1
|
Bowles MO, Willis EL, Trombley MD, Chen CH, Proulx C. Metallo-azapeptides: Controlled Metal Chelation to Peptide Backbone Nitrogen. J Am Chem Soc 2025; 147:1404-1410. [PMID: 39761202 DOI: 10.1021/jacs.4c14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We present the first approach to controlled metal chelation of peptide backbones, where the anchoring site is an aza-amino acid nitrogen and the directionality of chelation events is dictated by the acidity of neighboring NHs. Selective backbone chelation precludes the need for metal-binding side chains and/or free N- or C-termini in peptides. We show that the presence and location of an aza-amino acid impact complex formation and report the first X-ray crystal structures of azapeptides bound to palladium and nickel. Evidence of atropisomerism in metallo-azapeptides is also presented.
Collapse
Affiliation(s)
- Maxwell O Bowles
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Evan L Willis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Meric D Trombley
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
2
|
Ren X, Li H, Peng H, Yang Y, Su H, Huang C, Wang X, Zhang J, Liu Z, Wei W, Cheng K, Zhu T, Lu Z, Li Z, Zhao Q, Tang BZ, Yao SQ, Song X, Sun H. Reactivity-Tunable Fluorescent Platform for Selective and Biocompatible Modification of Cysteine or Lysine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402838. [PMID: 38896788 PMCID: PMC11336953 DOI: 10.1002/advs.202402838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.
Collapse
Affiliation(s)
- Xiaojie Ren
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Haokun Li
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Hui Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Yang Yang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Hang Su
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Chen Huang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Xuan Wang
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jie Zhang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Wenyu Wei
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Ke Cheng
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Tianyang Zhu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Zhenpin Lu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Shao Q. Yao
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Xiangzhi Song
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Hongyan Sun
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| |
Collapse
|
3
|
Yap SY, Butcher T, Spears RJ, McMahon C, Thanasi IA, Baker JR, Chudasama V. Chemo- and regio-selective differential modification of native cysteines on an antibody via the use of dehydroalanine forming reagents. Chem Sci 2024; 15:8557-8568. [PMID: 38846383 PMCID: PMC11151841 DOI: 10.1039/d4sc00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Protein modification has garnered increasing interest over the past few decades and has become an important tool in many aspects of chemical biology. In recent years, much effort has focused on site-selective modification strategies that generate more homogenous bioconjugates, and this is particularly so in the antibody modification space. Modifying native antibodies by targeting solvent-accessible cysteines liberated by interchain disulfide reduction is, perhaps, the predominant strategy for achieving more site-selectivity on an antibody scaffold. This is evidenced by numerous approved antibody therapeutics that have utilised cysteine-directed conjugation reagents and the plethora of methods/strategies focused on antibody cysteine modification. However, all of these methods have a common feature in that after the reduction of native solvent-accessible cystines, the liberated cysteines are all reacted in the same manner. Herein, we report the discovery and application of dehydroalanine forming reagents (including novel reagents) capable of regio- and chemo-selectively modifying these cysteines (differentially) on a clinically relevant antibody fragment and a full antibody. We discovered that these reagents could enable differential reactivity between light chain C-terminal cysteines, heavy chain hinge region cysteines (cysteines with an adjacent proline residue, Cys-Pro), and other heavy chain internal cysteines. This differential reactivity was also showcased on small molecules and on the peptide somatostatin. The application of these dehydroalanine forming reagents was exemplified in the preparation of a dually modified antibody fragment and full antibody. Additionally, we discovered that readily available amide coupling agents can be repurposed as dehydroalanine forming reagents, which could be of interest to the broader field of chemical biology.
Collapse
Affiliation(s)
- Steven Y Yap
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Richard J Spears
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
4
|
Vargas RD, Ding Y, Trial HO, Qian R, Ball ZT. Polyol recognition in catalysis: toward selective modification of glycosylated polypeptides with boronic acid-rhodium(II) catalysts. Chem Commun (Camb) 2023; 59:13030-13033. [PMID: 37842954 DOI: 10.1039/d3cc03371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Proximity-induced methodologies for peptide and protein modification have been developed using recognition elements like inhibitors, antibodies, or affinity tags on amino acids. However, the recognition of saccharides for chemical modification remains widely unexplored. Studies exploring boronic acids and their derivatives have shown their alluring capabilities as selective molecular recognition elements for saccharides, and in this study we describe the application of these ideas to the discovery of a catalytic proximity-induced methodology for covalent modification of glycopeptides using boronic acids as a saccharide recognition element.
Collapse
Affiliation(s)
- Reyner D Vargas
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Yuxuan Ding
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Hallie O Trial
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Rouyu Qian
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.
| |
Collapse
|
5
|
Li W, Chen Y, Chen Y, Xia S, Chang W, Zhu C, Houk KN, Liang Y, Xie J. Site-Selective Arylation of Carboxamides from Unprotected Peptides. J Am Chem Soc 2023. [PMID: 37377433 DOI: 10.1021/jacs.3c03840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The amidated peptides are an important class of biologically active compounds due to their unique biological properties and wide applications as potential peptide drugs and biomarkers. Despite the abundance of free amide motifs (Asn, Gln, and C-terminal amide) in native peptides, late-stage modification of the amide unit in naturally occurring peptides remains very rare because of the intrinsically weak nucleophilicity of amides and the interference of multiple competing nucleophilic residues, which generally lead to undesired side reactions. Herein, chemoselective arylation of amides in unprotected polypeptides has been developed under an air atmosphere to afford the N-aryl amide peptides bearing various functional motifs. Its success relies on the combination of gold catalysis and silver salt to differentiate the relative inert amide among a collection of reactive nucleophilic amino acid residues (e.g., -NH2, -OH, and -COOH), favoring the C-N bond coupling toward amides over other more nucleophilic groups. Experimental and DFT studies reveal a crucial role of the silver cation, which serves as a transient coordination mask of the more reactive reaction sites, overcoming the inherently low reactivity of amides. The excellent biocompatibility of this strategy has been applied to functionalize a wide range of peptide drugs and complex peptides. The application could be further extended to peptide labeling and peptide stapling.
Collapse
Affiliation(s)
- Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Siyu Xia
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
6
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
7
|
Gutiérrez S, Tomás-Gamasa M, Mascareñas JL. Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chem Sci 2022; 13:6478-6495. [PMID: 35756533 PMCID: PMC9172117 DOI: 10.1039/d2sc00721e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Translating the power of transition metal catalysis to the native habitats of enzymes can significantly expand the possibilities of interrogating or manipulating natural biological systems, including living cells and organisms. This is especially relevant for organometallic reactions that have shown great potential in the field of organic synthesis, like the metal-catalyzed transfer of carbenes. While, at first sight, performing metal carbene chemistry in aqueous solvents, and especially in biologically relevant mixtures, does not seem obvious, in recent years there has been a growing number of reports demonstrating the feasibility of the task. Either using small molecule metal catalysts or artificial metalloenzymes, a number of carbene transfer reactions that tolerate aqueous and biorelevant media are being developed. This review intends to summarize the most relevant contributions, and establish the state of the art in this emerging research field.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
8
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
9
|
Moyle AB, Cheng M, Wagner ND, Gross ML. Benzoyl Transfer for Footprinting Alcohol-Containing Residues in Higher Order Structural Applications of Mass-Spectrometry-Based Proteomics. Anal Chem 2022; 94:1520-1524. [PMID: 35019278 PMCID: PMC10483880 DOI: 10.1021/acs.analchem.1c04659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein footprinting mass spectrometry (MS), an emerging approach to elucidate higher-order structure (HOS) and binding, benefits from the iterative development of reaction strategies to expand the covalent labeling toolbox. Herein, we introduce a footprinting reagent for nucleophiles and demonstrate its efficacy for differential covalent labeling MS analysis. Benzoyl fluoride (BF), although reactive with water, is more practical for modifying nucleophilic functional groups than other acid halides and serves as an acyl-transfer reagent for proteins. BF is 10 times more reactive with phenolic Tyr than the current generation nucleophile footprinter. BF modifies, in addition to Tyr, Lys, His, and the N-terminus, weak nucleophiles Ser and Thr, for which few footprinters exist, imparting broad applicability with a range of nucleophiles. We applied benzoylation to a model Ser- and Thr-rich protein-ligand binding system without perturbing the protein HOS. This efficacious footprinting method expands the toolbox of reagents and provides promise for future reaction strategies including possibly membrane proteins.
Collapse
Affiliation(s)
- Austin B. Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ming Cheng
- Corresponding Authors Michael L. Gross - Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint. Louis, MO, 63130 USA. ; Ming Cheng - Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint. Louis, MO, 63130 USA.
| | - Nicole D. Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
10
|
Gutiérrez S, Tomás‐Gamasa M, Mascareñas JL. Exporting Metal‐Carbene Chemistry to Live Mammalian Cells: Copper‐Catalyzed Intracellular Synthesis of Quinoxalines Enabled by N−H Carbene Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
11
|
Gutiérrez S, Tomás‐Gamasa M, Mascareñas JL. Exporting Metal-Carbene Chemistry to Live Mammalian Cells: Copper-Catalyzed Intracellular Synthesis of Quinoxalines Enabled by N-H Carbene Insertions. Angew Chem Int Ed Engl 2021; 60:22017-22025. [PMID: 34390304 PMCID: PMC8518842 DOI: 10.1002/anie.202108899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Implementing catalytic organometallic transformations in living settings can offer unprecedented opportunities in chemical biology and medicine. Unfortunately, the number of biocompatible reactions so far discovered is very limited, and essentially restricted to uncaging processes. Here, we demonstrate the viability of performing metal carbene transfer reactions in live mammalian cells. In particular, we show that copper (II) catalysts can promote the intracellular annulation of alpha-keto diazocarbenes with ortho-amino arylamines, in a process that is initiated by an N-H carbene insertion. The potential of this transformation is underscored by the in cellulo synthesis of a product that alters mitochondrial functions, and by demonstrating cell selective biological responses using targeted copper catalysts. Considering the wide reactivity spectrum of metal carbenes, this work opens the door to significantly expanding the repertoire of life-compatible abiotic reactions.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| |
Collapse
|
12
|
Abstract
Click chemistry has been established rapidly as one of the most valuable methods for the chemical transformation of complex molecules. Due to the rapid rates, clean conversions to the products, and compatibility of the reagents and reaction conditions even in complex settings, it has found applications in many molecule-oriented disciplines. From the vast landscape of click reactions, approaches have emerged in the past decade centered around oxidative processes to generate in situ highly reactive synthons from dormant functionalities. These approaches have led to some of the fastest click reactions know to date. Here, we review the various methods that can be used for such oxidation-induced "one-pot" click chemistry for the transformation of small molecules, materials, and biomolecules. A comprehensive overview is provided of oxidation conditions that induce a click reaction, and oxidation conditions are orthogonal to other click reactions so that sequential "click-oxidation-click" derivatization of molecules can be performed in one pot. Our review of the relevant literature shows that this strategy is emerging as a powerful approach for the preparation of high-performance materials and the generation of complex biomolecules. As such, we expect that oxidation-induced "one-pot" click chemistry will widen in scope substantially in the forthcoming years.
Collapse
Affiliation(s)
- Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6807 WE Wageningen, The Netherlands.,Synaffix BV, Industrielaan 63, 5349 AE, Oss, The Netherlands
| |
Collapse
|
13
|
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 2021; 38:489-509. [PMID: 32929442 PMCID: PMC7956910 DOI: 10.1039/d0np00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
14
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input. Commun Chem 2020; 3:171. [PMID: 36703459 PMCID: PMC9814624 DOI: 10.1038/s42004-020-00413-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023] Open
Abstract
Bioconjugation reactions play a central facilitating role in engendering modified peptides and proteins. Early progress in this area was inhibited by challenges such as the limited range of substrates and the relatively poor biocompatibility of bioconjugation reagents. However, the recent developments in visible-light induced photoredox catalysis and electrochemical catalysis reactions have permitted significant novel reactivities to be developed in the field of synthetic and bioconjugation chemistry. This perspective describes recent advances in the use of biocompatible energy input for the modification of peptides and proteins mainly, via the single electron transfer (SET) process, as well as key future developments in this area.
Collapse
|
16
|
Dai SY, Yang D. A Visible and Near-Infrared Light Activatable Diazocoumarin Probe for Fluorogenic Protein Labeling in Living Cells. J Am Chem Soc 2020; 142:17156-17166. [PMID: 32870680 DOI: 10.1021/jacs.0c08068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical modification of proteins in living cells permits valuable glimpses into the molecular interactions that underpin dynamic cellular events. While genetic engineering methods are often preferred, selective labeling of endogenous proteins in a complex intracellular milieu with chemical approaches represents a significant challenge. In this study, we report novel diazocoumarin compounds that can be photoactivated by visible (430-490 nm) and near-infrared light (800 nm) irradiation to photo-uncage reactive carbene intermediates, which could subsequently undergo an insertion reaction with concomitant fluorescence "turned on". With these new molecules in hand, we have developed a new approach for rapid, selective, and fluorogenic labeling of endogenous protein in living cells. By using CA-II and eDHFR as model proteins, we demonstrated that subcellular localization of proteins can be precisely visualized by live-cell imaging and protein levels can be reliably quantified in multiple cell types using flow cytometry. Dynamic protein regulations such as hypoxia-induced CA-IX accumulation can also be detected. In addition, by two-photon excitation with an 800 nm laser, cell-selective labeling can also be achieved with spatially controlled irradiation. Our method circumvents the cytotoxicity of UV light and obviates the need for introducing external reporters with "click chemistries". We believe that this approach of fluorescence labeling of endogenous protein by bioorthogonal photoirradiation opens up exciting opportunities for discoveries and mechanistic interrogation in chemical biology.
Collapse
Affiliation(s)
- Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
17
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
18
|
Abstract
The chemistries selectively modifying recombinant proteins are valuable for the discovery and development of biologic therapeutics. We report here a Lys modification strategy that engages a Cys residue to covalently tether the reagents to the target that facilitates a proximity-driven intramolecular O-to-N acyl-transfer process yielding desired Lys-acylated products. We utilized GLP-1 as a case study, followed by desulfurization of the Cys mutation to native Ala regenerating the native sequence in a traceless fashion.
Collapse
Affiliation(s)
- David Hymel
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Fa Liu
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
19
|
Sato S, Matsumura M, Kadonosono T, Abe S, Ueno T, Ueda H, Nakamura H. Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction. Bioconjug Chem 2020; 31:1417-1424. [PMID: 32223219 DOI: 10.1021/acs.bioconjchem.0c00120] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting less abundant amino acid residues on the protein surface may realize site-selective protein modification of natural proteins. The relative hydrophobicity of tyrosine combined with the π-π stacking tendency of the aromatic rings results in generally low accessibility. In this study, site-selective protein modification was achieved by targeting surface-exposed tyrosine residues without using a genetic encoding system. Tyrosine residues were modified with N-methylated luminol derivative under single-electron transfer (SET) reaction conditions. Horseradish peroxidase (HRP)-catalyzed SET and electrochemically activated SET modified surface-exposed tyrosine residues selectively. N-Methylated luminol derivative modified tyrosine residues more efficiently than 4-arylurazole under tyrosine click conditions using HRP and electrochemistry. Tyrosine residues that are evolutionarily exposed only in the complementarity-determining region (CDR) of an antibody were selectively modified by tyrosine click reactions. CDR-modified antibodies were applied to in vivo imaging and antibody-drug conjugated (ADC).
Collapse
Affiliation(s)
- Shinichi Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Masaki Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.,School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Takafumi Ueno
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
20
|
Li SJ, Li X, Mo H, Qu LB, Wei D, Lan Y. With metal or not? a computationally predicted rule for a dirhodium catalyst in [3+3] cycloadditions of triazole with thiirane. Chem Commun (Camb) 2020; 56:4732-4735. [DOI: 10.1039/d0cc01293a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three possible pathways were explored to determine the inherent role of dirhodium in triazole transformation/functionalization.
Collapse
Affiliation(s)
- Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Xue Li
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Huilin Mo
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Ling-Bo Qu
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou
- P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry
| |
Collapse
|
21
|
Protein Chemical Labeling Using Biomimetic Radical Chemistry. Molecules 2019; 24:molecules24213980. [PMID: 31684188 PMCID: PMC6864698 DOI: 10.3390/molecules24213980] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023] Open
Abstract
Chemical labeling of proteins with synthetic low-molecular-weight probes is an important technique in chemical biology. To achieve this, it is necessary to use chemical reactions that proceed rapidly under physiological conditions (i.e., aqueous solvent, pH, low concentration, and low temperature) so that protein denaturation does not occur. The radical reaction satisfies such demands of protein labeling, and protein labeling using the biomimetic radical reaction has recently attracted attention. The biomimetic radical reaction enables selective labeling of the C-terminus, tyrosine, and tryptophan, which is difficult to achieve with conventional electrophilic protein labeling. In addition, as the radical reaction proceeds selectively in close proximity to the catalyst, it can be applied to the analysis of protein–protein interactions. In this review, recent trends in protein labeling using biomimetic radical reactions are discussed.
Collapse
|
22
|
Yamada K, Ito Y. Recent Chemical Approaches for Site‐Specific Conjugation of Native Antibodies: Technologies toward Next‐Generation Antibody–Drug Conjugates. Chembiochem 2019; 20:2729-2737. [DOI: 10.1002/cbic.201900178] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kei Yamada
- Ajinomoto Co., Inc. 1-1 Suzuki-Cho Kawasaki-Ku Kawasaki-Shi Kanagawa 210-8681 Japan
- Department of Chemistry and BioscienceGraduate School of Science and EngineeringKagoshima University 1-21-35 Korimoto Kagoshima 890-0065 Japan
| | - Yuji Ito
- Department of Chemistry and BioscienceGraduate School of Science and EngineeringKagoshima University 1-21-35 Korimoto Kagoshima 890-0065 Japan
| |
Collapse
|
23
|
Lewis JC. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Acc Chem Res 2019; 52:576-584. [PMID: 30830755 DOI: 10.1021/acs.accounts.8b00625] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or site-selective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.
Collapse
Affiliation(s)
- Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
25
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
26
|
Abstract
As a rare element with no known natural biological function, rhodium has a limited history in biological chemistry and chemical biology. However, rhodium complexes have unique structure and reactivity attributes, and chemists have increasingly used these attributes to probe and perturb living systems. This brief review focuses on recent advances in the use of rhodium complexes in biological contexts, including medicinal chemistry, protein science, and chemical biology. In particular, we highlight both structure- and reactivity-driven approaches to biological probes and discuss how coordination environment affects molecular properties in a biological environment.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas, USA.
| | | |
Collapse
|
27
|
Zhang SL, Dong JJ. Mechanism and chemoselectivity origins of bioconjugation of cysteine with Au(iii)-aryl reagents. Org Biomol Chem 2019; 17:1245-1253. [DOI: 10.1039/c8ob03143f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A detailed computational study is presented on the reaction mechanism of selective cysteine S-arylation by cationic Au(iii)-aryl reagents. The chemoselectivity origins have been elucidated through comparison with potential N- and O-arylation, showing that the acidity and nucleophilicity of the residue are two inherent controlling factors.
Collapse
Affiliation(s)
- Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Jia-Jia Dong
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
28
|
Tamura T, Hamachi I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J Am Chem Soc 2018; 141:2782-2799. [DOI: 10.1021/jacs.8b11747] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO, Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
29
|
Rink WM, Thomas F. De Novo Designed α-Helical Coiled-Coil Peptides as Scaffolds for Chemical Reactions. Chemistry 2018; 25:1665-1677. [DOI: 10.1002/chem.201802849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 01/31/2023]
Affiliation(s)
- W. Mathis Rink
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Franziska Thomas
- Institute of Organic and Biomolecular Chemistry; Georg-August-Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration; Von-Siebold-Straße 3a 37075 Göttingen Germany
| |
Collapse
|
30
|
Li SJ, Fang DC. DFT Studies on the Dirhodium-Catalyzed [3 + 2] and [3 + 3] Cycloaddition Reactions of Enol Diazoacetates with Isoquinolinium Methylide: Mechanism, Selectivity, and Ligand Effect. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shi-Jun Li
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
31
|
Peng CJ, Chen HL, Chiu CH, Fang JM. Site-Selective Functionalization of Flagellin by Steric Self-Protection: A Strategy To Facilitate Flagellin as a Self-Adjuvanting Carrier in Conjugate Vaccine. Chembiochem 2018; 19:805-814. [PMID: 29377518 DOI: 10.1002/cbic.201700634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/18/2023]
Abstract
Flagellin (FliC) can act as a carrier protein in the preparation of conjugate vaccines to elicit a T-cell-dependent immune response and as an intrinsic adjuvant to activate the toll-like receptor 5 (TLR5) to enhance vaccine potency. To enable the use of FliC as a self-adjuvanting carrier, an effective method for site-selective modification (SSM) of pertinent amino-acid residues in the D2 and D3 domains of FliC is explored without excessive modification of the D0 and D1 domains, which are responsible for activating and binding with TLR5. In highly concentrated Na2 SO4 solution, FliC monomers form flagellar filaments, in which the D0 and D1 domains are situated inside the tubular structure. Thus, the lysine residues (K219, K224, K324, and K331) in the D2 and D3 domains of flagellin are selectively modified by a diazo-transfer reaction with imidazole-1-sulfonyl azide. The sites with azido modification are confirmed by MALDI-TOF-MS, ESI-TOF-MS, and LC-MS/MS analyses along with label-free quantitation. The azido-modified filament dissolves to give FliC monomers, which can conjugate with alkyne-hinged saccharides by the click reaction. Transmission electron microscopy imaging, dynamic light scattering measurements, and the secreted embryonic alkaline phosphatase reporter assay indicate that the modified FliC monomers retain the ability either to bind with TLR5 or to reassemble into filaments. Overall, this study establishes a feasible method for the SSM of FliC by steric self-protection of the D0 and D1 domains.
Collapse
Affiliation(s)
- Chi-Jiun Peng
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Department of Pediatrics, Chang Gung Children's Hospital, 5, Fuxing Street, Guishan District, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Guishan District, Taoyuan, 33302, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- The Genomics Research Center, Academia Sinica, 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan
| |
Collapse
|
32
|
Ohata J, Miller MK, Mountain CM, Vohidov F, Ball ZT. A Three‐Component Organometallic Tyrosine Bioconjugation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University Houston TX 77005 USA
| | - Mary K. Miller
- Department of Chemistry Rice University Houston TX 77005 USA
| | | | - Farrukh Vohidov
- Department of Chemistry Rice University Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University Houston TX 77005 USA
| |
Collapse
|
33
|
Ohata J, Miller MK, Mountain CM, Vohidov F, Ball ZT. A Three‐Component Organometallic Tyrosine Bioconjugation. Angew Chem Int Ed Engl 2018; 57:2827-2830. [DOI: 10.1002/anie.201711868] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/29/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University Houston TX 77005 USA
| | - Mary K. Miller
- Department of Chemistry Rice University Houston TX 77005 USA
| | | | - Farrukh Vohidov
- Department of Chemistry Rice University Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University Houston TX 77005 USA
| |
Collapse
|
34
|
Yang H, Swartz AM, Park HJ, Srivastava P, Ellis-Guardiola K, Upp DM, Lee G, Belsare K, Gu Y, Zhang C, Moellering RE, Lewis JC. Evolving artificial metalloenzymes via random mutagenesis. Nat Chem 2018; 10:318-324. [PMID: 29461523 PMCID: PMC5891097 DOI: 10.1038/nchem.2927] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/30/2017] [Indexed: 01/18/2023]
Abstract
Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
Collapse
Affiliation(s)
- Hao Yang
- Merck Research Laboratories, 126 E. Lincoln Avenue, Rahway, New Jersey 07065, USA
| | - Alan M Swartz
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | - Hyun June Park
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | | | - Ken Ellis-Guardiola
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | - David M Upp
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | - Gihoon Lee
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Ketaki Belsare
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | - Yifan Gu
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | - Chen Zhang
- Provivi, Inc., 1701 Colorado Avenue, Santa Monica, California 90404, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Jared C Lewis
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| |
Collapse
|
35
|
Sato S, Hatano K, Tsushima M, Nakamura H. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts. Chem Commun (Camb) 2018; 54:5871-5874. [DOI: 10.1039/c8cc02891e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 1-methyl-4-aryl-urazole (MAUra) structure was found to be a novel tyrosyl radical trapping agent to label tyrosine residues effectively in proximity to ruthenium photocatalysts.
Collapse
Affiliation(s)
- Shinichi Sato
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kensuke Hatano
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Michihiko Tsushima
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
36
|
Vinogradova EV. Organometallic chemical biology: an organometallic approach to bioconjugation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThis review summarizes the history and recent developments of the field of organometallic chemical biology with a particular emphasis on the development of novel bioconjugation approaches. Over the years, numerous transformations have emerged for biomolecule modification with the use of organometallic reagents; these include [3+2] cycloadditions, C–C, C–S, C–N, and C–O bond forming processes, as well as metal-mediated deprotection (“decaging”) reactions. These conceptually new additions to the chemical biology toolkit highlight the potential of organometallic chemistry to make a significant impact in the field of chemical biology by providing further opportunities for the development of chemoselective, site-specific and spatially resolved methods for biomolecule structure and function manipulation. Examples of these transformations, as well as existing challenges and future prospects of this rapidly developing field are highlighted in this review.
Collapse
|
37
|
Ohata J, Ball ZT. A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies. J Am Chem Soc 2017; 139:12617-12622. [DOI: 10.1021/jacs.7b06428] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
38
|
Abstract
Advances in bioconjugation and native protein modification are appearing at a blistering pace, making it increasingly time consuming for practitioners to identify the best chemical method for modifying a specific amino acid residue in a complex setting. The purpose of this perspective is to provide an informative, graphically rich manual highlighting significant advances in the field over the past decade. This guide will help triage candidate methods for peptide alteration and will serve as a starting point for those seeking to solve long-standing challenges.
Collapse
Affiliation(s)
- Justine N. deGruyter
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lara R. Malins
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
39
|
Martin SC, Vohidov F, Wang H, Knudsen SE, Marzec AA, Ball ZT. Designing Selectivity in Dirhodium Metallopeptide Catalysts for Protein Modification. Bioconjug Chem 2017; 28:659-665. [DOI: 10.1021/acs.bioconjchem.6b00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel C. Martin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Farrukh Vohidov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Haopei Wang
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sarah E. Knudsen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Alex A. Marzec
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
40
|
Geigle SN, Wyss LA, Sturla SJ, Gillingham DG. Copper carbenes alkylate guanine chemoselectively through a substrate directed reaction. Chem Sci 2017; 8:499-506. [PMID: 28451197 PMCID: PMC5341205 DOI: 10.1039/c6sc03502g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022] Open
Abstract
Cu(i) carbenes derived from α-diazocarbonyl compounds lead to selective alkylation of the O6 position in guanine (O6-G) in mono- and oligonucleotides. Only purine-type lactam oxygens are targeted - other types of amides or lactams are poorly reactive under conditions that give smooth alkylation of guanine. Mechanistic studies point to N7G as a directing group that controls selectivity. Given the importance of O6-G adducts in biology and biotechnology we expect that Cu(i)-catalyzed O6-G alkylation will be a broadly used synthetic tool. While the propensity for transition metals to increase redox damage is well-appreciated, our results suggest that transition metals might also increase the vulnerability of nucleic acids to alkylation damage.
Collapse
Affiliation(s)
- Stefanie N Geigle
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , CH-4056 , Basel , Switzerland .
| | - Laura A Wyss
- Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , CH-8092 Zurich , Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , CH-8092 Zurich , Switzerland
| | - Dennis G Gillingham
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , CH-4056 , Basel , Switzerland .
| |
Collapse
|
41
|
Abstract
Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.
Collapse
Affiliation(s)
- Kalie A. Mix
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Matthew R. Aronoff
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Ohata J, Minus MB, Abernathy ME, Ball ZT. Histidine-Directed Arylation/Alkenylation of Backbone N–H Bonds Mediated by Copper(II). J Am Chem Soc 2016; 138:7472-5. [DOI: 10.1021/jacs.6b03390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Matthew B. Minus
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Morgan E. Abernathy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
43
|
Aronoff MR, Gold B, Raines RT. Rapid cycloaddition of a diazo group with an unstrained dipolarophile. Tetrahedron Lett 2016; 57:2347-2350. [PMID: 27909348 PMCID: PMC5125787 DOI: 10.1016/j.tetlet.2016.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cycloaddition of a diazoacetamide with ethyl 4,4,4-trifluorocrotonate proceeds with k = 0.1 M-1s-1. This second-order rate constant rivals those of optimized strain-promoted azide- alkyne cycloadditions, even though the reaction does not release strain. The regioselectivity and a computational distortion/interaction analysis of the reaction energetics are consistent with the formation of an N-H…F-C hydrogen bond in the transition state and the electronic character of the trifluorocrotonate. Analogous reactions with an azidoacetamide dipole or with an acrylate or crotonate dipolarophile were much slower. These findings suggest a new strategy for the design of diazo-selective reagents for chemical biology.
Collapse
Affiliation(s)
- Matthew R. Aronoff
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brian Gold
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
44
|
|
45
|
Minus MB, Liu W, Vohidov F, Kasembeli MM, Long X, Krueger MJ, Stevens A, Kolosov MI, Tweardy DJ, Sison EAR, Redell MS, Ball ZT. Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Minus MB, Liu W, Vohidov F, Kasembeli MM, Long X, Krueger MJ, Stevens A, Kolosov MI, Tweardy DJ, Sison EAR, Redell MS, Ball ZT. Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity. Angew Chem Int Ed Engl 2015; 54:13085-9. [PMID: 26480340 DOI: 10.1002/anie.201506889] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/31/2022]
Abstract
Nearly 40 % of children with acute myeloid leukemia (AML) suffer relapse arising from chemoresistance, often involving upregulation of the oncoprotein STAT3 (signal transducer and activator of transcription 3). Herein, rhodium(II)-catalyzed, proximity-driven modification identifies the STAT3 coiled-coil domain (CCD) as a novel ligand-binding site, and we describe a new naphthalene sulfonamide inhibitor that targets the CCD, blocks STAT3 function, and halts its disease-promoting effects in vitro, in tumor growth models, and in a leukemia mouse model, validating this new therapeutic target for resistant AML.
Collapse
Affiliation(s)
- Matthew B Minus
- Department of Chemistry, Rice University, Houston, TX 77005 (USA)
| | - Wei Liu
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA)
| | - Farrukh Vohidov
- Department of Chemistry, Rice University, Houston, TX 77005 (USA)
| | - Moses M Kasembeli
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (USA)
| | - Xin Long
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA)
| | - Michael J Krueger
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA)
| | - Alexandra Stevens
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA)
| | - Mikhail I Kolosov
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA)
| | - David J Tweardy
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (USA).
| | - Edward Allan R Sison
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA)
| | - Michele S Redell
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX 77030 (USA).
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX 77005 (USA).
| |
Collapse
|
47
|
Abstract
Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor-acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium-carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.
Collapse
|
48
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
49
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015; 54:4587-91. [DOI: 10.1002/anie.201411745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Indexed: 12/29/2022]
|