1
|
Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ, Handa H. Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. APPLIED MATERIALS TODAY 2021; 22:100887. [PMID: 38620577 PMCID: PMC7718584 DOI: 10.1016/j.apmt.2020.100887] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- AP1, activator protein 1
- COVID-19
- COVID-19, coronavirus disease 2019
- ECMO, extracorporeal membrane oxygenation, FDA, United States Food and Drug Administration
- GNSO, S-nitrosoglutathione
- H1N1, influenza A virus subtype H1N1
- HI, Host Immunology
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- HSV, herpes simplex virus
- I/R, pulmonary ischemia-reperfusion
- IC50, inhibitory concentration 50
- IFN, interferon
- IFNγ, interferon gamma
- IKK, inhibitor of nuclear factor kappa B kinase
- IRF-1, interferon regulatory factor 1
- Inhalation therapy
- Medical Terminology: ARDS, acute respiratory distress syndrome
- NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells
- NO, nitric oxide
- NOS, nitric oxide synthase
- Nitric Oxide and Related Compounds: eNOS/NOS 3, endothelial nitric oxide synthase
- Nitric oxide
- Other: DNA, deoxyribonucleic acid
- P38-MAPK, P38 mitogen-activated protein kinases
- PAMP, pathogen-associated molecular pattern
- PCV2, porcine circovirus type 2
- PHT, pulmonary hypertension
- PKR, protein kinase R
- RNA, ribonucleic acid
- RNI, reactive nitrogen intermediate
- RSNO, S-nitrosothiol
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SNAP, S-nitroso-N-acetyl-penicillamine
- STAT-1, signal transducer and activator of transcription 1
- Severe acute respiratory distress
- TAK1, transforming growth factor β-activated kinases-1
- TLR, toll-like receptor
- VAP, ventilator associated pneumonia
- Viral infection
- Viruses: CVB3, coxsackievirus
- dsRNA, double stranded (viral) ribonucleic acid
- gNO, gaseous nitric oxide
- iNOS/NOS 2, inducible nitric oxide synthase
- mtALDH, mitochondrial aldehyde dehydrogenase
- nNOS/NOS 1, neuronal nitric oxide synthase
Collapse
Affiliation(s)
- Mark R Garren
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Morgan Ashcraft
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yun Qian
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Megan Douglass
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
3
|
Kauser NI, Weisel M, Zhong YL, Lo MMC, Ali A. Calcium Dialkylamine Diazeniumdiolates: Synthesis, Stability, and Nitric Oxide Generation. J Org Chem 2020; 85:4807-4812. [DOI: 10.1021/acs.joc.0c00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nabeelah I. Kauser
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mark Weisel
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yong-Li Zhong
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael Man-Chu Lo
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Amjad Ali
- Department of Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
4
|
Smirnov GA, Gordeev PB, Nikitin SV, Pokhvisneva GV, Strelenko YA, Ternikova TV, Luk´yanov OA. Alkylation of 1-alkoxy-3-methyl-1-triazene 2-oxide sodium salts. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1237-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Dunne A, Palomo JM. Efficient and green approach for the complete deprotection of O-acetylated biomolecules. RSC Adv 2016. [DOI: 10.1039/c6ra19645d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This work shows the complete O-deprotection of per-acetylated molecules catalyzed by Aspergillus niger lipase (A-ANL) under very mild conditions.
Collapse
Affiliation(s)
- Anthony Dunne
- Departamento de Biocatálisis
- Instituto de Catálisis (CSIC)
- 28049 Madrid
- Spain
| | - Jose M. Palomo
- Departamento de Biocatálisis
- Instituto de Catálisis (CSIC)
- 28049 Madrid
- Spain
| |
Collapse
|
6
|
Site-directed delivery of nitric oxide to cancers. Nitric Oxide 2014; 43:8-16. [PMID: 25124221 DOI: 10.1016/j.niox.2014.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 01/28/2023]
Abstract
Nitric oxide (NO) is a reactive gaseous free radical which mediates numerous biological processes. At elevated levels, NO is found to be toxic to cancers and hence, a number of strategies for site-directed delivery of NO to cancers are in development during the past two decades. More recently, the focus of research has been to, in conjunction with other cancer drugs deliver NO to cancers for its secondary effects including inhibition of cellular drug efflux pumps. Among the various approaches toward site-selective delivery of exogenous NO sources, enzyme activated nitric oxide donors belonging to the diazeniumdiolate category afford unique advantages including exquisite control of rates of NO generation and selectivity of NO production. For this prodrug approach, enzymes including esterase, glutathione/glutathione S-transferase, DT-diaphorase, and nitroreductase are utilized. Here, we review the design and development of various approaches to enzymatic site-directed delivery of NO to cancers and their potential.
Collapse
|
7
|
Kim J, Saravanakumar G, Choi HW, Park D, Kim WJ. A platform for nitric oxide delivery. J Mater Chem B 2014; 2:341-356. [DOI: 10.1039/c3tb21259a] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Aizawa K, Nakagawa H, Matsuo K, Kawai K, Ieda N, Suzuki T, Miyata N. Piloty’s acid derivative with improved nitroxyl-releasing characteristics. Bioorg Med Chem Lett 2013; 23:2340-3. [DOI: 10.1016/j.bmcl.2013.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
9
|
Tan L, Wan A, Li H. Fluorescent chitosan complex nanosphere diazeniumdiolates as donors and sensitive real-time probes of nitric oxide. Analyst 2013; 138:879-86. [DOI: 10.1039/c2an36548k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Tan L, Wan A, Li H, Lu Q. Novel quantum dots-carboxymethyl chitosan nanocomposite nitric oxide donors capable of detecting release of nitric oxide in situ. Acta Biomater 2012; 8:3744-53. [PMID: 22705045 DOI: 10.1016/j.actbio.2012.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/18/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) donor compounds are primarily monofunctional in that they release NO under the requisite conditions. To detect the amount and duration of NO released, subsequent analysis methods are required. It would be advantageous if a NO donor compound could both release and detect NO at the same time. This would eliminate potential errors in the analysis. In this paper, novel cadmium telluride quantum dots (CdTe QD)-carboxymethyl chitosan (CMCS) nanocomposite NO donors, including both diazeniumdiolates and fluorescence probes, were fabricated by first synthesizing CdTe QD in CMCS aqueous solution and then reacting NO as well as ethyl bromide with the resultant CdTe QD-CMCS nanocomposites. Transmission electron microscopy, scanning electron microscopy and particle size analysis were used to examine the morphology and size distribution of the CdTe QD-CMCS nanocomposite NO donors. The donors are nanospheres with CdTe QD encapsulated and have dimensions of ~300 nm. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle tests were employed to characterize the chemical structure of the donors, and the results also show that CdTe QD are well incorporated into CMCS, and many of them are close to the surface of the donors. The precursors of the donors exhibit a fluorescent effect, and the fluorescence can be quenched by NO. The donors can release NO spontaneously in a phosphate-buffered saline solution similar to a physiological environment, and can quantitatively detect the release of NO in situ based on fluorescence quenching of the donors by the NO.
Collapse
Affiliation(s)
- L Tan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
11
|
Nandurdikar RS, Maciag AE, Cao Z, Keefer LK, Saavedra JE. Diazeniumdiolated carbamates: a novel class of nitric oxide donors. Bioorg Med Chem 2012; 20:2025-9. [PMID: 22356735 PMCID: PMC3298570 DOI: 10.1016/j.bmc.2012.01.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
We report an indirect method for synthesis of previously inaccessible diazeniumdiolated carbamates. Synthesis involves use of previously reported triisopropylsilyloxymethylated isopropylamine diazeniumdiolate (TOM-ylated IPA/NO). These novel diazeniumdiolated carbamate prodrugs upon activation release nitric oxide (NO) similar to their secondary amine counterparts. They are also efficient sources of intracellular NO. These prodrugs may have potential applications as therapeutic NO-donors.
Collapse
Affiliation(s)
- Rahul S. Nandurdikar
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Zhao Cao
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Larry K. Keefer
- Drug Design Section, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Joseph E. Saavedra
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
12
|
Keefer LK. Fifty years of diazeniumdiolate research. From laboratory curiosity to broad-spectrum biomedical advances. ACS Chem Biol 2011; 6:1147-55. [PMID: 21932836 PMCID: PMC3220281 DOI: 10.1021/cb200274r] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Here I show that a “pure” research project, seemingly totally lacking in practical application when it was first published, can years later spark a whole new scientific field with the potential to revolutionize clinical practice. A 1961 publication describing adducts of nitric oxide (NO) with certain nucleophiles attracted little notice at the time, but later work showing that the adducts could be hydrolyzed to regenerate the NO in bioactive form has provided the foundation for a host of biomedical applications. Crucial to the discovery of widely used tools for studying NO’s chemical biology as well as for the design of a variety of promising therapeutic advances has been the increasingly detailed understanding of the physicochemical properties of these “diazeniumdiolates” (also known as NONOates).
Collapse
Affiliation(s)
- Larry K. Keefer
- Chemistry Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|