1
|
Li Y, Chang R, Chen YX. Recent advances in post-polymerization modifications on polypeptides: synthesis and applications. Chem Asian J 2022; 17:e202200318. [PMID: 35576055 DOI: 10.1002/asia.202200318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Polypeptides, a kind of very promising biomaterial, have shown a wide range of applications due to their excellent biocompatibility, easy accessibility, and structural variability. To synthesize polypeptides with desired functions, post-polymerization modification (PPM) plays an important role in introducing novel chemical structure on their side-chains. The key of PPM strategy is to develop highly selective and efficient reactions that can couple the additional functional moieties with pre-installed side-chain functionalities on polypeptides. In this minireview, classic PPM reactions and especially their recent progresses are summarized, including different modification approaches for unsaturated alkyl group, oxygen-containing functional group, nitrogen-containing functional group, sulfur-containing functional group and other special functional group on side chains. In addition, this review also highlights the applications of structure-diversified polypeptides generated via PPM strategy in the field of biomaterial.
Collapse
Affiliation(s)
- Yue Li
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Rong Chang
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Haidian District, 100084, China, 100084, Beiing, CHINA
| |
Collapse
|
2
|
Chen X, Zhong J, Jiang X, He Z, Quan Y, Zhong S, Li G, Huang Y. Structure and Oxidation Effects on Conformation and Thermoresponsiveness of the OEGylated Poly(glutamic acid)-Bearing Side-Chain Thioether Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1288-1296. [PMID: 33433225 DOI: 10.1021/acs.langmuir.0c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of side-chain thioether-linked OEGylated poly(glutamic acid) (PGAs) have been synthesized by "thiol-ene" synthetic methodology, where both the oligo-ethylene glycol (OEG) length and the hydrophobic linkers at the side chains are varied to learn how these structural features affect the secondary structure and thermoresponsive behaviors in water. Before side-chain oxidation, the structural factors affecting the α-helicity include the backbone length, the OEG length, and the hydrophobic linkers' length at the side chains; however, the OEG length plays the most crucial role among these factors because longer OEG around the peripheral side chains can stop water penetration into the backbone to disturb the intramolecular H bonds, which finally allows stabilizing the α-helix; after the oxidation, the polypeptides show increased α-helicity because of the enhanced hydrophilicity. More interestingly, a rare oxidation-induced conformation transition from the ordered β-sheet to the ordered α-helix can be achieved. In addition, only the OEGylated poly(glutamic acids) (PGAs) with shorter hydrophobic linkers and longer OEG can display the thermoresponsive properties before the oxidation but the subsequent oxidation can cause the polypeptides bearing longer hydrophobic linkers to exhibit the thermosensitivity since sulfone formation at the side chain can lead to final hydrophilicity-hydrophobicity balance. This work is meaningful to understand the secondary structure-associated solution behaviors of the synthetic polypeptides.
Collapse
Affiliation(s)
- Xueyuan Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Junyang Zhong
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinlin Jiang
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Ziqing He
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yusi Quan
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Songjing Zhong
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Guangji Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yugang Huang
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| |
Collapse
|
3
|
Liu H, Quan Y, Jiang X, Zhao X, Zhou Y, Fu J, Du L, Zhao X, Zhao J, Liang L, Yi D, Huang Y, Ye G. Using Polypeptide Bearing Furan Side Chains as a General Platform to Achieve Highly Effective Preparation of Smart Glycopolypeptide Analogue-Based Nano-Prodrugs for Cancer Treatment. Colloids Surf B Biointerfaces 2020; 194:111165. [PMID: 32521460 DOI: 10.1016/j.colsurfb.2020.111165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Although several synthetic polypeptide-based nano-prodrugs (NPDs) have entered clinical trials for cancer treatment, achieving a highly effective production of the NPDs for clinical translation remains a challenge. Herein, we develop a typical preparation of pH/glutathione (GSH) dual-responsive glycopolypeptide analogue NPDs having a high drug capsulation/loading efficiency of ca. 93% and ca. 27% even based on ring-opening polymerization (ROP) of a novel and general furan-containing N-carboxyanhydride (NCA) monomer, which facilitates the Diels-Alder (D-A) side-chain functionalization by maleimide modified chemotherapy drug without using any reactive additives. High reactivity of the D-A reaction resulting in the high preparation efficiency of the NPDs is confirmed by 1H NMR and density functional theory (DFT) calculations. The self-assembled properties as well as the dual-responsiveness of the NPDs are systemically studied by particle size and zeta potential assay, transmission electron microscopy and drug-delivery dynamics. The cell uptake mechanism, intracellular drug distribution, in vitro/vivo antitumor activity evaluations and the main organ damages of the NPDs are all investigated. Our work can provide a good solution to solve the inefficient fabrication of the smart synthetic polypeptide-based micelles for cancer treatment by following this general and sophisticated platform.
Collapse
Affiliation(s)
- Houhe Liu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yusi Quan
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinlin Jiang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaotian Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Zhou
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jijun Fu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingran Du
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoya Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lu Liang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Di Yi
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yugang Huang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Ye
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Song Z, Tan Z, Cheng J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N-Carboxyanhydrides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01450] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Liang Q, Li F, Li Y, Liu Y, Lan M, Wu S, Wu X, Ji Y, Zhang R, Yin L. Self-assisted membrane-penetrating helical polypeptides mediate anti-inflammatory RNAi against myocardial ischemic reperfusion (IR) injury. Biomater Sci 2019; 7:3717-3728. [DOI: 10.1039/c9bm00719a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aromatically-modified helical polypeptide mediates membrane-penetrating RAGE siRNA delivery toward anti-inflammatory treatment against myocardial IR injury.
Collapse
|
6
|
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018; 47:7739-7782. [PMID: 30221267 DOI: 10.1039/c8cs00531a] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further post-modification of the corresponding chemically functional polymers after polymerization. Synthetic concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications highlighted.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
7
|
El-Mahdy AFM, Kuo SW. Diphenylpyrenylamine-functionalized polypeptides: secondary structures, aggregation-induced emission, and carbon nanotube dispersibility. RSC Adv 2018; 8:15266-15281. [PMID: 35539482 PMCID: PMC9080069 DOI: 10.1039/c8ra02369g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/15/2018] [Indexed: 11/23/2022] Open
Abstract
In this study we prepared-through ring-opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) initiated by N,N-di(4-aminophenyl)-1-aminopyrene (pyrene-DPA-2NH2)-poly(γ-benzyl-l-glutamate) (PBLG) polymers with various degrees of polymerization (DP), each featuring a di(4-aminophenyl)pyrenylamine (DPA) luminophore on the main backbone. The secondary structures of these pyrene-DPA-PBLG polypeptides were investigated using Fourier transform infrared spectroscopy and wide-angle X-ray diffraction, revealing that the polypeptides with DPs of less than 19 were mixtures of α-helical and β-sheet conformations, whereas the α-helical structures were preferred for longer chains. Interestingly, pyrene-DPA-2NH2 exhibited weak photoluminescence (PL), yet the emission of the pyrene-DPA-PBLG polypeptides was 16-fold stronger, suggesting that attaching PBLG chains to pyrene-DPA-2NH2 turned on a radiative pathway for the non-fluorescent molecule. Furthermore, pyrene-DPA-2NH2 exhibited aggregation-caused quenching; in contrast, after incorporation into the PBLG segments with rigid-rod conformations, the resulting pyrene-DPA-PBLG polypeptides displayed aggregation-induced emission. Transmission electron microscopy revealed that mixing these polypeptides with multiwalled carbon nanotubes (MWCNTs) in DMF led to the formation of extremely dispersible pyrene-DPA-PBLG/MWCNT composites. The fabrication of MWCNT composites with such biocompatible polymers should lead to bio-inspired carbon nanostructures with useful biomedical applications.
Collapse
Affiliation(s)
- Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University Kaohsiung 80424 Taiwan
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University Kaohsiung 80424 Taiwan
| |
Collapse
|
8
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2017; 9:E551. [PMID: 30965855 PMCID: PMC6418556 DOI: 10.3390/polym9110551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodríguez-Hernández
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
9
|
Synthesis of conformation switchable cationic polypeptides based on poly( S -propargyl-cysteine) for use as siRNA delivery. Int J Biol Macromol 2017; 101:758-767. [DOI: 10.1016/j.ijbiomac.2017.03.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022]
|
10
|
Li F, Li Y, Zhou Z, Lv S, Deng Q, Xu X, Yin L. Engineering the Aromaticity of Cationic Helical Polypeptides toward "Self-Activated" DNA/siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23586-23601. [PMID: 28657294 DOI: 10.1021/acsami.7b08534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of potent yet nontoxic membrane-penetrating materials is in high demand for effective intracellular gene delivery. We have recently developed α-helical polypeptides which afford potent membrane activities to facilitate intracellular DNA delivery via both endocytosis and the nonendocytic "pore formation" mechanism. Endocytosis will cause endosomal entrapment of the DNA cargo, while excessive "pore formation" would cause appreciable cytotoxicity. Additionally, helical polypeptides with stiff, rodlike structure suffer from low siRNA binding affinity. To address such critical issues, we herein incorporated various aromatic domains (benzyl, naphthyl, biphenyl, anthryl, and pyrenyl) into the side-chain terminals of guanidine-rich, helical polypeptides, wherein the flat-rigid shape, π-electronic structures of aromatic motifs "self-activated" the membrane-penetrating capabilities of polypeptides to promote intracellular gene delivery. Benzyl (Bn)- and naphthyl (Naph)-modified polypeptides demonstrated the highest DNA uptake level that outperformed the unmodified polypeptide, P2, by ∼4 fold. More importantly, compared with P2, Bn- and Naph-modified polypeptides allowed more DNA cargos to be internalized via the nonendocytic pathway, which significantly bypassed the endosomal entrapment and accordingly enhanced the transfection efficiency by up to 42 fold, outperforming PEI 25k as the commercial reagent by 3-4 orders of magnitude. The aromatic modification also improved the siRNA condensation capability of polypeptides, achieving notably enhanced gene-silencing efficiency against tumor necrosis factor-α to treat acute hepatic inflammation. Furthermore, we revealed that aromaticity-augmented membrane activity was accompanied by comparable or even significantly reduced "pore formation" capability, thus leading to diminished cytotoxicity at high concentrations. This study therefore provides a promising approach to manipulate the membrane activities and penetration mechanisms of polycations, which overcomes the multiple critical barriers preventing effective and safe gene delivery.
Collapse
Affiliation(s)
- Fangfang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Yongjuan Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Zhuchao Zhou
- Department of General Surgery, Huashan Hospital, Fudan University , Shanghai 200040, China
| | - Shixian Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Qiurong Deng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
| |
Collapse
|
11
|
Huesmann D, Klinker K, Barz M. Orthogonally reactive amino acids and end groups in NCA polymerization. Polym Chem 2017. [DOI: 10.1039/c6py01817c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We summarize recent strategies for the synthesis of orthogonally reactive polypeptides and polypeptoids by direct and post-polymerization approaches.
Collapse
Affiliation(s)
- David Huesmann
- Institute of Organic Chemistry
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
| | - Kristina Klinker
- Institute of Organic Chemistry
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Graduate School Materials Science in Mainz
| | - Matthias Barz
- Institute of Organic Chemistry
- Johannes Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
12
|
Thermal and redox dual responsive poly(L-glutamate) with oligo(ethylene glycol) side-chains. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1861-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Huang CW, Mohamed MG, Zhu CY, Kuo SW. Functional Supramolecular Polypeptides Involving π–π Stacking and Strong Hydrogen-Bonding Interactions: A Conformation Study toward Carbon Nanotubes (CNTs) Dispersion. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01060] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cheng-Wei Huang
- Institute of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chao-Yuan Zhu
- Institute of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
14
|
Mohamed MG, Tu JH, Huang SH, Chiang YW, Kuo SW. Hydrogen bonding interactions affect the hierarchical self-assembly and secondary structures of comb-like polypeptide supramolecular complexes displaying photoresponsive behavior. RSC Adv 2016. [DOI: 10.1039/c6ra07907e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hierarchical lamellae-within-lamellae structure for the PTyr/AzoPy-C16 supramolecular complex, featuring long-range-ordered lamellae arising from the PTyr within lamellae arising from AzoPy-C16 units oriented in a perpendicular manner.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Jia-Huei Tu
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shih-Hung Huang
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center for Functional Polymers and Supramolecular Materials
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| |
Collapse
|
15
|
Zhao W, Gnanou Y, Hadjichristidis N. Well-defined (co)polypeptides bearing pendant alkyne groups. Polym Chem 2016. [DOI: 10.1039/c6py00365f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of alkyne-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups.
Collapse
Affiliation(s)
- Wei Zhao
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division (PSE)
- KAUST Catalysis Center (KCC)
- Polymer Synthesis Laboratory
- Thuwal 23955
| | - Yves Gnanou
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division (PSE)
- Saudi Arabia
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division (PSE)
- KAUST Catalysis Center (KCC)
- Polymer Synthesis Laboratory
- Thuwal 23955
| |
Collapse
|
16
|
Fu X, Ma Y, Sun J, Li Z. Biodegradable thermal- and redox-responsive poly(l-glutamate) with Y-shaped oligo(ethylene glycol) side-chain and tunable phase transition temperature. RSC Adv 2016. [DOI: 10.1039/c6ra17427b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of poly(l-glutamate) bearing Y-shaped oligo(ethylene glycol)x side-chains were synthesized via a combination of ROP and thiol–yne photoaddition. The polypeptides showed dual thermal and redox-responsive properties.
Collapse
Affiliation(s)
- Xiaohui Fu
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
- Institute of Chemistry
| | - Yinan Ma
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jing Sun
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zhibo Li
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
- Institute of Chemistry
| |
Collapse
|
17
|
Affiliation(s)
- Timothy J. Deming
- Department of Bioengineering, University of California, 5121 Engineering 5, Los
Angeles, California 90095, United States
- Department of Chemistry and
Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Gharakhanian EG, Deming TJ. Versatile Synthesis of Stable, Functional Polypeptides via Reaction with Epoxides. Biomacromolecules 2015; 16:1802-6. [DOI: 10.1021/acs.biomac.5b00372] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Eric G. Gharakhanian
- Department
of Chemistry and Biochemistry, University of California Los Angeles, Los
Angeles, California 90095-1569, United States
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, University of California Los Angeles, Los
Angeles, California 90095-1569, United States
- Department
of Bioengineering, University of California Los Angeles, Los Angeles, California 90095-1600, United States
| |
Collapse
|
19
|
Synthesis of Polyphosphazene Derivatives via Thiol-ene Click Reactions in an Aqueous Medium. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Zhang R, Song Z, Yin L, Zheng N, Tang H, Lu H, Gabrielson NP, Lin Y, Kim K, Cheng J. Ionic α-helical polypeptides toward nonviral gene delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:98-110. [PMID: 25377262 PMCID: PMC4545666 DOI: 10.1002/wnan.1307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/08/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023]
Abstract
The advent of polymeric materials has significantly promoted the development and rapid growth of various technologies in biomedical applications, such as tissue engineering and controlled drug and gene delivery. Water-soluble polypeptides bearing functional side chains and adopting stable secondary structures are a new class of functional polymeric materials of potentially broad applications in medicine and biotechnology. In this article, we summarize our recent effort on the design and synthesis of the water-soluble α-helical ionic polypeptides originally developed in our laboratory and highlight their applications in cell membrane penetration and nonviral gene/small interfering RNA (siRNA) delivery.
Collapse
Affiliation(s)
- Rujing Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Nan Zheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Haoyu Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Nathan P. Gabrielson
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Kyung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Wu X, Zhou L, Su Y, Dong CM. Comb-like poly(l-cysteine) derivatives with different side groups: synthesis via photochemistry and click chemistry, multi-responsive nanostructures, triggered drug release and cytotoxicity. Polym Chem 2015. [DOI: 10.1039/c5py01113b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of comb-like graft polypeptides having different side groups and tunable grafting ratios were prepared by sequential photocleavage reactions and Michael-type thiol–ene addition, which provides a promising platform for on-demand nanomedicine and cancer therapy.
Collapse
Affiliation(s)
- Xingjie Wu
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Linzhu Zhou
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Su
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
22
|
|
23
|
Fan J, Li R, He X, Seetho K, Zhang F, Zou J, Wooley KL. Construction of a versatile and functional nanoparticle platform derived from a helical diblock copolypeptide-based biomimetic polymer. Polym Chem 2014; 5:3977-3981. [PMID: 25013459 PMCID: PMC4084918 DOI: 10.1039/c4py00628c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential polymerization of N-carboxyanhydrides accelerated by nitrogen flow is utilized to generate a novel well-defined diblock copolypeptide (PDI = 1.08), with incorporation of alkyne-functionalized side-chain groups allowing for rapid and efficient thiol-yne click-type modifications, followed by self-assembly into nanopure water to construct a helical polypeptide-based versatile and functional nanoparticle platform.
Collapse
Affiliation(s)
- Jingwei Fan
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Xun He
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Kellie Seetho
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Fuwu Zhang
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Jiong Zou
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842 (USA)
| |
Collapse
|
24
|
Ghirardello M, Öberg K, Staderini S, Renaudet O, Berthet N, Dumy P, Hed Y, Marra A, Malkoch M, Dondoni A. Thiol-ene and thiol-yne-based synthesis of glycodendrimers as nanomolar inhibitors of wheat germ agglutinin. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mattia Ghirardello
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Kim Öberg
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Samuele Staderini
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Olivier Renaudet
- Département de Chimie Moléculaire; UMR CNRS 5250, Université Joseph Fourier, 570 Rue de la chimie, BP 53; 38041 Grenoble cedex 9 France
| | - Nathalie Berthet
- Département de Chimie Moléculaire; UMR CNRS 5250, Université Joseph Fourier, 570 Rue de la chimie, BP 53; 38041 Grenoble cedex 9 France
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale; 34296 Montpellier cedex 5 France
| | - Yvonne Hed
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale; 34296 Montpellier cedex 5 France
| | - Michael Malkoch
- Division of Coating Technology; KTH The Royal Institute of Technology, School of Chemical Science and Engineering; Teknikringen 56-58 SE-10044 Stockholm Sweden
| | - Alessandro Dondoni
- Interdisciplinary Center for the Study of Inflammation, Università di Ferrara; Via Borsari 46 44100 Ferrara Italy
| |
Collapse
|
25
|
Synthesis and self-assembly of amphiphilic polyphosphazene with controllable composition via two step thiol-ene click reaction. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Deng C, Wu J, Cheng R, Meng F, Klok HA, Zhong Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.10.008] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Affiliation(s)
- Fabrice Dénès
- Laboratoire CEISAM UMR CNRS 6230 - UFR des Sciences et Techniques, Université de Nantes , 2 rue de la Houssinière, BP 92208 - 44322 Nantes Cedex 3, France
| | | | | | | |
Collapse
|
28
|
van Hensbergen JA, Burford RP, Lowe AB. ROMP (co)polymers with pendent alkyne side groups: post-polymerization modification employing thiol–yne and CuAAC coupling chemistries. Polym Chem 2014. [DOI: 10.1039/c4py00604f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of a series of copolymers via ring-opening metathesis polymerization (ROMP) containing pendent trimethylsilyl-protected alkyne functional groups is described.
Collapse
Affiliation(s)
- Johannes A. van Hensbergen
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW AUSTRALIA
- University of New South Wales
- Sydney, Australia
| | - Robert P. Burford
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW AUSTRALIA
- University of New South Wales
- Sydney, Australia
| | - Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW AUSTRALIA
- University of New South Wales
- Sydney, Australia
| |
Collapse
|
29
|
Dan K, Ghosh S. Stimuli responsive triblock copolymers by chain-growth polymerization from telechelic macroinitiators prepared via a step-growth polymerization. Polym Chem 2014. [DOI: 10.1039/c4py00078a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of stimuli-responsive ABA tri-block copolymers using a step-growth polmerization followed by a chain-growth polymerization.
Collapse
Affiliation(s)
- Krishna Dan
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata-700032, India
| | - Suhrit Ghosh
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata-700032, India
| |
Collapse
|
30
|
Lin H, Gan Y, Jiang X, Yin J. Thiol-yne Photo-curable Hybrid Resist: An Alternative for UV Nanoimprint Lithography (UV-NIL). J PHOTOPOLYM SCI TEC 2014. [DOI: 10.2494/photopolymer.27.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong Lin
- HCC-SJTU R&D Center, School of Chemistry and Chemical Technology, Shanghai Jiao Tong University
| | - Yanchang Gan
- HCC-SJTU R&D Center, School of Chemistry and Chemical Technology, Shanghai Jiao Tong University
| | - Xuesong Jiang
- HCC-SJTU R&D Center, School of Chemistry and Chemical Technology, Shanghai Jiao Tong University
| | - Jie Yin
- HCC-SJTU R&D Center, School of Chemistry and Chemical Technology, Shanghai Jiao Tong University
| |
Collapse
|
31
|
Lu H, Wang J, Song Z, Yin L, Zhang Y, Tang H, Tu C, Lin Y, Cheng J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem Commun (Camb) 2014; 50:139-55. [DOI: 10.1039/c3cc46317f] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Pötzsch R, Komber H, Stahl BC, Hawker CJ, Voit BI. Radical Thiol-yne Chemistry on Diphenylacetylene: Selective and Quantitative Addition Enabling the Synthesis of Hyperbranched Poly(vinyl sulfide)s. Macromol Rapid Commun 2013; 34:1772-8. [DOI: 10.1002/marc.201300707] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/28/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Pötzsch
- Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden; Center for Advancing Electronics Dresden (cfaed) and Chair of Organic Chemistry of Polymers; 01062 Dresden Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Straße 6 01069 Dresden Germany
| | - Brian C. Stahl
- Materials Research Laboratory, Materials Department, and Department of Chemistry and Biochemistry; University of California; Santa Barbara CA 93106-2150 USA
| | - Craig J. Hawker
- Materials Research Laboratory, Materials Department, and Department of Chemistry and Biochemistry; University of California; Santa Barbara CA 93106-2150 USA
| | - Brigitte I. Voit
- Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden; Center for Advancing Electronics Dresden (cfaed) and Chair of Organic Chemistry of Polymers; 01062 Dresden Germany
| |
Collapse
|
33
|
Li M, Lv S, Tang Z, Song W, Yu H, Sun H, Liu H, Chen X. Polypeptide/doxorubicin hydrochloride polymersomes prepared through organic solvent-free technique as a smart drug delivery platform. Macromol Biosci 2013; 13:1150-62. [PMID: 23894136 DOI: 10.1002/mabi.201300222] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/24/2013] [Indexed: 12/27/2022]
Abstract
Rapid and efficient side-chain functionalization of polypeptide with neighboring carboxylgroups is achieved via the combination of ring-opening polymerization and subsequent thiol-yne click chemistry. The spontaneous formation of polymersomes with uniform size is found to occur in aqueous medium via electrostatic interaction between the anionic polypeptide and cationic doxorubicin hydrochloride (DOX·HCl). The polymersomes are taken up by A549 cells via endocytosis, with a slightly lower cytotoxicity compared with free DOX ·HCl. Moreover, the drug-loaded polymersomes exhibit the enhanced therapeutic efficacy, increase apoptosis in tumor tissues, and reduce systemic toxicity in nude mice bearing A549 lung cancer xenograft, in comparison with free DOX ·HCl.
Collapse
Affiliation(s)
- Mingqiang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China; University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dan K, Ghosh S. One-Pot Synthesis of an Acid-Labile Amphiphilic Triblock Copolymer and its pH-Responsive Vesicular Assembly. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Dan K, Ghosh S. One-Pot Synthesis of an Acid-Labile Amphiphilic Triblock Copolymer and its pH-Responsive Vesicular Assembly. Angew Chem Int Ed Engl 2013; 52:7300-5. [DOI: 10.1002/anie.201302722] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 12/27/2022]
|
36
|
Rhodes AJ, Deming TJ. Soluble, Clickable Polypeptides from Azide-Containing N-Carboxyanhydride Monomers. ACS Macro Lett 2013; 2:351-354. [PMID: 35581836 DOI: 10.1021/mz4001089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a method for the synthesis of soluble, well-defined, azide-functionalized polypeptides via living polymerization of new azide-containing amino acid N-carboxyanhydride (NCA) monomers. Homo and diblock azidopolypeptides were prepared with controlled segment lengths using (PMe3)4Co initiator and were subsequently modified by reaction with functional alkyne reagents. The azide groups were found to be quantitatively converted to the corresponding triazole derivatives, and the functionalized polymers were obtained in high yield. This methodology provides a facile and straightforward method for preparation of functional and side-chain reactive, high molecular weight polypeptides.
Collapse
Affiliation(s)
- Allison J. Rhodes
- Department of Chemistry and Biochemistry, and ‡Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry, and ‡Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Marra A, Staderini S, Berthet N, Dumy P, Renaudet O, Dondoni A. Thiyl Glycosylation of Propargylated Octasilsesquioxane: Synthesis and Lectin-Binding Properties of Densely Glycosylated Clusters on a Cubic Platform. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Liang G, Wu Q, Bao S, Zhu F, Wu Q. Metal coordination induced disassembly of polypeptides affords electrochemically active hybrid nano-helices. Polym Chem 2013. [DOI: 10.1039/c3py00769c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Liang G, Wu Q, Qin W, Bao S, Zhu F, Wu Q. Poly(γ-benzyl-l-glutamate) decorated with cyanoferrate complex: synthesis, characterization and electrochemical properties. Polym Chem 2013. [DOI: 10.1039/c3py00404j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Li Y, Pan M, Li Y, Huang Y, Guo Q. Thiol–yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-l-lysine analogue. Org Biomol Chem 2013; 11:2624-9. [DOI: 10.1039/c3ob27116a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Krannig KS, Huang J, Heise A, Schlaad H. Photochemical thiol–yne functionalization of polypeptide scaffolds. Polym Chem 2013. [DOI: 10.1039/c3py00428g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Molla MR, Ghosh S. Exploring Versatile Sulfhydryl Chemistry in the Chain End of a Synthetic Polylactide. Macromolecules 2012. [DOI: 10.1021/ma302130f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mijanur Rahaman Molla
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Suhrit Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
43
|
Zhang Z, Yin L, Xu Y, Tong R, Lu Y, Ren J, Cheng J. Facile functionalization of polyesters through thiol-yne chemistry for the design of degradable, cell-penetrating and gene delivery dual-functional agents. Biomacromolecules 2012; 13:3456-62. [PMID: 23098261 DOI: 10.1021/bm301333w] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthesis of polyesters bearing pendant amine groups with controlled molecular weights and narrow molecular weight distributions was achieved through ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione, an O-carboxyanhydride derived from tyrosine, followed by thiol-yne "click" photochemistry with 2-aminoethanethiol hydrochloride. This class of biodegradable polymers displayed excellent cell penetration and gene delivery properties with low toxicities.
Collapse
Affiliation(s)
- Zhonghai Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kramer JR, Deming TJ. Preparation of Multifunctional and Multireactive Polypeptides via Methionine Alkylation. Biomacromolecules 2012; 13:1719-23. [DOI: 10.1021/bm300807b] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jessica R. Kramer
- Department
of Chemistry and Biochemistry and ‡Department of Bioengineering, University of California, Los Angeles, California 90095,
United States
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry and ‡Department of Bioengineering, University of California, Los Angeles, California 90095,
United States
| |
Collapse
|
45
|
Pati D, Kalva N, Das S, Kumaraswamy G, Sen Gupta S, Ambade AV. Multiple Topologies from Glycopolypeptide–Dendron Conjugate Self-Assembly: Nanorods, Micelles, and Organogels. J Am Chem Soc 2012; 134:7796-802. [DOI: 10.1021/ja300065f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Debasis Pati
- CReST
Chemical Engineering Division and ‡Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008,
India
| | - Nagendra Kalva
- CReST
Chemical Engineering Division and ‡Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008,
India
| | - Soumen Das
- CReST
Chemical Engineering Division and ‡Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008,
India
| | - Guruswamy Kumaraswamy
- CReST
Chemical Engineering Division and ‡Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008,
India
| | - Sayam Sen Gupta
- CReST
Chemical Engineering Division and ‡Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008,
India
| | - Ashootosh V. Ambade
- CReST
Chemical Engineering Division and ‡Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008,
India
| |
Collapse
|
46
|
Massi A, Nanni D. Thiol-yne coupling: revisiting old concepts as a breakthrough for up-to-date applications. Org Biomol Chem 2012; 10:3791-807. [PMID: 22491759 DOI: 10.1039/c2ob25217a] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radical thiol-yne coupling (TYC) has emerged as one of the most appealing click chemistry procedures, appearing as a sound candidate for replacing/complementing other popular click reactions such as the thiol-ene coupling (TEC) and the Cu-catalysed azide-alkyne cycloaddition (CuAAC). Radical TYC is indeed a metal-free reaction suitable for biomedical applications, and its mechanistic features often make it more efficient than its TEC sister reaction and more suitable for multifaceted derivatisations in the materials chemistry and bioconjugation realms. This article reviews the fascinating results obtained in those fields in very recent years.
Collapse
|
47
|
Rahane SB, Hensarling RM, Sparks BJ, Stafford CM, Patton DL. Synthesis of multifunctional polymer brush surfaces via sequential and orthogonal thiol-click reactions. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14762e] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|