalysts, suffer from rapid degradation. The generation of reactive oxygen species (ROS) during the oxygen reduction reaction (ORR) has been proposed as a central cause of this loss of activity. However, there is insufficient understanding of the generation and dynamics of ROS under catalytic conditions due to the difficulty of detecting and quantifying short-lived ROS such as the hydroxyl radical, OH˙. To accomplish this, we use operando scanning electrochemical microscopy (SECM) to probe the production of radicals by a commercial pyrolyzed Fe-N-C catalyst in real-time using a redox-active spin trap methodology. SECM showed the monotonic production of OH˙ which followed the ORR activity. Our results were thoroughly backed using electron spin resonance confirmation to show that the hydroxyl radical is the dominant radical species produced. Furthermore, OH˙ and H2O2 production followed distinct trends. ROS studied as a function of catalyst degradation also showed a decreased production, suggesting its relation to the catalytic activity of the sample. The structural origins of ROS production were also probed using model systems such as iron phthalocyanine (FePc) and Fe3O4 nanoparticles, both of which showed significant generation of OH˙ during the ORR. These results provide a comprehensive insight into the critical, yet under-studied, aspects of the production and effects of ROS on electrocatalytic systems and open the door for further mechanistic and kinetic investigation using SECM.
Collapse
Affiliation(s)
- Seth T Putnam
- Department of Chemistry, University of Illinois Urbana-Champaign 600 S. Matthews Ave. Urbana IL 61801 USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign 600 S. Matthews Ave. Urbana IL 61801 USA
| |
Collapse
|
4
|
Kosmachevskaya OV, Nasybullina EI, Pokidova OV, Sanina NA, Topunov AF. Effects of Nitrosyl Iron Complexes with Thiol, Phosphate, and Thiosulfate Ligands on Hemoglobin. Int J Mol Sci 2024; 25:7194. [PMID: 39000305 PMCID: PMC11241041 DOI: 10.3390/ijms25137194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO4-) ligands in hemoglobin-containing systems. The studied effects included the production of free radical intermediates during hemoglobin (Hb) oxidation by tert-butyl hydroperoxide, oxidative modification of Hb, and antioxidant properties of nitrosyl iron complexes. Measuring luminol chemiluminescence revealed that the antioxidant effect of TNICs was higher compared to DNIC-PO4-. DNIC-GS either did not exhibit antioxidant activity or exerted prooxidant effects at certain concentrations, which might have resulted from thiyl radical formation. TNICs and DNIC-PO4- efficiently protected the Hb heme group from decomposition by organic hydroperoxides. DNIC-GS did not exert any protective effects on the heme group; however, it abolished oxoferrylHb generation. TNICs inhibited the formation of Hb multimeric forms more efficiently than DNICs. Thus, TNICs had more pronounced antioxidant activity than DNICs in Hb-containing systems.
Collapse
Affiliation(s)
- Olga V Kosmachevskaya
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Elvira I Nasybullina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Olesya V Pokidova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow Region, Chernogolovka 142432, Russia
| | - Natalia A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow Region, Chernogolovka 142432, Russia
| | - Alexey F Topunov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
5
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Scasny A, Alibayov B, Khan F, Rao SJ, Murin L, Jop Vidal AG, Smith P, Li W, Edwards K, Warncke K, Vidal JE. Oxidation of hemoproteins by Streptococcus pneumoniae collapses the cell cytoskeleton and disrupts mitochondrial respiration leading to the cytotoxicity of human lung cells. Microbiol Spectr 2024; 12:e0291223. [PMID: 38084982 PMCID: PMC10783075 DOI: 10.1128/spectrum.02912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (Spn) colonizes the lungs, killing millions every year. During its metabolism, Spn produces abundant amounts of hydrogen peroxide. When produced in the lung parenchyma, Spn-hydrogen peroxide (H2O2) causes the death of lung cells, and details of the mechanism are studied here. We found that Spn-H2O2 targets intracellular proteins, resulting in the contraction of the cell cytoskeleton and disruption of mitochondrial function, ultimately contributing to cell death. Intracellular proteins targeted by Spn-H2O2 included cytochrome c and, surprisingly, a protein of the cell cytoskeleton, beta-tubulin. To study the details of oxidative reactions, we used, as a surrogate model, the oxidation of another hemoprotein, hemoglobin. Using the surrogate model, we specifically identified a highly reactive radical whose creation was catalyzed by Spn-H2O2. In sum, we demonstrated that the oxidation of intracellular targets by Spn-H2O2 plays an important role in the cytotoxicity caused by Spn, thus providing new targets for interventions.
Collapse
Affiliation(s)
- Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shambavi J. Rao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State School of Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Landon Murin
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Mississippi INBRE Research Scholar, University of Southern Mississippi, Jackson, Mississippi, USA
| | - Wei Li
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Kristin Edwards
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
7
|
Scasny A, Alibayov B, Khan F, Rao SJ, Murin L, Jop Vidal AG, Smith P, Wei L, Edwards K, Warncke K, Vidal JE. Oxidation of hemoproteins by Streptococcus pneumoniae collapses the cell cytoskeleton and disrupts mitochondrial respiration leading to cytotoxicity of human lung cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544089. [PMID: 37333138 PMCID: PMC10274756 DOI: 10.1101/2023.06.07.544089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Streptococcus pneumoniae (Spn) causes pneumonia that kills millions through acute toxicity and invasion of the lung parenchyma. During aerobic respiration, Spn releases hydrogen peroxide (Spn-H 2 O 2 ), as a by-product of enzymes SpxB and LctO, and causes cell death with signs of both apoptosis and pyroptosis by oxidizing unknown cell targets. Hemoproteins are molecules essential for life and prone to oxidation by H 2 O 2 . We recently demonstrated that during infection-mimicking conditions, Spn-H 2 O 2 oxidizes the hemoprotein hemoglobin (Hb), releasing toxic heme. In this study, we investigated details of the molecular mechanism(s) by which the oxidation of hemoproteins by Spn-H 2 O 2 causes human lung cell death. Spn strains, but not H 2 O 2 -deficient SpnΔ spxB Δ lctO strains caused time-dependent cell cytotoxicity characterized by the rearrangement of the actin, the loss of the microtubule cytoskeleton and nuclear contraction. Disruption of the cell cytoskeleton correlated with the presence of invasive pneumococci and an increase of intracellular reactive oxygen species. In cell culture, the oxidation of Hb or cytochrome c (Cyt c ) caused DNA degradation and mitochondrial dysfunction from inhibition of complex I-driven respiration, which was cytotoxic to human alveolar cells. Oxidation of hemoproteins resulted in the creation of a radical, which was identified as a protein derived side chain tyrosyl radical by using electron paramagnetic resonance (EPR). Thus, we demonstrate that Spn invades lung cells, releasing H 2 O 2 that oxidizes hemoproteins, including Cyt c , catalyzing the formation of a tyrosyl side chain radical on Hb and causing mitochondrial disruption, that ultimately leads to the collapse of the cell cytoskeleton.
Collapse
|
8
|
Brezová V, Barbieriková Z, Zalibera M, Lušpai K, Tholtová A, Dvoranová D. Titania-mediated photoinduced fluorination of nitrone spin traps in acetonitrile (an EPR study). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Kosmachevskaya OV, Nasybullina EI, Pugachenko IS, Novikova NN, Topunov AF. Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin. Antioxidants (Basel) 2022; 11:antiox11102007. [PMID: 36290730 PMCID: PMC9599031 DOI: 10.3390/antiox11102007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/17/2023] Open
Abstract
Donors of nitroxyl and nitroxyl anion (HNO/NO−) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO− can level down the non-enzymatic glycation of biomolecules. Since erythrocyte hemoglobin (Hb) is highly susceptible to non-enzymatic glycation, we studied the effect of a nitroxyl donor, Angeli’s salt, on Hb modification with methylglyoxal (MG) and organic peroxide―tert-butyl hydroperoxide (t-BOOH). Nitroxyl dose-dependently decreased the amount of protein carbonyls and advanced glycation end products (AGEs) that were formed in the case of Hb incubation with MG. Likewise, nitroxyl effectively protected Hb against oxidative modification with t-BOOH. It slowed down the destruction of heme, formation of carbonyl derivatives and inter-subunit cross-linking. The protective effect of nitroxyl on Hb in this system is primarily associated with nitrosylation of oxidized Hb and reduction of its ferryl form, which lowers the yield of free radical products. We suppose that the dual (antioxidant and antiglycation) effect of nitroxyl makes its application possible as part of an additional treatment strategy for oxidative and carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elvira I. Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Igor S. Pugachenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-916-157-6367
| |
Collapse
|
10
|
Sahli F, Vileno B, Gourlaouen C, Giménez-Arnau E. Autoxidized citronellol: Free radicals as potential sparkles to ignite the fragrance induced skin sensitizing pathway. Food Chem Toxicol 2022; 166:113201. [PMID: 35671905 DOI: 10.1016/j.fct.2022.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Citronellol, one of the most used fragrance compounds worldwide, is one ingredient of Fragrance Mix II used to assess skin allergy to fragrances in dermatitis patients. Pure citronellol is non-allergenic. Main issue is it autoxidizes when exposed to air becoming then allergenic. The increased skin sensitizing potency of air-exposed citronellol has been attributed to the hydroperoxides detected at high concentrations in the oxidation mixtures. It has been postulated that such hydroperoxides can give rise to specific antigens, although chemical mechanisms involved and the pathogenesis are far from being unraveled. Hydroperoxides are believed to react with skin proteins through mechanisms involving radical intermediates. Here, insights on the potential radicals involved in skin sensitization to citronellol hydroperoxides are given. The employed tool is a multispectroscopic approach based on (i) electron paramagnetic resonance and spin trapping, that confirmed the formation of oxygen- and carbon-radicals when exposing reconstructed human epidermis to concentrations of hydroperoxides close to those used for patch testing patients with air-oxidized citronellol; (ii) liquid chromatography-mass spectrometry, that proved the reaction with amino acids such as cysteine and histidine, known to be involved in radical processes and (iii) density functional theory calculations, that gave an overview on the preferential paths for radical degradation.
Collapse
Affiliation(s)
- Fatma Sahli
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Elena Giménez-Arnau
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000, Strasbourg, France.
| |
Collapse
|
11
|
Spin Trapping Hydroxyl and Aryl Radicals of One-Electron Reduced Anticancer Benzotriazine 1,4-Dioxides. Molecules 2022; 27:molecules27030812. [PMID: 35164077 PMCID: PMC8840461 DOI: 10.3390/molecules27030812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Hypoxia in tumors results in resistance to both chemotherapy and radiotherapy treatments but affords an environment in which hypoxia-activated prodrugs (HAP) are activated upon bioreduction to release targeted cytotoxins. The benzotriazine 1,4-di-N-oxide (BTO) HAP, tirapazamine (TPZ, 1), has undergone extensive clinical evaluation in combination with radiotherapy to assist in the killing of hypoxic tumor cells. Although compound 1 did not gain approval for clinical use, it has spurred on the development of other BTOs, such as the 3-alkyl analogue, SN30000, 2. There is general agreement that the cytotoxin(s) from BTOs arise from the one-electron reduced form of the compounds. Identifying the cytotoxic radicals, and whether they play a role in the selective killing of hypoxic tumor cells, is important for continued development of the BTO class of anticancer prodrugs. In this study, nitrone spin-traps, combined with electron spin resonance, give evidence for the formation of aryl radicals from compounds 1, 2 and 3-phenyl analogues, compounds 3 and 4, which form carbon C-centered radicals. In addition, high concentrations of DEPMPO (5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide) spin-trap the •OH radical. The combination of spin-traps with high concentrations of DMSO and methanol also give evidence for the involvement of strongly oxidizing radicals. The failure to spin-trap methyl radicals with PBN (N-tert-butylphenylnitrone) on the bioreduction of compound 2, in the presence of DMSO, implies that free •OH radicals are not released from the protonated radical anions of compound 2. The spin-trapping of •OH radicals by high concentrations of DEPMPO, and the radical species arising from DMSO and methanol give both direct and indirect evidence for the scavenging of •OH radicals that are involved in an intramolecular process. Hypoxia-selective cytotoxicity is not related to the formation of aryl radicals from the BTO compounds as they are associated with high aerobic cytotoxicity.
Collapse
|
12
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Grachev DI, Shumaev KB, Kosmachevskaya OV, Topunov AF, Ruuge EK. Nitrosyl Comlexes of Hemoglobin in Various Model Systems. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092106004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Kuresepi S, Vileno B, Lepoittevin JP, Giménez-Arnau E. Mechanistic Insights on Skin Sensitization to Linalool Hydroperoxides: EPR Evidence on Radical Intermediates Formation in Reconstructed Human Epidermis and 13C NMR Reactivity Studies with Thiol Residues. Chem Res Toxicol 2020; 33:1922-1932. [PMID: 32441093 DOI: 10.1021/acs.chemrestox.0c00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linalool is one of the most commonly used fragrance terpenes in consumer products. While pure linalool is considered as non-allergenic because it has a very low skin sensitization potential, its autoxidation on air leads to allylic hydroperoxides that have been shown to be major skin sensitizers. These hydroperoxides have the potential to form antigens via radical mechanisms. In order to obtain in-depth insights of such reactivity, we first investigated the formation of free radicals derived from linalool hydroperoxides in situ in a model of human reconstructed epidermis by electron paramagnetic resonance combined with spin trapping. The formation of carbon- and oxygen-centered radical species derived from the hydroperoxides was especially evidenced in an epidermis model, mimicking human skin and thus closer to what may happen in vivo. To further investigate these results, we synthesized linalool hydroperoxides containing a 13C-substitution at positions precursor of carbon radicals to elucidate if one of these positions could react with cysteine, its thiol chemical function being one of the most labile groups prone to react through radical mechanisms. Reactions were followed by mono- and bidimensional 13C NMR. We validated that carbon radicals derived from allylic hydrogen abstraction by the initially formed alkoxyl radical and/or from its β-scission can alter directly the lateral chain of cysteine forming adducts via radical processes. Such results provide an original vision on the mechanisms likely involved in the reaction with thiol groups that might be present in the skin environment. Consequently, the present findings are a step ahead toward the understanding of protein binding processes to allergenic allylic hydroperoxides of linalool through the involvement of free radical species and thus of their sensitizing potential.
Collapse
Affiliation(s)
- Salen Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | - Bertrand Vileno
- POMAM Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France.,French EPR Federation of Research, REseau NAtional de RPE interDisciplinaire, RENARD, Fédération IR-RPE CNRS 3443, F-67000 Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| |
Collapse
|
15
|
Xuan W, Xia Y, Li T, Wang L, Liu Y, Tan W. Molecular Self-Assembly of Bioorthogonal Aptamer-Prodrug Conjugate Micelles for Hydrogen Peroxide and pH-Independent Cancer Chemodynamic Therapy. J Am Chem Soc 2019; 142:937-944. [PMID: 31858794 DOI: 10.1021/jacs.9b10755] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemodynamic therapy (CDT) has demonstrated new possibilities for selective and logical cancer intervention by specific manipulation of dysregulated tumorous free radical homeostasis. Current CDT methods largely rely on conversion of endogenous hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals via classical Fenton or Haber-Weiss chemistry. However, their anticancer efficacies are greatly limited by the requirement of strong acidity for efficient chemical reactions, insufficient tumorous H2O2, and upregulated antioxidant defense to counteract free radical-caused oxidative damage. Here, we present a new concept whereby bioorthogonal chemistry and prodrug are combined to create a new type of aptamer drug conjugate (ApDC): aptamer-prodrug conjugate (ApPdC) micelle for improved and cancer-targeted CDT. The hydrophobic prodrug bases can not only promote self-assembly of aptamers but also act as free radical generators via bioorthogonal chemistry. In depth mechanistic studies reveal that, unlike traditional CDT systems, ApPdC micelles enable in situ activation and self-cycling generation of toxic C-centered free radicals in cancer cells through cascading bioorthogonal reactions, with no dependence on either H2O2 or pH, yet concurrently with diminished cancerous antioxidation by GSH depletion for a synergistic CDT effect. We expect this work to provide new insights into the design of targeted cancer therapies and studies of free radical-related molecular mechanisms.
Collapse
Affiliation(s)
- Wenjing Xuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Ting Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province , Hunan University , Changsha 410082 , China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences , The Cancer Hospital of the University of Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China.,Foundation for Applied Molecular Evolution , 13709 Progress Boulevard , Alachua , Florida 32615 , United States
| |
Collapse
|
16
|
Sahli F, Godard A, Vileno B, Lepoittevin JP, Giménez-Arnau E. Formation of methyl radicals derived from cumene hydroperoxide in reconstructed human epidermis: an EPR spin trapping confirmation by using 13C-substitution. Free Radic Res 2019; 53:737-747. [PMID: 31130017 DOI: 10.1080/10715762.2019.1624741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dermal exposure to cumene hydroperoxide (CumOOH) during manufacturing processes is a toxicological issue for the industry. Its genotoxicity, mutagenic action, ability to promote skin tumour, capacity to induce epidermal hyperplasia, and aptitude to induce allergic and irritant skin contact dermatitis are well known. These toxic effects appear to be mediated through the activation to free radical species such as hydroxyl, alkoxyl, and alkyl radicals characterised basically by electron paramagnetic resonance (EPR) and spin-trapping (ST) techniques. To be a skin sensitiser CumOOH needs to covalently bind to skin proteins in the epidermis to form the antigenic entity triggering the immunotoxic reaction. Cleavage of the O-O bond allows formation of unstable CumO•/CumOO• radicals rearranging to longer half-life specific carbon-centred radicals R• proposed to be at the origin of the antigen formation. Nevertheless, it is not still clear which R• is precisely formed in the epidermis and thus involved in the sensitisation process. The aim of this work was to elucidate in conditions closer to real-life sensitisation which specific R• are formed in a 3D reconstructed human epidermis (RHE) model by using 13C-substituted CumOOH at carbon positions precursors of potentially reactive radicals and EPR-ST. We demonstrated that most probably methyl radicals derived from β-scission of CumO• radicals occur in RHE through a one-electron reductive pathway suggesting that these could be involved in the antigen formation inducing skin sensitisation. We also describe a coupling between nitroxide radicals and β position 13C atoms that could be of an added value to the very few examples existing for the coupling of radicals with 13C atoms.
Collapse
Affiliation(s)
- Fatma Sahli
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| | - Amélie Godard
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| | - Bertrand Vileno
- b POMAM Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France.,c French EPR Federation of Research, REseau NAtional de Rpe InterDisciplinaire (RENARD) , France
| | | | - Elena Giménez-Arnau
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| |
Collapse
|
17
|
Shumaev KB, Gorudko IV, Kosmachevskaya OV, Grigorieva DV, Panasenko ОM, Vanin AF, Topunov AF, Terekhova MS, Sokolov AV, Cherenkevich SN, Ruuge EK. Protective Effect of Dinitrosyl Iron Complexes with Glutathione in Red Blood Cell Lysis Induced by Hypochlorous Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2798154. [PMID: 31089406 PMCID: PMC6476047 DOI: 10.1155/2019/2798154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/15/2018] [Accepted: 01/27/2019] [Indexed: 01/05/2023]
Abstract
Hypochlorous acid (HOCl), one of the major precursors of free radicals in body cells and tissues, is endowed with strong prooxidant activity. In living systems, dinitrosyl iron complexes (DNIC) with glutathione ligands play the role of nitric oxide donors and possess a broad range of biological activities. At micromolar concentrations, DNIC effectively inhibit HOCl-induced lysis of red blood cells (RBCs) and manifest an ability to scavenge alkoxyl and alkylperoxyl radicals generated in the reaction of HOCl with tert-butyl hydroperoxide. DNIC proved to be more effective cytoprotective agents and organic free radical scavengers in comparison with reduced glutathione (GSH). At the same time, the kinetics of HOCl-induced oxidation of glutathione ligands in DNIC is slower than in the case of GSH. HOCl-induced oxidative conversions of thiolate ligands cause modification of DNIC, which manifests itself in inclusion of other ligands. It is suggested that the strong inhibiting effect of DNIC with glutathione on HOCl-induced lysis of RBCs is determined by their antioxidant and regulatory properties.
Collapse
Affiliation(s)
- Konstantin B. Shumaev
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
- National Medical Research Centre for Cardiology, Moscow 121552, Russia
| | | | - Olga V. Kosmachevskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
| | | | - Оleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anatoly F. Vanin
- Russian Academy of Sciences, Semenov Institute of Chemical Physics, Moscow 119991, Russia
| | - Alexey F. Topunov
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119071, Russia
| | | | - Alexey V. Sokolov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Institute of Experimental Medicine, Saint Petersburg 197376, Russia
| | | | - Enno K. Ruuge
- National Medical Research Centre for Cardiology, Moscow 121552, Russia
- Lomonosov Moscow State University, Faculty of Physics, Moscow 119234, Russia
| |
Collapse
|
18
|
Mason RP, Ganini D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection. Free Radic Biol Med 2019; 131:318-331. [PMID: 30552998 DOI: 10.1016/j.freeradbiomed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
Abstract
The only general technique that allows the unambiguous detection of free radicals is electron spin resonance (ESR). However, ESR spin trapping has severe limitations especially in biological systems. The greatest limitation of ESR is poor sensitivity relative to the low steady-state concentration of free radical adducts, which in cells and in vivo is much lower than the best sensitivity of ESR. Limitations of ESR have led to an almost desperate search for alternatives to investigate free radicals in biological systems. Here we explore the use of the immuno-spin trapping technique, which combine the specificity of the spin trapping to the high sensitivity and universal use of immunological techniques. All of the immunological techniques based on antibody binding have become available for free radical detection in a wide variety of biological systems.
Collapse
Affiliation(s)
- Ronald P Mason
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
19
|
Besson E, Gastaldi S, Bloch E, Zielonka J, Zielonka M, Kalyanaraman B, Aslan S, Karoui H, Rockenbauer A, Ouari O, Hardy M. Embedding cyclic nitrone in mesoporous silica particles for EPR spin trapping of superoxide and other radicals. Analyst 2019; 144:4194-4203. [DOI: 10.1039/c9an00468h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesoporous silica functionalised with a cyclic spin trap enabled the identification of a wide range of radicals in organic and aqueous media, including superoxide radical anion.
Collapse
Affiliation(s)
| | | | - Emily Bloch
- Aix Marseille Univ
- CNRS
- MADIREL
- Marseille
- France
| | - Jacek Zielonka
- Department of Biophysics
- Medical College of Wisconsin
- Milwaukee
- USA
- Free Radical Research Center
| | - Monika Zielonka
- Department of Biophysics
- Medical College of Wisconsin
- Milwaukee
- USA
- Free Radical Research Center
| | - Balaraman Kalyanaraman
- Department of Biophysics
- Medical College of Wisconsin
- Milwaukee
- USA
- Free Radical Research Center
| | | | | | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
- Hungary
| | | | | |
Collapse
|
20
|
Dai Y, Valentino H, Sobrado P. Evidence for the Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate. Chembiochem 2018; 19:1609-1612. [PMID: 29776001 DOI: 10.1002/cbic.201800123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/07/2023]
Abstract
The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated the formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study, and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring by radical recombination.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Hannah Valentino
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
21
|
Kuresepi S, Vileno B, Turek P, Lepoittevin JP, Giménez-Arnau E. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept. Free Radic Res 2018; 52:171-179. [DOI: 10.1080/10715762.2017.1420906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Salen Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| | - Bertrand Vileno
- POMAM Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
- French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS #3443, Strasbourg, France
| | - Philippe Turek
- POMAM Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
- French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS #3443, Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| |
Collapse
|
22
|
Lescic S, Karoui H, Hardy M, Charles L, Tordo P, Ouari O, Gaudel-Siri A, Siri D. Alkylperoxyl spin adducts of pyrroline-N-oxide spin traps: Experimental and theoretical CASSCF study of the unimolecular decomposition in organic solvent, potential applications in water. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergiu Lescic
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Hakim Karoui
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Micaël Hardy
- Aix-Marseille University, CNRS, ICR; Marseille France
| | | | - Paul Tordo
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Olivier Ouari
- Aix-Marseille University, CNRS, ICR; Marseille France
| | | | - Didier Siri
- Aix-Marseille University, CNRS, ICR; Marseille France
| |
Collapse
|
23
|
Misak A, Grman M, Bacova Z, Rezuchova I, Hudecova S, Ondriasova E, Krizanova O, Brezova V, Chovanec M, Ondrias K. Polysulfides and products of H 2S/S-nitrosoglutathione in comparison to H 2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H 2O 2. Nitric Oxide 2017; 76:136-151. [PMID: 28951200 DOI: 10.1016/j.niox.2017.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023]
Abstract
Exogenous and endogenously produced sulfide derivatives, such as H2S/HS-/S2-, polysulfides and products of the H2S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O2-) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O2-, we found that a polysulfide (Na2S4) and S/GSNO were potent scavengers of O2- and cPTIO radicals compared to H2S (Na2S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H2O2 and produced OH in the following order: S/GSNO > Na2S4 ≥ Na2S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H2O2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H2O2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H2O2; and (iv) Na2S4 modulated intracellular calcium in A87MG cells, which depended on the order of Na2S4/H2O2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time- and concentration-dependent radical production/scavenging properties and their interactions with O2-, OH and H2O2. The results imply a direct involvement of sulfide derivatives in O2- and H2O2/OH free radical pathways modulating antioxidant/toxic biological processes.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ingeborg Rezuchova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sona Hudecova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Vlasta Brezova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
24
|
Patil SV, Argyropoulos DS. Stable Organic Radicals in Lignin: A Review. CHEMSUSCHEM 2017; 10:3284-3303. [PMID: 28605169 DOI: 10.1002/cssc.201700869] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 05/27/2023]
Abstract
Lignin and the quest for the origin of stable organic radicals in it have seen numerous developments. Although there have been various speculations over the years on the formation of these stable radicals, researchers have not been able to arrive at a solid, unequivocal hypothesis that applies to all treatments and types of lignin. The extreme complexity of lignin and its highly aromatic, cross-linked, branched, and rigid structure has made such efforts rather cumbersome. Since the early 1950s, researchers in this field have dedicated their efforts to the establishment of methods for the detection and determination of spin content, theoretical simulations, and reactions on model compounds and spin-trapping studies. Although a significant amount of published research is available on lignin or its model compounds and the reactive intermediates involved during various chemical treatments (pulping, bleaching, extractions, chemical modifications, etc.), the literature provides a limited view on the origin, nature, and stability of such radicals. Consequently, this review is focused on examining the origin of such species in lignin, factors affecting their presence, reactions involved in their formation, and methods for their detection.
Collapse
Affiliation(s)
- Shradha V Patil
- Departments of Forest Biomaterials and Chemistry, North Carolina State University, 2820 Faucette Drive, Raleigh, NC, 27695-8005, USA
| | - Dimitris S Argyropoulos
- Departments of Forest Biomaterials and Chemistry, North Carolina State University, 2820 Faucette Drive, Raleigh, NC, 27695-8005, USA
| |
Collapse
|
25
|
Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation. J Colloid Interface Sci 2017; 490:879-901. [DOI: 10.1016/j.jcis.2016.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/21/2022]
|
26
|
Giner E, Tenti L, Angeli C, Ferré N. Computation of the Isotropic Hyperfine Coupling Constant: Efficiency and Insights from a New Approach Based on Wave Function Theory. J Chem Theory Comput 2017; 13:475-487. [DOI: 10.1021/acs.jctc.6b00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Giner
- Dipartimento
di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato
di Mortara 17, I-44121 Ferrara, Italy
| | - Lorenzo Tenti
- Dipartimento
di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato
di Mortara 17, I-44121 Ferrara, Italy
| | - Celestino Angeli
- Dipartimento
di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato
di Mortara 17, I-44121 Ferrara, Italy
| | | |
Collapse
|
27
|
Use of spin traps to detect superoxide production in living cells by electron paramagnetic resonance (EPR) spectroscopy. Methods 2016; 109:31-43. [DOI: 10.1016/j.ymeth.2016.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/23/2023] Open
|
28
|
Anderson RF, Yadav P, Shinde SS, Hong CR, Pullen SM, Reynisson J, Wilson WR, Hay MP. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides. Chem Res Toxicol 2016; 29:1310-24. [PMID: 27380897 DOI: 10.1021/acs.chemrestox.6b00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds.
Collapse
Affiliation(s)
- Robert F Anderson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Pooja Yadav
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sujata S Shinde
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Cho R Hong
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Susan M Pullen
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - William R Wilson
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Michael P Hay
- School of Chemical Sciences, ‡Auckland Cancer Society Research Centre, and §Maurice Wilkins Centre, University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
29
|
Chorfa N, Savard S, Belkacemi K. An efficient method for high-purity anthocyanin isomers isolation from wild blueberries and their radical scavenging activity. Food Chem 2016; 197 Pt B:1226-34. [DOI: 10.1016/j.foodchem.2015.11.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022]
|
30
|
Rhodes CJ. The Role of ESR Spectroscopy in Advancing Catalytic Science: Some Recent Developments. PROGRESS IN REACTION KINETICS AND MECHANISM 2015. [DOI: 10.3184/146867815x14297237081532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent progress is surveyed in regard to the importance of molecular species containing unpaired electrons in catalytic systems, as revealed using ESR spectroscopy. The review begins with studies of enzymes and their role directly in biological systems, and then discusses investigations of various artificially created catalysts with potential human and environmental significance, including zeolites. Among the specific types of catalytic media considered are those for photocatalysis, water splitting, the degradation of environmental pollutants, hydrocarbon conversions, fuel cells, ionic liquids and sensor devices employing graphene. Studies of muonium-labelled radicals in zeolites are also reviewed, as a means for determining the dynamics of transient radicals in these nanoporous materials.
Collapse
|
31
|
Sousa EHS, de Mesquita Vieira FG, Butler JS, Basso LA, Santiago DS, Diógenes IC, Lopes LGDF, Sadler PJ. [Fe(CN)5(isoniazid)]3−: An iron isoniazid complex with redox behavior implicated in tuberculosis therapy. J Inorg Biochem 2014; 140:236-44. [DOI: 10.1016/j.jinorgbio.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/07/2023]
|
32
|
Anderson RF, Yadav P, Patel D, Reynisson J, Tipparaju SR, Guise CP, Patterson AV, Denny WA, Maroz A, Shinde SS, Hay MP. Characterisation of radicals formed by the triazine 1,4-dioxide hypoxia-activated prodrug, SN30000. Org Biomol Chem 2014; 12:3386-92. [PMID: 24737463 DOI: 10.1039/c4ob00236a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The radical species underlying the activity of the bioreductive anticancer prodrug, SN30000, have been identified by electron paramagnetic resonance and pulse radiolysis techniques. Spin-trapping experiments indicate both an aryl-type radical and an oxidising radical, trapped as a carbon-centred radical, are formed from the protonated radical anion of SN30000. The carbon-centred radical, produced upon the one-electron oxidation of the 2-electron reduced metabolite of SN30000, oxidises 2-deoxyribose, a model for the site of damage on DNA which leads to double strand breaks. Calculations using density functional theory support the assignments made.
Collapse
Affiliation(s)
- Robert F Anderson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sterilization of bacteria suspensions and identification of radicals deposited during plasma treatment. OPEN CHEM 2014. [DOI: 10.1515/chem-2015-0041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this paper we will present results for plasma sterilization of planktonic samples of two reference strains of bacteria, Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212. We have used a plasma needle as a source of non-equilibrium atmospheric plasma in all treatments. This device is already well characterized by OES, derivative probes and mass spectrometry. It was shown that power delivered to the plasma is bellow 2 W and that it produces the main radical oxygen and nitrogen species believed to be responsible for the sterilization process. Here we will only present results obtained by electron paramagnetic resonance which was used to detect the OH, H and NO species. Treatment time and power delivered to the plasma were found to have the strongest influence on sterilization. In all cases we have observed a reduction of several orders of magnitude in the concentration of bacteria and for the longest treatment time complete eradication. A more efficient sterilization was achieved in the case of gram negative bacteria.
Collapse
|
34
|
Chalier F, Clément JL, Hardy M, Tordo P, Rockenbauer A. ESR study of the spin adducts of three analogues of DEPMPO substituted at C4or C3. RSC Adv 2014. [DOI: 10.1039/c3ra46913a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Average geometries of the nitroxide adducts of various radicals with three substituted DEPMPO nitrones allow the prediction of a correlation between the substitution and the trapping properties.
Collapse
Affiliation(s)
- Florence Chalier
- Laboratoire SREP
- Institut de Chimie Radicalaire – UMR 7273
- CNRS and Aix-Marseille Univ. – case 521
- Centre de Saint Jérôme
- , France
| | - Jean-Louis Clément
- Laboratoire SREP
- Institut de Chimie Radicalaire – UMR 7273
- CNRS and Aix-Marseille Univ. – case 521
- Centre de Saint Jérôme
- , France
| | - Micaël Hardy
- Laboratoire SREP
- Institut de Chimie Radicalaire – UMR 7273
- CNRS and Aix-Marseille Univ. – case 521
- Centre de Saint Jérôme
- , France
| | - Paul Tordo
- Laboratoire SREP
- Institut de Chimie Radicalaire – UMR 7273
- CNRS and Aix-Marseille Univ. – case 521
- Centre de Saint Jérôme
- , France
| | - Antal Rockenbauer
- Research Centre for Natural Sciences
- Institute for Molecular Pharmacology
- H-1525 Budapest, Hungary
| |
Collapse
|
35
|
Yadav P, Marshall AJ, Reynisson J, Denny WA, Hay MP, Anderson RF. Fragmentation of the quinoxaline N-oxide bond to the ˙OH radical upon one-electron bioreduction. Chem Commun (Camb) 2014; 50:13729-31. [DOI: 10.1039/c4cc05657d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-electron reduction of 3-trifluoromethyl-quinoxaline 1,4-dioxide breaks the N-oxide bond to release the ˙OH radical.
Collapse
Affiliation(s)
- Pooja Yadav
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Andrew J. Marshall
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre
- University of Auckland
- Auckland 1142, New Zealand
- School of Chemical Sciences
- University of Auckland
| |
Collapse
|
36
|
Drujon J, Rahmani R, Héran V, Blanc R, Carissan Y, Tuccio B, Commeiras L, Parrain JL. trans-1,2-Disiloxybenzocyclobutene, an adequate partner for the auto-oxidation: EPR/spin trapping and theoretical studies. Phys Chem Chem Phys 2014; 16:7513-20. [DOI: 10.1039/c3cp55077j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Tabler A, Häusser A, Roduner E. Aerobic one-step oxidation of benzene to phenol on copper exchanged HZSM5 zeolites: A mechanistic study. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Stanisavljev DR, Milenković MC, Popović-Bijelić AD, Mojović MD. Radicals in the Bray–Liebhafsky Oscillatory Reaction. J Phys Chem A 2013; 117:3292-5. [DOI: 10.1021/jp402381b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dragomir R. Stanisavljev
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O.
Box 47, 11158 Belgrade, Serbia
| | - Maja C. Milenković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O.
Box 47, 11158 Belgrade, Serbia
| | - Ana D. Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O.
Box 47, 11158 Belgrade, Serbia
| | - Miloš D. Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, P.O.
Box 47, 11158 Belgrade, Serbia
| |
Collapse
|
39
|
Kromer A, Roduner E. Catalytic Oxidation of Benzene on Liquid Ion-Exchanged Cu,H(Na)/ZSM-5 and Cu,H(Na)/Y Zeolites: Spin Trapping of Transient Radical Intermediates. Chempluschem 2013. [DOI: 10.1002/cplu.201200285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|