1
|
Nacci C, Civita D, Schied M, Magnano E, Nappini S, Píš I, Grill L. Light-Induced Increase of the Local Molecular Coverage on a Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5919-5926. [PMID: 38629116 PMCID: PMC11017312 DOI: 10.1021/acs.jpcc.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Light is a versatile tool to remotely activate molecules adsorbed on a surface, for example, to trigger their polymerization. Here, we explore the spatial distribution of light-induced chemical reactions on a Au(111) surface. Specifically, the covalent on-surface polymerization of an anthracene derivative in the submonolayer coverage range is studied. Using scanning tunneling microscopy and X-ray photoemission spectroscopy, we observe a substantial increase of the local molecular coverage with the sample illumination time at the center of the laser spot. We find that the interplay between thermally induced diffusion and the reduced mobility of reaction products steers the accumulation of material. Moreover, the debromination of the adsorbed species never progresses to completion within the experiment time, despite a long irradiation of many hours.
Collapse
Affiliation(s)
- Christophe Nacci
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Donato Civita
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Monika Schied
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Elena Magnano
- CNR—Istituto
Officina dei Materiali (IOM), Basovizza, 34149 Trieste, Italy
- Department
of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Silvia Nappini
- CNR—Istituto
Officina dei Materiali (IOM), Basovizza, 34149 Trieste, Italy
| | - Igor Píš
- CNR—Istituto
Officina dei Materiali (IOM), Basovizza, 34149 Trieste, Italy
| | - Leonhard Grill
- Department
of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
2
|
Leidinger P, Panighel M, Pérez Dieste V, Villar-Garcia IJ, Vezzoni P, Haag F, Barth JV, Allegretti F, Günther S, Patera LL. Probing dynamic covalent chemistry in a 2D boroxine framework by in situ near-ambient pressure X-ray photoelectron spectroscopy. NANOSCALE 2023; 15:1068-1075. [PMID: 36541666 PMCID: PMC9851174 DOI: 10.1039/d2nr04949j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 06/08/2023]
Abstract
Dynamic covalent chemistry is a powerful approach to design covalent organic frameworks, where high crystallinity is achieved through reversible bond formation. Here, we exploit near-ambient pressure X-ray photoelectron spectroscopy to elucidate the reversible formation of a two-dimensional boroxine framework. By in situ mapping the pressure-temperature parameter space, we identify the regions where the rates of the condensation and hydrolysis reactions become dominant, being the key to enable the thermodynamically controlled growth of crystalline frameworks.
Collapse
Affiliation(s)
- Paul Leidinger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | | | | | | | - Pablo Vezzoni
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Felix Haag
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | | | - Sebastian Günther
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Laerte L Patera
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Nacci C, Schied M, Civita D, Magnano E, Nappini S, Píš I, Grill L. Thermal- vs Light-Induced On-Surface Polymerization. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:22554-22561. [PMID: 34712378 PMCID: PMC8543439 DOI: 10.1021/acs.jpcc.1c06914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Indexed: 06/13/2023]
Abstract
On-surface polymerization is a powerful bottom-up approach that allows for the growth of covalent architectures with defined properties using the two-dimensional confinement of a highly defined single-crystal surface. Thermal heating is the preferred approach to initiate the reaction, often via cleavage of halogen substituents from the molecular building blocks. Light represents an alternative stimulus but has, thus far, only rarely been used. Here, we present a direct comparison of on-surface polymerization of dibromo-anthracene molecules, induced either thermally or by light, and study the differences between the two approaches. Insight is obtained by a combination of scanning tunneling microscopy, locally studying the polymer shape and size, and X-ray photoelectron spectroscopy, which identifies bond formation by averaging over large surface areas. While the polymer length increases slowly with the sample heating temperature, illumination promotes only the formation of short covalent structures, independent of the duration of light exposure. Moreover, irradiation with UV light at different sample temperatures highlights the important role of molecular diffusion across the surface.
Collapse
Affiliation(s)
- Christophe Nacci
- Department
of Physical Chemistry, University of Graz, 8010 Graz, Austria
| | - Monika Schied
- Department
of Physical Chemistry, University of Graz, 8010 Graz, Austria
| | - Donato Civita
- Department
of Physical Chemistry, University of Graz, 8010 Graz, Austria
| | - Elena Magnano
- IOM
CNR Laboratorio TASC, 34149 Basovizza, TS, Italy
- Department
of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | | | - Igor Píš
- IOM
CNR Laboratorio TASC, 34149 Basovizza, TS, Italy
| | - Leonhard Grill
- Department
of Physical Chemistry, University of Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Li W, Xu S, Chen X, Xu C. Structural transformations of carboxyl acids networks induced by concentration and oriented external electric field. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Riss A, Richter M, Paz AP, Wang XY, Raju R, He Y, Ducke J, Corral E, Wuttke M, Seufert K, Garnica M, Rubio A, V Barth J, Narita A, Müllen K, Berger R, Feng X, Palma CA, Auwärter W. Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2] cycloadditions. Nat Commun 2020; 11:1490. [PMID: 32198456 PMCID: PMC7083871 DOI: 10.1038/s41467-020-15210-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
The vast potential of organic materials for electronic, optoelectronic and spintronic devices entails substantial interest in the fabrication of π-conjugated systems with tailored functionality directly at insulating interfaces. On-surface fabrication of such materials on non-metal surfaces remains to be demonstrated with high yield and selectivity. Here we present the synthesis of polyaromatic chains on metallic substrates, insulating layers, and in the solid state. Scanning probe microscopy shows the formation of azaullazine repeating units on Au(111), Ag(111), and h-BN/Cu(111), stemming from intermolecular homo-coupling via cycloaddition reactions of CN-substituted polycyclic aromatic azomethine ylide (PAMY) intermediates followed by subsequent dehydrogenation. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry demonstrates that the reaction also takes place in the solid state in the absence of any catalyst. Such intermolecular cycloaddition reactions are promising methods for direct synthesis of regioregular polyaromatic polymers on arbitrary insulating surfaces.
Collapse
Affiliation(s)
- Alexander Riss
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
| | - Marcus Richter
- Department for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Mommsenstr. 4, 01062, Dresden, Germany
| | - Alejandro Pérez Paz
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuquí, Ecuador
- Chemistry Department, College of Science, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018, San Sebastián, Spain
| | - Xiao-Ye Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rajesh Raju
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuanqin He
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Jacob Ducke
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Eduardo Corral
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Michael Wuttke
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Knud Seufert
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Manuela Garnica
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049, Madrid, Spain
| | - Angel Rubio
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018, San Sebastián, Spain
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science and Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Physical Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Reinhard Berger
- Department for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Mommsenstr. 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Department for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Mommsenstr. 4, 01062, Dresden, Germany
| | - Carlos-Andres Palma
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
- Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Willi Auwärter
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
7
|
Rizzo DJ, Dai Q, Bronner C, Veber G, Smith BJ, Matsumoto M, Thomas S, Nguyen GD, Forrester PR, Zhao W, Jørgensen JH, Dichtel WR, Fischer FR, Li H, Bredas JL, Crommie MF. Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. NANO LETTERS 2020; 20:963-970. [PMID: 31910625 DOI: 10.1021/acs.nanolett.9b03998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covalent organic frameworks (COFs) are molecule-based 2D and 3D materials that possess a wide range of mechanical and electronic properties. We have performed a joint experimental and theoretical study of the electronic structure of boroxine-linked COFs grown under ultrahigh vacuum conditions and characterized using scanning tunneling spectroscopy on Au(111) and hBN/Cu(111) substrates. Our results show that a single hBN layer electronically decouples the COF from the metallic substrate, thus suppressing substrate-induced broadening and revealing new features in the COF electronic local density of states (LDOS). The resulting sharpening of LDOS features allows us to experimentally determine the COF band gap, bandwidths, and the electronic hopping amplitude between adjacent COF bridge sites. These experimental parameters are consistent with the results of first-principles theoretical predictions.
Collapse
Affiliation(s)
- Daniel J Rizzo
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Qingqing Dai
- Laboratory for Computational and Theoretical Chemistry of Advanced Materials, Physical Science and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332-0400 , United States
| | - Christopher Bronner
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Gregory Veber
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Brian J Smith
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Michio Matsumoto
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
- WPI Research Center for Materials Nanoarchitectonics (MANA) , National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba , Ibaraki 305-0044 , Japan
| | - Simil Thomas
- Laboratory for Computational and Theoretical Chemistry of Advanced Materials, Physical Science and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332-0400 , United States
| | - Giang D Nguyen
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Patrick R Forrester
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
| | - William Zhao
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Jakob H Jørgensen
- Department of Physics and Astronomy and Interdisciplinary Nanoscience Center iNANO , Aarhus University , Aarhus C DK-8000 , Denmark
| | - William R Dichtel
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Felix R Fischer
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Hong Li
- Laboratory for Computational and Theoretical Chemistry of Advanced Materials, Physical Science and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332-0400 , United States
| | - Jean-Luc Bredas
- Laboratory for Computational and Theoretical Chemistry of Advanced Materials, Physical Science and Engineering Division , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics , Georgia Institute of Technology , 901 Atlantic Drive NW , Atlanta , Georgia 30332-0400 , United States
| | - Michael F Crommie
- Department of Physics , University of California at Berkeley , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
8
|
|
9
|
Jin Y, Hu Y, Ortiz M, Huang S, Ge Y, Zhang W. Confined growth of ordered organic frameworks at an interface. Chem Soc Rev 2020; 49:4637-4666. [DOI: 10.1039/c9cs00879a] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This tutorial review covers the recent design, synthesis, characterization, and property study of COF thin films and covalent monolayers through interfacial polymerization.
Collapse
Affiliation(s)
- Yinghua Jin
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Yiming Hu
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Michael Ortiz
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| | | | - Yanqing Ge
- Department of Chemistry
- University of Colorado
- Boulder
- USA
- School of Chemistry and Pharmaceutical Engineering
| | - Wei Zhang
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|
10
|
Solvent role on covalent organic framework thin film formation promoted by ultrasound. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Cui D, Perepichka DF, MacLeod JM, Rosei F. Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chem Soc Rev 2020; 49:2020-2038. [DOI: 10.1039/c9cs00456d] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the state of the art of surface-confined single-layer covalent organic frameworks, focusing on reticular design, synthesis approaches, and exploring applications in host/guest chemistry.
Collapse
Affiliation(s)
- Daling Cui
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | | | - Jennifer M. MacLeod
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | - Federico Rosei
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| |
Collapse
|
12
|
Wang C, Chi L, Ciesielski A, Samorì P. Chemische Synthese an Oberflächen mit Präzision in atomarer Größenordnung: Beherrschung von Komplexität und Genauigkeit. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Can Wang
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices Soochow University Suzhou 215123 V.R. China
| | - Artur Ciesielski
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
13
|
Wang C, Chi L, Ciesielski A, Samorì P. Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angew Chem Int Ed Engl 2019; 58:18758-18775. [DOI: 10.1002/anie.201906645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Can Wang
- Université de StrasbourgCNRSISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon Based Functional, Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Artur Ciesielski
- Université de StrasbourgCNRSISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Université de StrasbourgCNRSISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
14
|
Colazzo L, Casarin M, Sambi M, Sedona F. On-Surface Photochemistry of Pre-Ordered 1-Methyl-2-phenyl-acetylenes: C-H Bond Activation and Intermolecular Coupling on Highly Oriented Pyrolytic Graphite. Chemphyschem 2019; 20:2317-2321. [PMID: 31245897 DOI: 10.1002/cphc.201900382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Indexed: 11/08/2022]
Abstract
In this contribution we report on light-induced metal-free coupling of propynylbenzene molecular units on highly oriented pyrolytic graphite. The reaction occurs within the self-assembled monolayer and leads to the generation of covalently coupled 1,5-hexadiyne and para-terphenyl derivatives under topological control. Such photochemical uncatalysed pathway represents an original approach in the field of topological C-C coupling at the solid/liquid interface and provides new insight into the low temperature formation of aromatic compounds at the surface of carbonaceous supports.
Collapse
Affiliation(s)
- Luciano Colazzo
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Republic of Korea.,Department of Physics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Maurizio Casarin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy.,CNR-ICMATE, Via Marzolo 1, 35131, Padova, Italy
| | - Mauro Sambi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy.,Consorzio INSTM, Unità di Ricerca di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Francesco Sedona
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
15
|
Cai ZF, Zhan G, Daukiya L, Eyley S, Thielemans W, Severin K, De Feyter S. Electric-Field-Mediated Reversible Transformation between Supramolecular Networks and Covalent Organic Frameworks. J Am Chem Soc 2019; 141:11404-11408. [DOI: 10.1021/jacs.9b05265] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhen-Feng Cai
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Gaolei Zhan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lakshya Daukiya
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Samuel Eyley
- Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, Renewable Materials and Nanotechnology Group, Campus Kortrijk, KU Leuven, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
16
|
Clair S, de Oteyza DG. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem Rev 2019; 119:4717-4776. [PMID: 30875199 PMCID: PMC6477809 DOI: 10.1021/acs.chemrev.8b00601] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/06/2023]
Abstract
On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix
Marseille Univ., Université de Toulon, CNRS, IM2NP, Marseille, France
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, San
Sebastián 20018, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU-MPC, San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
17
|
Pigot C, Dumur F. Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. MATERIALS 2019; 12:ma12040662. [PMID: 30813327 PMCID: PMC6416628 DOI: 10.3390/ma12040662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 02/01/2023]
Abstract
The fabrication of macromolecular organic structures on surfaces is one major concern in materials science. Nanoribbons, linear polymers, and porous nanostructures have gained a lot of interest due to their possible applications ranging from nanotemplates, catalysis, optoelectronics, sensors, or data storage. During decades, supramolecular chemistry has constituted an unavoidable approach for the design of well-organized structures on surfaces displaying a long-range order. Following these initial works, an important milestone has been established with the formation of covalent bonds between molecules. Resulting from this unprecedented approach, various nanostructures of improved thermal and chemical stability compared to those obtained by supramolecular chemistry and displaying unique and unprecedented properties have been developed. However, a major challenge exists: the growth control is very delicate and a thorough understanding of the complex mechanisms governing the on-surface chemistry is still needed. Recently, a new approach consisting in elaborating macromolecular structures by combining consecutive steps has been identified as a promising strategy to elaborate organic structures on surface. By designing precursors with a preprogrammed sequence of reactivity, a hierarchical or a sequential growth of 1D and 2D structures can be realized. In this review, the different reaction combinations used for the design of 1D and 2D structures are reported. To date, eight different sequences of reactions have been examined since 2008, evidencing the intense research activity existing in this field.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France.
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France.
| |
Collapse
|
18
|
Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat Chem 2018; 10:1112-1117. [DOI: 10.1038/s41557-018-0120-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/09/2018] [Indexed: 11/08/2022]
|
19
|
Di Giovannantonio M, Contini G. Reversibility and intermediate steps as key tools for the growth of extended ordered polymers via on-surface synthesis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:093001. [PMID: 29345628 DOI: 10.1088/1361-648x/aaa8cb] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-confined polymerization is a bottom-up strategy to create one- and two-dimensional covalent organic nanostructures with a π-conjugated backbone, which are suitable to be employed in real-life electronic devices, due to their high mechanical resistance and electronic charge transport efficiency. This strategy makes it possible to change the properties of the final nanostructures by a careful choice of the monomer architecture (i.e. of its constituent atoms and their spatial arrangement). Several chemical reactions have been proven to form low-dimensional polymers on surfaces, exploiting a variety of precursors in combination with metal (e.g. Cu, Ag, Au) and insulating (e.g. NaCl, CaCO3) surfaces. One of the main challenges of such an approach is to obtain nanostructures with long-range order, to boost the conductance performances of these materials. Most of the exploited chemical reactions use irreversible coupling between the monomers and, as a consequence, the resulting structures often suffer from poor order and high defect density. This review focuses on the state-of-the-art surface-confined polymerization reactions, with particular attention paid to reversible coupling pathways and irreversible processes including intermediate states, which are key aspects to control to increase the order of the final nanostructure.
Collapse
Affiliation(s)
- Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | |
Collapse
|
20
|
|
21
|
Cruz‐Huerta J, Campillo‐Alvarado G, Höpfl H, Rodríguez‐Cuamatzi P, Reyes‐Márquez V, Guerrero‐Álvarez J, Salazar‐Mendoza D, Farfán‐García N. Self‐Assembly of Triphenylboroxine and the Phenylboronic Ester of Pentaerythritol with Piperazine,
trans
‐1,4‐Diaminocyclohexane, and 4‐Aminopyridine. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jorge Cruz‐Huerta
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas e Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Gonzalo Campillo‐Alvarado
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas e Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas e Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Patricia Rodríguez‐Cuamatzi
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas e Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Viviana Reyes‐Márquez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas e Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Jorge Guerrero‐Álvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas e Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| | - Domingo Salazar‐Mendoza
- Universidad Tecnológica de la Mixteca, Carretera a Acatlima Km 2.5, Huajuapan de León 69000, Oaxaca, México
| | - Norberto Farfán‐García
- Facultad de Química, Departamento Química Orgánica, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, México
| |
Collapse
|
22
|
|
23
|
Xiang Z, Cao D, Dai L. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polym Chem 2015. [DOI: 10.1039/c4py01383b] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent developments in the design, synthesis and application of 2D covalent organic polymers are reviewed, along with some perspectives and challenges.
Collapse
Affiliation(s)
- Zhonghua Xiang
- Center of Advanced Science and Engineering for Carbon (Case4Carbon)
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Dapeng Cao
- State Key Lab of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Liming Dai
- Center of Advanced Science and Engineering for Carbon (Case4Carbon)
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| |
Collapse
|
24
|
Cui D, MacLeod JM, Ebrahimi M, Perepichka DF, Rosei F. Solution and air stable host/guest architectures from a single layer covalent organic framework. Chem Commun (Camb) 2015; 51:16510-3. [DOI: 10.1039/c5cc07059g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-layer COF-1 hosts fullerene guests, which can be introduced by a brief immersion in fullerene solution.
Collapse
Affiliation(s)
- D. Cui
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | - J. M. MacLeod
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | - M. Ebrahimi
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| | - D. F. Perepichka
- Center for Self-Assembled Chemical Structures
- McGill University
- Montreal
- Canada
| | - F. Rosei
- Centre Énergie
- Matériaux et Télécommunications
- Institut National de la Recherche Scientifique
- Varennes
- Canada
| |
Collapse
|
25
|
Zheng QN, Liu XH, Liu XR, Chen T, Yan HJ, Zhong YW, Wang D, Wan LJ. Bilayer Molecular Assembly at a Solid/Liquid Interface as Triggered by a Mild Electric Field. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Zheng QN, Liu XH, Liu XR, Chen T, Yan HJ, Zhong YW, Wang D, Wan LJ. Bilayer Molecular Assembly at a Solid/Liquid Interface as Triggered by a Mild Electric Field. Angew Chem Int Ed Engl 2014; 53:13395-9. [DOI: 10.1002/anie.201406523] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/09/2014] [Indexed: 11/11/2022]
|
27
|
Dinca LE, MacLeod JM, Lipton-Duffin J, Fu C, Ma D, Perepichka DF, Rosei F. Tip-induced C-H activation and oligomerization of thienoanthracenes. Chem Commun (Camb) 2014; 50:8791-3. [PMID: 24967741 DOI: 10.1039/c4cc03719g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tip of a scanning tunneling microscope (STM) can be used to dehydrogenate freely-diffusing tetrathienoanthracene (TTA) molecules on Cu(111), trapping the molecules into metal-coordinated oligomeric structures. The process proceeds at bias voltages above ~3 V and produces organometallic structures identical to those resulting from the thermally-activated cross-coupling of a halogenated analogue. The process appears to be substrate dependent: no oligomerization was observed on Ag(111) or HOPG. This approach demonstrates the possibility of controlled synthesis and nanoscale patterning of 2D oligomer structures on selected surfaces.
Collapse
Affiliation(s)
- L E Dinca
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sun Q, Xu W. Regulating the Interactions of Adsorbates on Surfaces by Scanning Tunneling Microscopy Manipulation. Chemphyschem 2014; 15:2657-63. [DOI: 10.1002/cphc.201402021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Indexed: 11/05/2022]
|
29
|
Clair S, Abel M, Porte L. Growth of boronic acid based two-dimensional covalent networks on a metal surface under ultrahigh vacuum. Chem Commun (Camb) 2014; 50:9627-35. [DOI: 10.1039/c4cc02678k] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An extensive analysis of the complex mechanisms governing the on-surface polymerisation of boronic acid on a metal surface under vacuum.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix Marseille Université
- CNRS
- Université de Toulon
- 13397 Marseille, France
| | - Mathieu Abel
- Aix Marseille Université
- CNRS
- Université de Toulon
- 13397 Marseille, France
| | - Louis Porte
- Aix Marseille Université
- CNRS
- Université de Toulon
- 13397 Marseille, France
| |
Collapse
|
30
|
Zhang X, Zeng Q, Wang C. On-surface single molecule synthesis chemistry: a promising bottom-up approach towards functional surfaces. NANOSCALE 2013; 5:8269-8287. [PMID: 23748971 DOI: 10.1039/c3nr01611k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this review, we introduce recent progress on surface synthesis and focus on supramolecular self-assembled structures driven by several typical chemical reactions at solid surfaces, with the aid of scanning tunneling microscopy (STM). We also emphasize the relationship between the non-covalent self-assembly and surface reactivity, by which we hope to find an effective way for further controllable nano-manufacture.
Collapse
Affiliation(s)
- Xuemei Zhang
- National Center for Nanoscience and Technology (NCNST), Beijing 100190, PR China
| | | | | |
Collapse
|
31
|
Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. CrystEngComm 2013. [DOI: 10.1039/c3ce26494g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Tokunaga Y. Boroxine Chemistry: From Fundamental Studies to Applications in Supramolecular and Synthetic Organic Chemistry. HETEROCYCLES 2013. [DOI: 10.3987/rev-13-767] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Dienstmaier JF, Medina DD, Dogru M, Knochel P, Bein T, Heckl WM, Lackinger M. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS NANO 2012; 6:7234-7242. [PMID: 22775491 DOI: 10.1021/nn302363d] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
On-surface self-condensation of 1,4-benzenediboronic acid was previously shown to yield extended surface-supported, long-range-ordered two-dimensional covalent organic frameworks (2D COFs). The most important prerequisite for obtaining high structural quality is that the polycondensation (dehydration) reaction is carried out under slightly reversible reaction conditions, i.e., in the presence of water. Only then can the subtle balance between kinetic and thermodynamic control of the polycondensation be favorably influenced, and defects that are unavoidable during growth can be corrected. In the present study we extend the previously developed straightforward preparation protocol to a variety of para-diboronic acid building blocks with the aim to tune lattice parameters and pore sizes of 2D COFs. Scanning tunneling microscopy is employed for structural characterization of the covalent networks and of noncovalently self-assembled structures that form on the surface prior to the thermally activated polycondensation reaction.
Collapse
Affiliation(s)
- Jürgen F Dienstmaier
- Deutsches Museum , Museumsinsel 1, 80538 Munich, Germany, and TUM School of Education, Technical University of Munich, Schellingstrasse 33, 80799 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Clair S, Ourdjini O, Abel M, Porte L. Two-dimensional polymer as a mask for surface nanopatterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1252-1254. [PMID: 22298291 DOI: 10.1002/adma.201200063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Indexed: 05/31/2023]
Abstract
NaCl islands are used as a sacrificial layer to selectively deposit a boronic acid based two-dimensional polymer. The nanostructured polymer layer can be used as a negative mask to create Fe islands in a nanolithography mimicking process.
Collapse
Affiliation(s)
- Sylvain Clair
- Aix-Marseille Université, IM2NP, Campus de Saint-Jérôme, Marseille, France.
| | | | | | | |
Collapse
|
35
|
Guan CZ, Wang D, Wan LJ. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem Commun (Camb) 2012; 48:2943-5. [PMID: 22227805 DOI: 10.1039/c2cc16892h] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of well-ordered 2D covalent networks via the dehydration of di-borate aromatic molecules was successfully realized through introducing a small amount of water into a closed reaction system to regulate the chemical equilibrium.
Collapse
Affiliation(s)
- Cui-Zhong Guan
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | |
Collapse
|
36
|
Dienstmaier JF, Gigler AM, Goetz AJ, Knochel P, Bein T, Lyapin A, Reichlmaier S, Heckl WM, Lackinger M. Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS NANO 2011; 5:9737-9745. [PMID: 22040355 DOI: 10.1021/nn2032616] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two different straightforward synthetic approaches are presented to fabricate long-range-ordered monolayers of a covalent organic framework (COF) on an inert, catalytically inactive graphite surface. Boronic acid condensation (dehydration) is employed as the polymerization reaction. In the first approach, the monomer is prepolymerized by a mere thermal treatment into nanocrystalline precursor COFs. The precursors are then deposited by drop-casting onto a graphite substrate and characterized by scanning tunneling microscopy (STM). While in the precursors monomers are already covalently interlinked into the final COF structure, the resulting domain size is still rather small. We show that a thermal treatment under reversible reaction conditions facilitates on-surface ripening associated with a striking increase of the domain size. Although this first approach allows studying different stages of the polymerization, the direct polymerization, that is, without the necessity of preceding reaction steps, is desirable. We demonstrate that even for a comparatively small diboronic acid monomer a direct thermally activated polymerization into extended COF monolayers is achievable.
Collapse
|