1
|
Ghanbari E, Picken SJ, van Esch JH. Design Rules for Binary Bisamide Gelators: toward Gels with Tailor-Made Structures and Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12182-12195. [PMID: 37578393 PMCID: PMC10469460 DOI: 10.1021/acs.langmuir.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/15/2023]
Abstract
This study intends to develop design rules for binary mixture of gelators that govern their assembly behavior and subsequently explore the impact of their supramolecular assembly patterns on the gels' rheological properties. To achieve these goals, nBA gelators with odd and even parities [n-methylene spacers between the amide groups (n = 5-10) and 17 carbons at each end] were blended at different ratios. Such bisamides with simple structures were selected to study because their different spacer lengths offer the possibility to have matching or non-matching hydrogen bonds. The results show that the assembly behavior of binary mixtures of bisamide gelators is the same in the solid and gel states. Binary mixtures of gelators, which only differ two methylene moieties in the spacer length, form compounds and co-assemble into fibers and sheets observed for (5BA)1(7BA)1 and (6BA)1(8BA)1 mixtures, respectively. Binary gelator mixtures of the same parity and a larger spacer length difference still lead to mixing for the odd parity couple (5BA)1(9BA)1), but to partial phase separation for the even parity mixture (6BA)1(10BA)1. Binary mixtures of gelators of different parities gave complete phase separation in the solid state, and self-sorted gels consisting of discrete fibers and sheets in the gels of (5BA)3(6BA)1 and (5BA)3(10BA)1. The even-even binary gels (20 wt %) consisting of co-assembled sheets show higher G' than odd-odd binary gels (20 wt %) consisting of co-assembled fibers. In general, the self-sorting of odd and even molecules into the separate primary structures results in a dramatic decrease of G' compared to the co-assembled gels (20 wt %), except for (5BA)1(9BA)1 gel (20 wt %). It might be due to larger woven spheres in (5BA)1(9BA)1 gel (20 wt %), which probably have a less entangled gel network.
Collapse
Affiliation(s)
- Elmira Ghanbari
- Advanced Soft Matter (ASM) Group, Chemical
Engineering Department, Faculty of Applied Science (TNW), Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Stephen J. Picken
- Advanced Soft Matter (ASM) Group, Chemical
Engineering Department, Faculty of Applied Science (TNW), Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Jan H. van Esch
- Advanced Soft Matter (ASM) Group, Chemical
Engineering Department, Faculty of Applied Science (TNW), Delft University of Technology, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Sudhakaran Jayabhavan S, Kuppadakkath G, Damodaran KK. The Role of Functional Groups in Tuning the Self-Assembly Modes and Physical Properties of Multicomponent Gels. Chempluschem 2023; 88:e202300302. [PMID: 37407430 DOI: 10.1002/cplu.202300302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
We have analyzed the nature and role of functional groups on the self-assembly modes and the physical properties of multicomponent gels with structurally similar individual components. The gelation properties of individual and mixed enantiomeric compounds of biphenyl bis-(amides) of alanine (BPA) or phenylalanine (BPP) methyl ester were analyzed in various solvent/solvent mixtures. Multicomponent gels were formed by mixing the enantiomeric BPP compounds at a lower concentration, but a higher concentration was required for mixed alanine-based BPA gels. The comparison of the mechanical strength of the individual and mixed BPP compounds indicated that the mixed BPP gels displayed enhanced mechanical strength (∼2-fold increase) in p-xylene, but a weaker gel was observed in DMSO/water. However, a reverse trend was observed for BPA gels, indicating the role of functional groups in the gel network formation. X-ray diffraction analysis of the gelator and the xerogels in the solid state confirmed the formation of co-assembled networks in mixed enantiomeric gels. The stability of the gels towards anions was evaluated by analyzing the anion induced stimuli-responsive properties. These results indicate the effective modeling of the functional groups of the individual components could lead to multicomponent gels with tunable properties.
Collapse
Affiliation(s)
| | | | - Krishna K Damodaran
- Department of Chemistry, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| |
Collapse
|
3
|
Guan Q, McAulay K, Xu T, Rogers SE, Edwards-Gayle C, Schweins R, Cui H, Seddon AM, Adams DJ. Self-Sorting in Diastereomeric Mixtures of Functionalized Dipeptides. Biomacromolecules 2023. [PMID: 37257089 DOI: 10.1021/acs.biomac.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-sorting in functionalized dipeptide systems can be driven by the chirality of a single amino acid, both at a high pH in the micellar state and at a low pH in the gel state. The structures formed are affected to some degree by the relative concentrations of each component showing the complexity of such an approach. The structures underpinning the gel network are predefined by the micellar structures at a high pH. Here, we describe the systems prepared from two dipeptide-based gelators that differ only by the chirality of one of the amino acids. We provide firm evidence for self-sorting in the micellar and gel phases using small-angle neutron scattering and cryo-transmission electron microscopy (cryo-TEM), showing that complete self-sorting occurs across a range of relative concentrations.
Collapse
Affiliation(s)
- Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Tian Xu
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah E Rogers
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, U.K
| | | | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble,CEDEX 9, France
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Annela M Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
4
|
Pérez de Carvasal K, Nicollet L, Smietana M, Morvan F. Stabilization of DNA Duplexes and Hairpins by Charge-Transfer Interactions Using DAN:NDI Pairs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7418-7425. [PMID: 37196178 DOI: 10.1021/acs.langmuir.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Electron-rich 1,5-dialkoxynaphthalene (DAN) and electron-deficient 1,8,4,5-naphthalenetetracarboxylic diimide (NDI) are known to interact through the formation of charge-transfer complexes. The introduction of DAN and NDI into various DNA duplexes and hairpins was investigated by ultraviolet (UV) melting curve analysis. The positioning of the DAN:NDI pair was found to strongly influence the stability of DNA duplex and hairpins. In particular, while the introduction of one DAN/NDI pair in front of each other in the center of a DNA duplex led to a decrease of the thermal stability (ΔTm - 6 °C), the addition of a second pair restored or even increased the stability. In contrast, the introduction of DAN:NDI pairs at the end of a duplex always induced a strong stabilization (ΔTm up to +20 °C). Finally, a DAN:NDI pair positioned in the loop of a hairpin induced a stronger stabilization than a T4 loop (ΔTm + 10 °C). Based on charge-transfer interactions, the strong stabilizations observed allow the preparation of highly stabilized DNA nanostructures opening the way to numerous applications in nanotechnology.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| | - Laura Nicollet
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| | - Michael Smietana
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| | - François Morvan
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, 34293 Montpellier, France
| |
Collapse
|
5
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
de Carvasal KP, Vergoten G, Vasseur JJ, Smietana M, Morvan F. Supramolecular Recognition of Phosphodiester-Based Donor and Acceptor Oligomers Forming Gels in Water. Biomacromolecules 2023; 24:756-765. [PMID: 36724436 DOI: 10.1021/acs.biomac.2c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inspired by automated DNA synthesis, electron-rich dialkoxynaphthalene (DAN) donor and electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor phosphodiester-linked homohexamers were synthesized by the phosphoramidite method. Two types of hexamers were prepared, one with only one phosphodiester between the aromatics (i.e., DAN or NDI) and a second with two phosphodiesters around a propanediol between the aromatics, leading to the latter more flexible and more hydrophilic hexamers. The folding properties of these homohexamers alone or mixed together, in water only, were studied by UV-visible absorption spectroscopy and atomic force microscopy (AFM). AFM imaging revealed that a 1:1 mixture of hexaDAN and hexaNDI formed fibers by charge transfer donor-acceptor recognition leading to a hydrogel after drying. The organization of the resulting structures is strongly dependent on the nature of the complementary partner, leading to the formation of mono- or multilayer hydrogel networks with different compactness.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Gérard Vergoten
- Université de Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, Lille 59006, France
| | - Jean-Jacques Vasseur
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - Michael Smietana
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| | - François Morvan
- Université de Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34293, France
| |
Collapse
|
7
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
8
|
Loos JN, D'Acierno F, Vijay Mody U, MacLachlan MJ. Manipulating the Self-Assembly of Multicomponent Low Molecular Weight Gelators (LMWGs) through Molecular Design. Chempluschem 2022; 87:e202200026. [PMID: 35233979 DOI: 10.1002/cplu.202200026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Multicomponent low molecular weight gelators (LMWGs) may self-assemble by co-assembly (CA), social self-sorting (SSS), or narcissistic self-sorting (NSS). Understanding the nuances of the self-assembly processes is important to predict the behavior of multicomponent organogels. Here, we investigate the effect of molecular structure on self-assembly in a series of amino-acid based bicomponent LMWGs that differ in headgroup and alkyl chain length. Packing preference of the organogels was determined using differential scanning calorimetry, nuclear magnetic resonance spectroscopy and small angle X-ray scattering. From 66 bicomponent samples we found 50 CA, 14 SSS and 2 NSS. Furthermore, we performed statistical analysis to investigate the role of hydrophobicity and chain length on the overall pathway of self-assembly for these systems. We found the hydrophobicity of the headgroup strongly affected the assembly preference of the organogel, but alkyl chain length only played a small role.
Collapse
Affiliation(s)
- Jeanette N Loos
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Francesco D'Acierno
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Rd., Vancouver, British Columbia, V6T 1Z1, Canada
| | - Urmi Vijay Mody
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Mark J MacLachlan
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
9
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
10
|
Lamers BAG, van Son MHC, de Graaf FV, van den Bersselaar BWL, de Waal BFM, Komatsu K, Sato H, Aida T, Berrocal JA, Palmans ARA, Vantomme G, Meskers SCJ, Meijer EW. Tuning the donor-acceptor interactions in phase-segregated block molecules. MATERIALS HORIZONS 2022; 9:294-302. [PMID: 34611679 PMCID: PMC8725796 DOI: 10.1039/d1mh01141c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The assembly of donor-acceptor molecules via charge transfer (CT) interactions gives rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene (Pyr) and naphthalenediimide (NDI) functionalized oligodimethylsiloxanes (oDMS) of discrete length. We tune the donor-acceptor interactions by connecting the pyrene and NDI to the same oligomer, forming a heterotelechelic block molecule (NDI-oDMSPyr), and to two separate oligomers, giving Pyr and NDI homotelechelic block molecules (Pyr-oDMS and NDI-oDMS). Liquid crystalline materials are obtained for binary mixtures of Pyr-oDMS and NDI-oDMS, while crystallization of the CT dimers occurred for the heterotelechelic NDI-oDMS-Pyr block molecule. The synergy between crystallization and phase-segregation coupled with the discrete length of the oDMS units allows for perfect order and sharp interfaces between the insulating siloxane and CT layers composed of crystalline CT dimers. We were able to tune the lamellar domain spacing and donor-acceptor CT interactions by applying pressures up to 6 GPa on the material, making the system promising for soft-material nanotechnologies. These results demonstrate the importance of the molecular design to tune the CT interactions and stability of a CT material.
Collapse
Affiliation(s)
- Brigitte A G Lamers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Martin H C van Son
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Freek V de Graaf
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Kazuki Komatsu
- Geochemistry Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Sato
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - José Augusto Berrocal
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Anja R A Palmans
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Choisnet T, Canevet D, Sallé M, Lorthioir C, Bouteiller L, Woisel P, Niepceron F, Nicol E, Colombani O. Colored Janus Nanocylinders Driven by Supramolecular Coassembly of Donor and Acceptor Building Blocks. ACS NANO 2021; 15:2569-2577. [PMID: 33512151 DOI: 10.1021/acsnano.0c07039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Janus nanocylinders exhibit nanometric dimensions, a high aspect ratio, and two faces with different chemistries (Janus character), making them potentially relevant for applications in optics, magnetism, catalysis, surface nanopatterning, or interface stabilization, but they are also very difficult to prepare by conventional strategies. In the present work, Janus nanocylinders were prepared by supramolecular coassembly in water of two different polymers functionalized with complementary assembling units. The originality of our approach consists in combining charge transfer complexation between electron-rich and electron-poor units with hydrogen bonding to (1) drive the supramolecular formation of one-dimensional structures (cylinders), (2) force the two polymer arms on opposite sides of the cylinders independently of their compatibility, resulting in Janus nanoparticles, and (3) detect coassembly through a color change of the solution upon mixing of the functional polymers.
Collapse
Affiliation(s)
- Thomas Choisnet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
- Laboratoire MOLTECH-Anjou, UNIV Angers, SFR MATRIX, UMR CNRS 6200, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - David Canevet
- Laboratoire MOLTECH-Anjou, UNIV Angers, SFR MATRIX, UMR CNRS 6200, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou, UNIV Angers, SFR MATRIX, UMR CNRS 6200, 2 Bd Lavoisier, 49045 Angers Cedex, France
| | - Cédric Lorthioir
- CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, 75252 Paris, France
| | - Laurent Bouteiller
- CNRS, Institut Parisien de Chimie Moléculaire, Sorbonne Université, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Frédérick Niepceron
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France
| |
Collapse
|
12
|
Bujosa S, Castellanos E, Frontera A, Rotger C, Costa A, Soberats B. Self-assembly of amphiphilic aryl-squaramides in water driven by dipolar π–π interactions. Org Biomol Chem 2020; 18:888-894. [DOI: 10.1039/c9ob02085c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amphiphilic aryl-squaramides self-assemble via unprecedented dipolar π–π interactions forming well-defined supramolecular aggregates and self-consistent hydrogels in water
Collapse
Affiliation(s)
- Sergi Bujosa
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | | | | - Carmen Rotger
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Costa
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
13
|
Piras CC, Smith DK. Sequential Assembly of Mutually Interactive Supramolecular Hydrogels and Fabrication of Multi-Domain Materials. Chemistry 2019; 25:11318-11326. [PMID: 31237367 DOI: 10.1002/chem.201902158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Indexed: 11/09/2022]
Abstract
A two-component self-sorting hydrogel based on acylhydrazide and carboxylic acid derivatives of 1,3:2,4-dibenzylidene-d-sorbitol (DBS-CONHNH2 and DBS-COOH) is reported. A heating-cooling cycle induces the self-assembly of DBS-CONHNH2 , followed by the self-assembly of DBS-COOH induced by decreasing pH. Although the networks are formed sequentially, there is spectroscopic evidence of interactions between them, which impact on the mechanical properties and significantly enhance the ability of these low-molecular-weight gelators (LMWGs) to form gels when mixed. The DBS-COOH network can be switched "off" and "on" within the two-component gel through a pH change. By using a photo-acid generator, the two-component gel can be prepared combining the thermal trigger with photo-irradiation. Photo-patterned self-assembly of DBS-COOH within a pre-formed DBS-CONHNH2 gel under a mask yields spatially controlled multi-domain gels. Different gel domains can have different functions, for example, controlling the rate of release of heparin incorporated into the gel, or directing gold nanoparticle assembly. Such photo-patterned multi-component hydrogels have potential applications in regenerative medicine or bio-nano-electronics.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
14
|
Nuthanakanti A, Walunj MB, Torris A, Badiger MV, Srivatsan SG. Self-assemblies of nucleolipid supramolecular synthons show unique self-sorting and cooperative assembling process. NANOSCALE 2019; 11:11956-11966. [PMID: 31188377 DOI: 10.1039/c9nr01863h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The inherent control of the self-sorting and co-assembling process that has evolved in multi-component biological systems is not easy to emulate in vitro using synthetic supramolecular synthons. Here, using the basic component of nucleic acids and lipids, we describe a simple platform to build hierarchical assemblies of two component systems, which show an interesting self-sorting and co-assembling behavior. The assembling systems are made of a combination of amphiphilic purine and pyrimidine ribonucleoside-fatty acid conjugates (nucleolipids), which were prepared by coupling fatty acid acyl chains of different lengths at the 2'-O- and 3'-O-positions of the ribose sugar. Individually, the purine and pyrimidine nucleolipids adopt a distinct morphology, which either supports or does not support the gelation process. Interestingly, due to the subtle difference in the order of formation and stability of individual assemblies, different mixtures of supramolecular synthons and complementary ribonucleosides exhibit a cooperative and disruptive self-sorting and co-assembling behavior. A systematic morphological analysis combined with single crystal X-ray crystallography, powder X-ray diffraction (PXRD), NMR, CD, rheological and 3D X-ray microtomography studies provided insights into the mechanism of the self-sorting and co-assembling process. Taken together, this approach has enabled the construction of assemblies with unique higher ordered architectures and gels with remarkably enhanced mechanical strength that cannot be derived from the respective single component systems.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Aratsu K, Yagai S. Self‐Sorting of Rosette‐Forming Naphthalene Barbiturates into Distinct Toroidal Assemblies. Chempluschem 2019; 84:619-622. [DOI: 10.1002/cplu.201900044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Keisuke Aratsu
- Division of Advanced Science and EngineeringGraduate school of Science and EngineeringChiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR)Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
17
|
Wakchaure VC, Pillai LV, Goudappagouda G, Ranjeesh KC, Chakrabarty S, Ravindranathan S, Rajamohanan PR, Babu SS. Charge transfer liquid: a stable donor–acceptor interaction in the solvent-free liquid state. Chem Commun (Camb) 2019; 55:9371-9374. [DOI: 10.1039/c9cc03671g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new charge transfer solvent-free liquid having high stability even with donor–acceptor ratio of 1000 : 1 is demonstrated.
Collapse
Affiliation(s)
- Vivek Chandrakant Wakchaure
- Organic Chemistry Division
- National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Goudappagouda Goudappagouda
- Organic Chemistry Division
- National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kayaramkodath Chandran Ranjeesh
- Organic Chemistry Division
- National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Suman Chakrabarty
- S. N. Bose National Centre for Basic Sciences JD Block
- Sector-III
- Kolkata-700 106
- India
| | - Sapna Ravindranathan
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201 002
- India
- Central NMR Facility
- National Chemical Laboratory (CSIR-NCL)
| | - Pattuparambil R. Rajamohanan
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201 002
- India
- Central NMR Facility
- National Chemical Laboratory (CSIR-NCL)
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division
- National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
18
|
Edwards W, Smith DK. Chiral Assembly Preferences and Directing Effects in Supramolecular Two-Component Organogels. Gels 2018; 4:gels4020031. [PMID: 30674807 PMCID: PMC6209267 DOI: 10.3390/gels4020031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/31/2022] Open
Abstract
The impact of chirality on the self-assembly of supramolecular gels is of considerable importance, as molecular-scale programming can be translated into nanostructuring and ultimately affect macroscopic performance. This paper explores the effect of chirality on the assembly of two-component gels comprised of a second-generation dendritic lysine peptide acid, containing three chiral centres, and an amine. This combination forms an acid⁻amine complex that assembles into nanofibres through peptide-peptide hydrogen bonds, leading to organogels. With achiral amines, a racemic mixture of l,l,l and d,d,d dendritic peptide acids surprisingly forms the best gels-more commonly, mixing enantiomers suppresses gelation. Thermodynamic studies demonstrate that depending on the amine, the greater stability of heterochiral gels can either be entropically or enthalpically driven. With amines possessing "R" chirality, the l,l,l peptide acid consistently forms more effective gels than its d,d,d analogue. Furthermore, in mixed gels, l,l,l sometimes imposes its assembly preference onto d,d,d. In summary, this paper demonstrates a rare example in which heterochiral gels are preferred, and also explores directing effects when each component in a two-component gel is chiral.
Collapse
Affiliation(s)
- William Edwards
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
19
|
Bartocci S, Berrocal JA, Guarracino P, Grillaud M, Franco L, Mba M. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions. Chemistry 2018; 24:2920-2928. [DOI: 10.1002/chem.201704487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Silvia Bartocci
- Department of Chemical Sciences; University of Padua; via Marzolo 1 35131 Padua Italy
| | - José Augusto Berrocal
- Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Paola Guarracino
- Department of Chemical Sciences; University of Padua; via Marzolo 1 35131 Padua Italy
| | - Maxime Grillaud
- Institute for Complex Molecular Systems; Eindhoven University of Technology; P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Lorenzo Franco
- Department of Chemical Sciences; University of Padua; via Marzolo 1 35131 Padua Italy
| | - Miriam Mba
- Department of Chemical Sciences; University of Padua; via Marzolo 1 35131 Padua Italy
| |
Collapse
|
20
|
Draper ER, Adams DJ. How should multicomponent supramolecular gels be characterised? Chem Soc Rev 2018; 47:3395-3405. [DOI: 10.1039/c7cs00804j] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discuss the current state of characterising multicomponent low molecular weight gels across all length scales, and the effectiveness of the different techniques that have been used.
Collapse
|
21
|
Liu M, Ouyang G, Niu D, Sang Y. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front 2018. [DOI: 10.1039/c8qo00620b] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of supramolecular gelatons for the design of gels was proposed and described.
Collapse
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dian Niu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
22
|
The sensitivity of donor - acceptor charge transfer to molecular geometry in DAN - NDI based supramolecular flower-like self-assemblies. Sci Rep 2017; 7:16501. [PMID: 29184066 PMCID: PMC5705657 DOI: 10.1038/s41598-017-15599-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
A charge-transfer (CT) complex self-assembled from an electron acceptor (NDI-EA: naphthalene diimide with appended diamine) and an electron donor (DAN: phosphonic acid-appended dialkoxynapthalene) in aqueous medium. The aromatic core of the NDI and the structure of DAN1 were designed to optimize the dispersive interactions (π-π and van der Waals interactions) in the DAN1–NDI-EA self-assembly, while the amino groups of NDI also interact with the phosphonic acid of DAN1 via electrostatic forces. This arrangement prevented crystallization and favored the directional growth of 3D flower nanostructures. This molecular geometry that is necessary for charge transfer to occur was further evidenced by using a mismatching DAN2 structure. The flower-shaped assembly was visualized by scanning electron and transmission electron microscopy. The formation of the CT complex was determined by UV-vis and cyclic voltammetry and the photoinduced electron transfer to produce the radical ion pair was examined by femtosecond laser transient absorption spectroscopic measurements.
Collapse
|
23
|
Vieira VMP, Hay LL, Smith DK. Multi-component hybrid hydrogels - understanding the extent of orthogonal assembly and its impact on controlled release. Chem Sci 2017; 8:6981-6990. [PMID: 29147525 PMCID: PMC5642149 DOI: 10.1039/c7sc03301j] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
This paper reports self-assembled multi-component hybrid hydrogels including a range of nanoscale systems and characterizes the extent to which each component maintains its own unique functionality, demonstrating that multi-functionality can be achieved by simply mixing carefully-chosen constituents. Specifically, the individual components are: (i) pH-activated low-molecular-weight gelator (LMWG) 1,3;2,4-dibenzylidenesorbitol-4',4''-dicarboxylic acid (DBS-COOH), (ii) thermally-activated polymer gelator (PG) agarose, (iii) anionic biopolymer heparin, and (iv) cationic self-assembled multivalent (SAMul) micelles capable of binding heparin. The LMWG still self-assembles in the presence of PG agarose, is slightly modified on the nanoscale by heparin, but is totally disrupted by the micelles. However, if the SAMul micelles are bound to heparin, DBS-COOH self-assembly is largely unaffected. The LMWG endows hybrid materials with pH-responsive behavior, while the PG provides mechanical robustness. The rate of heparin release can be controlled through network density and composition, with the LMWG and PG behaving differently in this regard, while the presence of the heparin binder completely inhibits heparin release through complexation. This study demonstrates that a multi-component approach can yield exquisite control over self-assembled materials. We reason that controlling orthogonality in such systems will underpin further development of controlled release systems with biomedical applications.
Collapse
Affiliation(s)
- Vânia M P Vieira
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| | - Laura L Hay
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| | - David K Smith
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK . ; http://www.york.ac.uk/chemistry/staff/academic/o-s/dsmith/
| |
Collapse
|
24
|
Castilla AM, Draper ER, Nolan MC, Brasnett C, Seddon A, Mears LLE, Cowieson N, Adams DJ. Self-sorted Oligophenylvinylene and Perylene Bisimide Hydrogels. Sci Rep 2017; 7:8380. [PMID: 28827598 PMCID: PMC5566499 DOI: 10.1038/s41598-017-08644-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
We describe two component hydrogels with networks composed of self-sorted fibres. The component gelators are based on 1,4-distyrylbenzene (OPV3) and perylene bisimide (PBI) units. Self-sorted gels can be formed by a slow decrease in pH, which leads to sequential assembly. We demonstrate self-sorting by NMR, rheology and small angle X-ray scattering (SAXS). Photoconductive xerogels can be prepared by drying these gels. The wavelength response of the xerogel is different to that of the PBI alone.
Collapse
Affiliation(s)
- Ana M Castilla
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Emily R Draper
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.,School of Chemistry, WestCHEM, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael C Nolan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.,School of Chemistry, WestCHEM, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christopher Brasnett
- School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1TL, UK
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1TL, UK.,Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1TL, UK
| | - Laura L E Mears
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Nathan Cowieson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Dave J Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK. .,School of Chemistry, WestCHEM, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
25
|
Das A, Vantomme G, Markvoort AJ, ten Eikelder HMM, Garcia-Iglesias M, Palmans ARA, Meijer EW. Supramolecular Copolymers: Structure and Composition Revealed by Theoretical Modeling. J Am Chem Soc 2017; 139:7036-7044. [PMID: 28485145 PMCID: PMC5445503 DOI: 10.1021/jacs.7b02835] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 01/23/2023]
Abstract
Supramolecular copolymers, non-covalent analogues of synthetic copolymers, constitute a new and promising class of polymers. In contrast to their covalent counterparts, the details of their mechanism of formation, as well as the factors determining their composition and length, are still poorly understood. Here, the supramolecular copolymerization between two slightly structurally different benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with either oligodimethylsiloxane (oDMSi) or alkyl side chains is unraveled by combining experimental and theoretical approaches. By applying the "sergeant-and-soldiers" approach using circular dichroism (CD) experiments, we are able to obtain detailed insights into the structure and composition of these supramolecular copolymers. Moreover, we observe an unexpected chiral induction upon mixing two independently CD-silent solutions of the achiral (soldier) and chiral (sergeant) monomers. We find that the subtle differences in the chemical structure of the two monomers impact their homopolymerization mechanism: whereas alkyl-BTAs cooperatively self-assemble, oDMSi-BTAs self-assemble in an isodesmic manner. The effect of these mechanistic differences in the supramolecular copolymerization process is investigated as a function of the composition of the two monomers and explicitly rationalized by mathematical modeling. The results show that, at low fractions of oDMSi-BTA sergeants (<10 mol%), the polymerization process is cooperative and the supramolecular helicity is biased toward the helical preference of the sergeant. However, at higher fractions of oDMSi-BTA sergeant (>25 mol%), the isodesmic assembly of the increasing amounts of sergeant becomes more dominant, and different species start to coexist in the copolymerization process. The analysis of the experimental data with a newly developed theoretical model allows us to quantify the thermodynamic parameters, the distribution of different species, and the compositions and stack lengths of the formed supramolecular copolymers existing at various feed ratios of the two monomers.
Collapse
Affiliation(s)
- Anindita Das
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Albert J. Markvoort
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational
Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Huub M. M. ten Eikelder
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational
Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Miguel Garcia-Iglesias
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Das A, Lin S, Theato P. Supramolecularly Cross-Linked Nanogel by Merocyanine Pendent Copolymer. ACS Macro Lett 2017; 6:50-55. [PMID: 35651104 DOI: 10.1021/acsmacrolett.6b00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directional dipole-dipole interaction mediated antiparallel dimerization of merocyanine dye (MD) has been explored for maneuvering supramolecular assembly of MD-conjugated flexible macromolecules leading to a cross-linked nanogel. The MD-functionalized copolymer was synthesized by a newly developed organocatalytic transesterification strategy for postpolymerization functionalization of poly(pentafluorophenyl acrylate) (polyPFPA)-based reactive copolymer. Presence of ∼35% pendant MD attached to a coil-like polymer chain leads to spontaneous formation of highly emitting cross-linked nanogel with efficient container property and appreciable stability in toluene owing to strong dimerization propensity among the MD. Considering the significance of MD in the context of nonlinear optics and photovoltaics, these results not only enrich the toolbox for engineering macromolecular assembly, but also open up new possibilities for future organic materials.
Collapse
Affiliation(s)
- Anindita Das
- Institute for Technical and
Macromolecular Chemistry, University of Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| | - Shaojian Lin
- Institute for Technical and
Macromolecular Chemistry, University of Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and
Macromolecular Chemistry, University of Hamburg, Bundesstrasse
45, 20146 Hamburg, Germany
| |
Collapse
|
27
|
Sutar P, Maji TK. Bimodal self-assembly of an amphiphilic gelator into a hydrogel-nanocatalyst and an organogel with different morphologies and photophysical properties. Chem Commun (Camb) 2016; 52:13136-13139. [PMID: 27761528 DOI: 10.1039/c6cc06971a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We design a flexible, amphiphilic LMWG consisting of donor and acceptor π-chromophores which self-assembles into a hydrogel and an organogel with different nano-morphologies. Different mechanisms of self-assembly evolve charge transfer (CT) emission in the hydrogel and LMWG-based emission in the organogel. Moreover, the hydrogel-nanostructure with surface exposed amide groups is explored for catalyzing Knoevenagel condensation reaction.
Collapse
Affiliation(s)
- Papri Sutar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Banglore-560064, India.
| | | |
Collapse
|
28
|
Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem Rev 2016; 116:11685-11796. [DOI: 10.1021/acs.chemrev.6b00160] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammad Al Kobaisi
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sidhanath V. Bhosale
- Polymers
and Functional Materials Division, CSIR-Indian Institute of Chemical Technology
, Hyderabad, Telangana-500007, India
| | - Kay Latham
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Aaron M. Raynor
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sheshanath V. Bhosale
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| |
Collapse
|
29
|
Sandeep A, Praveen VK, Kartha KK, Karunakaran V, Ajayaghosh A. Supercoiled fibres of self-sorted donor-acceptor stacks: a turn-off/turn-on platform for sensing volatile aromatic compounds. Chem Sci 2016; 7:4460-4467. [PMID: 30155094 PMCID: PMC6014296 DOI: 10.1039/c6sc00629a] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/20/2016] [Indexed: 12/13/2022] Open
Abstract
To ensure the comfortable survival of living organisms, detection of different life threatening volatile organic compounds (VOCs) such as biological metabolites and carcinogenic molecules is of prime importance. Herein, we report the use of supercoiled supramolecular polymeric fibres of self-sorted donor-acceptor molecules as "turn-off/turn-on" fluorescent sensors for the detection of carcinogenic VOCs. For this purpose, a C3-symmetrical donor molecule based on oligo(p-phenylenevinylene), C3OPV, and a perylene bisimide based acceptor molecule, C3PBI, have been synthesized. When these two molecules were mixed together in toluene, in contrast to the usual charge transfer (CT) stacking, supramolecular fibres of self-sorted stacks were formed at the molecular level, primarily driven by their distinct self-assembly pathways. However, CT interaction at the macroscopic level allows these fibres to bundle together to form supercoiled ropes. An interfacial photoinduced electron transfer (PET) process from the donor to the acceptor fibres leads to an initial fluorescence quenching, which could be modulated by exposure to strong donor or acceptor type VOCs to regenerate the respective fluorescence of the individual molecular stacks. Thus, strong donors could regenerate the green fluorescence of C3OPV stacks and strong acceptors could reactivate the red fluorescence of C3PBI stacks. These supercoiled supramolecular ropes of self-sorted donor-acceptor stacks provide a simple tool for the detection of donor- or acceptor-type VOCs of biological relevance, using a "turn-off/turn-on" fluorescence mechanism as demonstrated with o-toluidine, which has been reported as a lung cancer marker.
Collapse
Affiliation(s)
- Anjamkudy Sandeep
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695 019 , India .
| | - Vakayil K Praveen
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695 019 , India .
| | - Kalathil K Kartha
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695 019 , India .
| | - Venugopal Karunakaran
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695 019 , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram 695 019 , India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695 019 , India .
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram 695 019 , India
| |
Collapse
|
30
|
Aratsu K, Prabhu DD, Iwawaki H, Lin X, Yamauchi M, Karatsu T, Yagai S. Self-sorting regioisomers through the hierarchical organization of hydrogen-bonded rosettes. Chem Commun (Camb) 2016; 52:8211-4. [PMID: 27211509 DOI: 10.1039/c6cc03419e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The self-assembly of two regioisomeric hydrogen-bonding naphthalenes was studied in mixed states in different polarity solvents. The regioisomers co-assemble to form heteromeric rosettes in chloroform. Upon injecting this solution into methylcyclohexane the heteromeric rosettes kinetically form amorphous aggregates, which over time differentiate into thermodynamically stable distinct nanostructures through self-sorting.
Collapse
Affiliation(s)
- Keisuke Aratsu
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Maniam S, Sandanayake S, Izgorodina EI, Langford SJ. Unusual Products from Oxidation of Naphthalene Diimides. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Subashani Maniam
- School of Chemistry Monash University Wellington Road Clayton 3800 Victoria Australia
| | - Saman Sandanayake
- School of Chemistry Monash University Wellington Road Clayton 3800 Victoria Australia
| | | | - Steven J. Langford
- School of Chemistry Monash University Wellington Road Clayton 3800 Victoria Australia
- School of Science Monash University Malaysia, Jalan Lagoon Selatan 46150 Bandar Sunway Petaling Jaya Selangor Malaysia
| |
Collapse
|
32
|
Cornwell DJ, Daubney OJ, Smith DK. Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene-d-sorbitol Derivatives. J Am Chem Soc 2015; 137:15486-92. [DOI: 10.1021/jacs.5b09691] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel J. Cornwell
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Oliver J. Daubney
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - David K. Smith
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| |
Collapse
|
33
|
Lv ZP, Chen B, Wang HY, Wu Y, Zuo JL. Charge-Transfer Supra-Amphiphiles Built by Water-Soluble Tetrathiafulvalenes and Viologen-Containing Amphiphiles: Supramolecular Nanoassemblies with Modifiable Dimensions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3597-3605. [PMID: 25809146 DOI: 10.1002/smll.201500090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/24/2015] [Indexed: 06/04/2023]
Abstract
In this study, multidimensional nanoassemblies with various morphologies such as nanosheets, nanorods, and nanofibers are developed via charge-transfer interaction and supra-amphiphile self-assembling in aqueous phase. The charge-transfer interactions between tetrathiafulvalene derivatives (TTFs) and methyl viologen derivatives (MVs) have been confirmed by the characteristic charger-transfer absorption. (1) H NMR and electrospray ionizsation mass spectrometry (ESI-MS) analyses also indicate supra-amphiphiles are formed by the combination of TTFs and MVs head group through charge-transfer interaction and Coulombic force. X-ray single crystal structural studies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) reveal that both linkage pattern of TTFs in hydrophilic part and alkane chain structure in hydrophobic part have significant influence on nanoassemblies morphology and microstructure. Moreover, gold nanoparticles (AuNPs) are introduced in the above supramolecular nanoassemblies to construct a supra-amphiphile-driven organic-AuNPs assembly system. AuNPs could be assembled into 1D-3D structures by adding different amount of MVs.
Collapse
Affiliation(s)
- Zhong-Peng Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Bin Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
34
|
Abstract
We discuss the potential and challenges of multicomponent low molecular weight gels.
Collapse
Affiliation(s)
- Jaclyn Raeburn
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Dave J. Adams
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
35
|
Buendía J, Matesanz E, Smith DK, Sánchez L. Multi-component supramolecular gels for the controlled crystallization of drugs: synergistic and antagonistic effects. CrystEngComm 2015. [DOI: 10.1039/c5ce01293g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Colquhoun C, Draper ER, Eden EGB, Cattoz BN, Morris KL, Chen L, McDonald TO, Terry AE, Griffiths PC, Serpell LC, Adams DJ. The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. NANOSCALE 2014; 6:13719-25. [PMID: 25285577 DOI: 10.1039/c4nr04039b] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-sorting in low molecular weight hydrogels can be achieved using a pH triggered approach. We show here that this method can be used to prepare gels with different types of mechanical properties. Cooperative, disruptive or orthogonal assembled systems can be produced. Gels with interesting behaviour can be also prepared, for example self-sorted gels where delayed switch-on of gelation occurs. By careful choice of gelator, co-assembled structures can also be generated, which leads to synergistic strengthening of the mechanical properties.
Collapse
Affiliation(s)
- Catherine Colquhoun
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, U.K.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Goel M, Narasimha K, Jayakannan M. Helical Self-Assemblies of Segmented Poly(phenylenevinylene)s and Their Hierarchical Donor–Acceptor Complexes. Macromolecules 2014. [DOI: 10.1021/ma5003112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahima Goel
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha
Road, Pune 411008, Maharashtra, India
| | - Karnati Narasimha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha
Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha
Road, Pune 411008, Maharashtra, India
| |
Collapse
|
39
|
Maniam S, Higginbotham HF, Guo SX, Bell TDM, Izgorodina EI, Langford SJ. A Redox Switchable Dihydrobenzo[b]pyrazine Push-Pull System. ASIAN J ORG CHEM 2014. [DOI: 10.1002/ajoc.201402015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Edwards W, Smith DK. Enantioselective Component Selection in Multicomponent Supramolecular Gels. J Am Chem Soc 2014; 136:1116-24. [DOI: 10.1021/ja411724r] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- William Edwards
- Department of Chemistry, University of York, Heslington, York, YO10
5DD, U.K
| | - David K. Smith
- Department of Chemistry, University of York, Heslington, York, YO10
5DD, U.K
| |
Collapse
|
41
|
Babu SS, Praveen VK, Ajayaghosh A. Functional π-gelators and their applications. Chem Rev 2014; 114:1973-2129. [PMID: 24400783 DOI: 10.1021/cr400195e] [Citation(s) in RCA: 1251] [Impact Index Per Article: 125.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sukumaran Santhosh Babu
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Trivandrum 695019, India
| | | | | |
Collapse
|
42
|
Kumar M, Venkata Rao K, George SJ. Supramolecular charge transfer nanostructures. Phys Chem Chem Phys 2014; 16:1300-13. [DOI: 10.1039/c3cp54190h] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Avinash MB, Sandeepa KV, Govindaraju T. Molecular assembly of amino acid interlinked, topologically symmetric, π-complementary donor-acceptor-donor triads. Beilstein J Org Chem 2013; 9:1565-71. [PMID: 23946856 PMCID: PMC3740681 DOI: 10.3762/bjoc.9.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/15/2022] Open
Abstract
Amino acid interlinked pyrene and naphthalenediimide (NDI) based novel donor–acceptor–donor (D-A-D) triads are designed to exploit their topological symmetry and complementary π-character for facile charge-transfer complexation. Consequently, free-floating high-aspect-ratio supercoiled nanofibres and hierarchical helical bundles of triads are realized by modulating the chemical functionality of interlinking amino acids.
Collapse
Affiliation(s)
- M B Avinash
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. ; Tel: +91 80 2208 2969
| | | | | |
Collapse
|
44
|
Malicka JM, Sandeep A, Monti F, Bandini E, Gazzano M, Ranjith C, Praveen VK, Ajayaghosh A, Armaroli N. Ultrasound Stimulated Nucleation and Growth of a Dye Assembly into Extended Gel Nanostructures. Chemistry 2013; 19:12991-3001. [DOI: 10.1002/chem.201301539] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Indexed: 01/01/2023]
|
45
|
Das A, Ghosh S. Luminescent Invertible Polymersome by Remarkably Stable Supramolecular Assembly of Naphthalene Diimide (NDI) π-System. Macromolecules 2013. [DOI: 10.1021/ma400213j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anindita Das
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, India 700032
| | - Suhrit Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, India 700032
| |
Collapse
|
46
|
Edwards W, Smith DK. Dynamic Evolving Two-Component Supramolecular Gels—Hierarchical Control over Component Selection in Complex Mixtures. J Am Chem Soc 2013; 135:5911-20. [DOI: 10.1021/ja4017107] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William Edwards
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - David K. Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
47
|
Chemically programmed self-sorting of gelator networks. Nat Commun 2013; 4:1480. [DOI: 10.1038/ncomms2499] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/15/2013] [Indexed: 12/22/2022] Open
|
48
|
Smith MM, Edwards W, Smith DK. Self-organisation effects in dynamic nanoscale gels self-assembled from simple mixtures of commercially available molecular-scale components. Chem Sci 2013. [DOI: 10.1039/c2sc21547k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Mayoral MJ, Rest C, Schellheimer J, Stepanenko V, Fernández G. Narcissistic versus social self-sorting of oligophenyleneethynylene derivatives: from isodesmic self-assembly to cooperative co-assembly. Chemistry 2012; 18:15607-11. [PMID: 23132726 DOI: 10.1002/chem.201202367] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/01/2012] [Indexed: 12/21/2022]
Abstract
Narcissistic versus social! The self-assembly of two structurally related oligophenyleneethynylene derivatives featuring polar or nonpolar peripheral chains is reported. Their remarkable narcissistic versus social self-sorting behaviour in aqueous media can be controlled by concentration and solvent changes.
Collapse
|
50
|
Das A, Molla MR, Maity B, Koley D, Ghosh S. Hydrogen-bonding induced alternate stacking of donor (D) and acceptor (A) chromophores and their supramolecular switching to segregated states. Chemistry 2012; 18:9849-59. [PMID: 22782621 DOI: 10.1002/chem.201201140] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Indexed: 11/10/2022]
Abstract
This paper reports comprehensive studies on the mixed assembly of bis-(trialkoxybenzamide)-functionalized dialkoxynaphthalene (DAN) donors and naphthalene-diimide (NDI) acceptors due the cooperative effects of hydrogen bonding, charge-transfer (CT) interactions, and solvophobic effects. A series of DAN as well as NDI building blocks have been examined (wherein the relative distance between the two amide groups in a particular chromophore is the variable structural parameter) to understand the structure-dependent variation in mode of supramolecular assembly and morphology (organogel, reverse vesicle, etc.) of the self-assembled material. Interestingly, it was observed that when the amide functionalities are introduced to enhance the self-assembly propensity, the mode of co-assembly among the DAN and NDI chromophores no longer remained trivial and was dictated by a relatively stronger hydrogen-bonding interaction instead of a weak CT interaction. Consequently, in a highly non-polar solvent like methylcyclohexane (MCH), although kinetically controlled CT-gelation was initially noticed, within a few hours the system sacrificed the CT-interaction and switched over to the more stable self-sorted gel to maximize the gain in enthalpy from the hydrogen-bonding interaction. In contrast, in a relatively less non-polar solvent such as tetrachloroethylene (TCE), in which the strength of hydrogen bonding is inherently weak, the contribution of the CT interaction also had to be accounted for along with hydrogen bonding leading to a stable CT-state in the gel or solution phase. The stability and morphology of the CT complex and rate of supramolecular switching (from CT to segregated state) were found to be greatly influenced by subtle structural variation of the building blocks, solvent polarity, and the DAN/NDI ratio. For example, in a given D-A pair, by introducing just one methylene unit in the spacer segment of either of the building blocks a complete change in the mode of co-assembly (CT state or segregated state) and the morphology (1D fiber to 2D reverse vesicle) was observed. The role of solvent polarity, structural variation, and D/A ratio on the nature of co-assembly, morphology, and the unprecedented supramolecular-switching phenomenon have been studied by detail spectroscopic and microscopic experiments in a gel as well as in the solution state and are well supported by DFT calculations.
Collapse
Affiliation(s)
- Anindita Das
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Rd. Kolkata-700032, India
| | | | | | | | | |
Collapse
|