1
|
Naithani S, Dubey R, Goswami T, Thetiot F, Kumar S. Optical detection strategies for Ni(II) ion using metal-organic chemosensors: from molecular design to environmental applications. Dalton Trans 2024. [PMID: 39345035 DOI: 10.1039/d4dt02376e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nickel is an important element utilized in various industrial/metallurgical processes, such as surgical and dental prostheses, Ni-Cd batteries, paint pigments, electroplating, ceramics, computer magnetic tapes, catalysis, and alloy manufacturing. However, its extensive use and associated waste production have led to increased nickel pollution in soils and water bodies, which adversely affects human health, animals and plants. This issue has prompted researchers to develop various optical probes, hereafter luminescent/colorimetric sensors, for the facile, sensitive and selective detection of nickel, particularly in biological and environmental contexts. In recent years, numerous functionalized chemosensors have been reported for imaging Ni2+, both in vivo and in vitro. In this context, metal-based receptors offer clear advantages over conventional organic sensors (viz., organic ligands, polymers, and membranes) in terms of cost, durability, stability, water solubility, recyclability, chemical flexibility and scope. This review highlights recent advancements in the design and fabrication of hybrid receptors (i.e., metal complexes and MOFs) for the specific detection of Ni2+ ions in complex environmental and biological mixtures.
Collapse
Affiliation(s)
- Sudhanshu Naithani
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| | - Franck Thetiot
- CEMCA, CNRS, UMR 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Sushil Kumar
- Department of Chemistry, School of Advanced Engineering (Applied Science Cluster), UPES, Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Shubham, Naina VR, Roesky PW. Luminescent Tetranuclear Copper(I) and Gold(I) Heterobimetallic Complexes: A Phosphine Acetylide Amidinate Orthogonal Ligand Framework for Selective Complexation. Chemistry 2024; 30:e202401696. [PMID: 38758593 DOI: 10.1002/chem.202401696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The synthesis of phosphine acetylide amidinate stabilized copper(I) and gold(I) heterobimetallic complexes was achieved by reacting ligand [{Ph2PC≡CC(NDipp)2}Li(thf)3] (Dipp=2,6-N,N'-diisopropylphenyl) with CuCl and Au(tht))Cl, yielding the eight membered ring [{Ph2PC≡CC(NDipp)2}2Cu2] and the twelve membered ring [{Ph2PC≡CC(NDipp)2}2Au2]. {Ph2PC≡CC(NDipp)2}2Cu2] features a Cu2 unit, which is bridged by two amidinate ligands, served as a metalloligand to synthesize the heterobimetallic CuI/AuI complexes [{(AuX)Ph2PC≡CC(NDipp)2}2Cu2] (X=Cl, C6F5). In these reactions, the central ring structure is retained. In contrast, when the twelve membered ring [{Ph2PC≡CC(NDipp)2}2Au2] was reacted with CuX (X=Cl, Br, I and Mes), the reaction led to the rearrangement of the central ring structure to give [{(AuX)Ph2PC≡CC(NDipp)2}2Cu2] (X=Cl, Br, I and Mes), which feature the same the eight membered Cu2 ring as above. These compounds were also synthesized by a one-pot reaction. The luminescent heterobimetallic complexes were further investigated for their photophysical properties.
Collapse
Affiliation(s)
- Shubham
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
| | - Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstr.12, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Huang L, Li XN, Shen Y, Hua Y, Song RH, Cui WB, Li ZY, Zhang H. Tunable photo/thermochromic properties of Cd(II)-viologen coordination polymers modulated by coordination modes for flexible imaging films and anti-counterfeiting. Dalton Trans 2024; 53:8803-8811. [PMID: 38716557 DOI: 10.1039/d4dt00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Two photochromic Cd(II)-CPs were obtained based on the viologen ligand using different synthetic routes, named {[Cd4(p-BDC)4(CPB)2(H2O)2]·2H2O·EtOH}n (1) and {[Cd(p-BDC)(CPB)(H2O)]·(L)·DMF}n (2) (p-H2BDC = 1,4-benzene-dicarboxylate, HCPB·Cl = 1-(4-carboxyphenyl)-4,4'-bipyridinium·Cl, L = 2,4-dinitrochlorobenzene, and DMF = N,N-dimethylformamide), respectively. Due to different coordination modes, the two Cd(II)-CPs show different structures. Compound 1 exhibits a three-dimensional (3D) framework with bimetallic nodes, while compound 2 displays a 2-fold interpenetrated (4,4) net topology. Notably, the two Cd(II)-CPs exhibit substantial disparities in photo/thermochromism, which can be attributed to variations in donor-acceptor (D-A) distances arising from structural differences. Compound 1 showed visually sensitive photo- and thermochromic behavior due to multi-pathway electron transfer and short D-A distances, which is relatively rare in electron-transfer type photochromic systems. In contrast, 2 only demonstrates insensitive photochromic behavior, with a slight deepening of the color observed after 2 hours of UV light, which is due to the mono-pathway electron transfer and long D-A distance. Moreover, we first combined Cd(II)-viologen CPs with polydimethylsiloxane (PDMS) to prepare a 1@PDMS flexible UV imaging film. 1@PDMS exhibits excellent bendability and stretchability and maintains good photochromic properties after 100 bending cycles. To demonstrate the rapid color response and distinct color contrast of 1, its application in anti-counterfeiting is also demonstrated.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Xiao-Nan Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yuan Shen
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Yang Hua
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Run-Hong Song
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Wen-Bo Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Zi-Yi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | - Hong Zhang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| |
Collapse
|
5
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
6
|
Phan TA, Jouffroy M, Matt D, Armaroli N, Moncada AS, Bandini E, Delavaux-Nicot B, Nierengarten JF, Armspach D. Stabilization of Luminescent Mononuclear Three-Coordinate Cu I Complexes by Two Distinct Cavity-Shaped Diphosphanes Obtained from a Single α-Cyclodextrin Precursor. Chemistry 2024; 30:e202302750. [PMID: 37996997 DOI: 10.1002/chem.202302750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Slightly different reaction conditions afforded two distinct cavity-shaped cis-chelating diphosphanes from the same starting materials, namely diphenyl(2-phosphanylphenyl)phosphane and an α-cyclodextrin-derived dimesylate. Thanks to their metal-confining properties, the two diphosphanes form only mononuclear [CuX(PP)] complexes (X=Cl, Br, or I) with the tricoordinated metal ion located just above the center of the cavity. The two series of CuI complexes display markedly different luminescence properties that are both influenced by the electronic properties of the ligand and the unique steric environment provided by the cyclodextrin (CD) cavity. The excited state lifetimes of all complexes are significantly longer than those of the cavity-free analogues suggesting peculiar electronic effects that affect radiative deactivation constants. The overall picture stemming from absorption and emission data suggests close-lying charge-transfer (MLCT, XLCT) and triplet ligand-centered (LC) excited states.
Collapse
Affiliation(s)
- Tuan-Anh Phan
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg cedex, France
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (LIMA - UMR 7042), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg cedex 2, France
| | - Matthieu Jouffroy
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg cedex, France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg cedex, France
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Alejandra Saavedra Moncada
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Elisa Bandini
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS (LCC), UPR 8241, Université de Toulouse (UPS), 205 route de Narbonne, 31077, Toulouse cedex 4, France
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (LIMA - UMR 7042), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg cedex 2, France
| | - Dominique Armspach
- Équipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS90032, 67081, Strasbourg cedex, France
| |
Collapse
|
7
|
Sathyanarayana A, Réveret F, Jouffret L, Boyer D, Chadeyron G, Cisnetti F. Polymeric copper(I)-NHC complexes with bulky bidentate (N^C) ligands: synthesis and solid-state luminescence. Dalton Trans 2023; 52:13677-13688. [PMID: 37702997 DOI: 10.1039/d3dt01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Starting from imidazolium chlorides bearing bulky nitrogen donors, a series of four complexes, mainly [Cu(C^N)Cl]n coordination polymers were obtained directly as luminescent species by simple filtration from the aqueous reaction medium, highlighting a simple, eco-friendly, robust and reproducible synthetic procedure. Additionally, we have shown on the most efficient example that chloride could be exchanged very easily by other halides/pseudohalides (Br-, I-, NCS-, N3-) allowing to slightly modulate the emitted colour while conserving the polymeric structure, except for azide for which a dimer was obtained. The combination of chemical analyses, of photoluminescence studies in the solid state including quantum yield measurement and X-ray diffraction on single crystals and as-synthesized microcrystalline powders highlighted that the polymeric luminescent species was indeed obtained directly by simple filtration and that no major alteration of the structure was observed upon recrystallisation. Samples of all polymeric complexes displayed remarkable stability towards air oxidation remaining unchanged upon storage for several months and partially retaining their photoluminescence properties even after a thermal treatment at 100 °C for 24 h.
Collapse
Affiliation(s)
- Arruri Sathyanarayana
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - François Réveret
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Laurent Jouffret
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Damien Boyer
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Geneviève Chadeyron
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Federico Cisnetti
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
8
|
Guo X, Zhou L, Liu X, Tan G, Yuan F, Nezamzadeh-Ejhieh A, Qi N, Liu J, Peng Y. Fluorescence detection platform of metal-organic frameworks for biomarkers. Colloids Surf B Biointerfaces 2023; 229:113455. [PMID: 37473653 DOI: 10.1016/j.colsurfb.2023.113455] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sensitive and selective detection of biomarkers is crucial in the study and early diagnosis of diseases. With the continuous development of biosensing technologies, fluorescent biosensors based on metal-organic frameworks have attracted increasing attention in the field of biomarker detection due to the combination of the advantages of MOFs, such as high specific surface area, large porosity, and structure with tunable functionality and the technical simplicity, sensitivity and efficiency and good applicability of fluorescent detection techniques. Therefore, researchers must understand the fluorescence response mechanism of such fluorescent biosensors and their specific applications in this field. Of all biomarkers applicable to such sensors, the chemical essence of nucleic acids, proteins, amino acids, dopamine, and other small molecules account for about a quarter of the total number of studies. This review systematically elaborates on four fluorescence response mechanisms: metal-centered emission (MC), ligand-centered emission (LC), charge transfer (CT), and guest-induced luminescence change (GI), presenting their applications in the detection of nucleic acids, proteins, amino acids, dopamine, and other small molecule biomarkers. In addition, the current challenges of MOFs-based fluorescent biosensors are also discussed, and their further development prospects are concerned.
Collapse
Affiliation(s)
- Xuanran Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Luyi Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xuezhang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guijian Tan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Fei Yuan
- College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | | | - Na Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
9
|
Kikuchi K, Imoto H, Naka K. Robust and highly emissive copper(I) halide 1D-coordination polymers with triphenylarsine and a series of bridging N-heteroaromatic co-ligands. Dalton Trans 2023; 52:11168-11175. [PMID: 37505189 DOI: 10.1039/d3dt00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Various 1D-coordination polymers with dinuclear rhombic {Cu2X2} cores (X = Br, I) were synthesized using a spontaneous evaporation method employing triphenylarsine (AsPh3) and six types of bidentate N-heteroaromatic co-ligands. The coordination polymers exhibited intense emission even at 298 K (quantum yield: up to 0.60), and their emission color was dependent on the N-heteroaromatic co-ligand. The emission efficiencies of these coordination polymers were higher than those of the discrete complexes with AsPh3 and monodentate N-heteroaromatic co-ligands reported in our previous work. In addition, the luminescence of these coordination polymers was more resistant to mechanical stimuli than that of the discrete ones.
Collapse
Affiliation(s)
- Kazuma Kikuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
10
|
You DK, Kim M, Kim D, Kim N, Lee KM. Improvement in Radiative Efficiency Via Intramolecular Charge Transfer in ortho-Carboranyl Luminophores Modified with Functionalized Biphenyls. Inorg Chem 2023. [PMID: 37311712 DOI: 10.1021/acs.inorgchem.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we found that the electronic effects of the functional groups on aromatic units attached to o-carboranyl species can enhance the efficiency of intramolecular charge transfer (ICT)-based radiative decay processes. Six o-carboranyl-based luminophores having attached functionalized biphenyl groups with CF3, F, H, CH3, C(CH3)3, and OCH3 substituents were prepared and fully characterized by multinuclear magnetic resonance spectroscopy. In addition, their molecular structures were determined by single-crystal X-ray diffractometry, which revealed that the distortion of the biphenyl rings and the geometries around the o-carborane cages were similar. All compounds exhibited ICT-based emissions in the rigid state (solution at 77 K and film). Intriguingly, the quantum efficiencies (Φem) of five compounds (that of the group with CF3 could not be measured because of its extremely weak emissions) in the film state increased gradually as the electron-donating power of the terminal functional group modifying the biphenyl moiety increased. Furthermore, the nonradiative decay constants (knr) for the group with OCH3 were estimated to be one-tenth of those for the group with F, whereas the radiative decay constants (kr) for the five compounds were similar. The dipole moments (μ) calculated for the optimized first excited state (S1) structures gradually increased, from that of the group with CF3 to that of the group with OCH3, implying that the inhomogeneity of the molecular charge distribution was enhanced by electron donation. The electron-rich environment formed as a result of electron donation led to efficient charge transfer to the excited state. Both experimental and theoretical findings revealed that the electronic environment of the aromatic moiety in o-carboranyl luminophores can be controlled to accelerate or interrupt the ICT process in the radiative decay of excited states.
Collapse
Affiliation(s)
- Dong Kyun You
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingi Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Namkyun Kim
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
11
|
Romo-Islas G, Ward JS, Rissanen K, Rodríguez L. Heterometallic Au(I)-Cu(I) Clusters: Luminescence Studies and 1O 2 Production. Inorg Chem 2023; 62:8101-8111. [PMID: 37191273 DOI: 10.1021/acs.inorgchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Zheng HW, Yang DD, Shi YS, Xiao T, Tan HW, Zheng XJ. Conformation- and Coordination Mode-Dependent Stimuli-Responsive Salicylaldehyde Hydrazone Zn(II) Complexes. Inorg Chem 2023; 62:6323-6331. [PMID: 37043704 DOI: 10.1021/acs.inorgchem.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Luminescent Zn(II) complexes that respond to external stimuli are of wide interest due to their potential applications. Schiff base with O,N,O-hydrazone shows excellent luminescence properties with multi-coordination sites for different coordination modes. In this work, three salicylaldehyde hydrazone Zn(II) complexes (1, 2a, 2b) were synthesized and their stimuli-responsive behaviors in different states were explored. Only complex 1 exhibits reversible and self-recoverable photochromic and photoluminescence properties in solution. This may be due to the configuration eversion and the excited-state intramolecular proton transfer (ESIPT) process. In the solid state, 2a has obvious mechanochromic luminescence property, which is caused by the destruction of intermolecular interactions and the transformation from crystalline state to amorphous state. 2a and 2b have delayed fluorescence properties due to effective halogen bond interactions in structures. 2a could undergo crystal-phase transformation into its polymorphous 2b by force/vapor stimulation. Interestingly, 2b shows photochromic property, which can be attributed to the electron transfer and generation of radicals induced by UV irradiation. Due to different conformations and coordination modes, the three Zn(II) complexes show different stimuli-responsive properties. This work presents the multi-stimuli-responsive behaviors of salicylaldehyde hydrazone Zn(II) complexes in different states and discusses the response mechanism in detail, which may provide new insights into the design of multi-stimuli-responsive materials.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Sheng Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tong Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hong-Wei Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Arif S. Electric field engineering and modulation of CuBr: a potential material for optoelectronic device applications. RSC Adv 2023; 13:7352-7365. [PMID: 36895767 PMCID: PMC9989743 DOI: 10.1039/d3ra00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
I-VII semiconductors, well-known for their strong luminescence in the visible region of the spectrum, have become promising for solid-state optoelectronics because inefficient light emission may be engineered/tailored by manipulating electronic bandgaps. Herein, we conclusively reveal electric-field-induced controlled engineering/modulation of structural, electronic and optical properties of CuBr via plane-wave basis set and pseudopotentials (pp) using generalized gradient approximation (GGA). We observed that the electric field (E) on CuBr causes enhancement (0.58 at 0.0 V Å-1, 1.58 at 0.05 V Å-1, 1.27 at -0.05 V Å-1, to 1.63 at 0.1 V Å-1 and -0.1 V Å-1, 280% increase) and triggers modulation (0.78 at 0.5 V Å-1) in the electronic bandgap, leading to a shift in behavior from semiconduction to conduction. Partial density of states (PDOS), charge density and electron localization function (ELF) reveal that electric field (E) causes a major shift and leads to Cu-1d, Br-2p, Cu-2s, Cu-3p, and Br-1s orbital contributions in valence and Cu-3p, Cu-2s and Br-2p, Cu-1d and Br-1s conduction bands. We observe the control/shift in chemical reactivity and electronic stability by tuning/tailoring the energy gap between the HOMO and LUMO states, such as an increase in the electric field from 0.0 V Å-1 → 0.05 V Å-1 → 0.1 V Å-1 causes an increase in energy gap (0.78 eV, 0.93 and 0.96 eV), leading to electronic stability and less chemical reactivity and vice versa for further increase in the electric field. Optical reflectivity, refractive index, extinction coefficient, and real and imaginary parts of dielectric and dielectric constants under the applied electric field confirm the controlled optoelectronic modulation. This study offers valuable insights into the fascinating photophysical properties of CuBr via an applied electric field and provides prospects for broad-ranging applications.
Collapse
Affiliation(s)
- Suneela Arif
- Department of Physics and Astronomy, Hazara University, Garden Campus (Main Campus) Mansehra Pakistan +092 310-050-7841
| |
Collapse
|
14
|
Makino Y, Yoshida M, Hayashi S, Sasaki T, Takamizawa S, Kobayashi A, Kato M. Elastic and bright assembly-induced luminescent crystals of platinum(II) complexes with near-unity emission quantum yield. Dalton Trans 2023. [PMID: 36847788 DOI: 10.1039/d3dt00192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Molecular crystals of Pt(II) complexes with metallophilic interactions can provide bright assembly-induced luminescence with colour tunability. However, the brittleness of many of these crystals makes their application in flexible optical materials difficult. Herein, we have achieved the elastic deformation of crystals of polyhalogenated Pt(II) complexes exhibiting bright assembly-induced luminescence. A crystal of [Pt(bpic)(dFppy)] (Hbpic = 5-bromopicolinic acid, HdFppy = 2-(2,4-difluorophenyl)pyridine) and a co-crystal of [Pt(bpic)(dFppy)] and [Pt(bpic)(ppy)] (Hppy = 2-phenylpyridine) were found to exhibit significant elastic deformation due to their highly anisotropic interaction topologies. While the crystal of [Pt(bpic)(dFppy)] exhibited monomer-based ligand-centred 3ππ* emission with an emission quantum yield of 0.40, the co-crystal exhibited bright, triplet metal-metal-to-ligand charge transfer (3MMLCT) emission owing to Pt⋯Pt interactions, thereby achieving a significantly higher emission quantum yield of 0.94.
Collapse
Affiliation(s)
- Yusuke Makino
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Shotaro Hayashi
- School of Environmental Science and Engineering and Research Centre for Molecular Design, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Toshiyuki Sasaki
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Satoshi Takamizawa
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
15
|
Prakasham AP, Patil SK, Nettem C, Dey S, Rajaraman G, Ghosh P. Discrete Singular Metallophilic Interaction in Stable Large 12-Membered Binuclear Silver and Gold Metallamacrocycles of Amido-Functionalized Imidazole and 1,2,4-Triazole-Derived N-Heterocyclic Carbenes. ACS OMEGA 2023; 8:6439-6454. [PMID: 36844527 PMCID: PMC9947987 DOI: 10.1021/acsomega.2c06729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metallophilic interactions were observed in four pairs of 12-membered metallamacrocyclic silver and gold complexes of imidazole-derived N-heterocyclic carbenes (NHCs), [1-(R1)-3-N-(2,6-di-(R2)-phenylacetamido)-imidazol-2-ylidene]2M2 [R1 = p-MeC6H4, R2 = Me, M = Ag (1b) and Au (1c); R1 = Me, R2 = i-Pr, M = Ag (2b) and Au (2c); R1 = Et, R2 = i-Pr, M = Ag (3b) and Au (3c)], and a 1,2,4-triazole-derived N-heterocyclic carbene (NHC), [1-(i-Pr)-4-N-(2,6-di-(i-Pr)-phenylacetamido)-1,2,4-triazol-2-ylidene]2M2 [M = Ag (4b) and Au (4c)]. The X-ray diffraction, photoluminescence, and computational studies indicate the presence of metallophilic interactions in these complexes, which are significantly influenced by the sterics and the electronics of the N-amido substituents of the NHC ligands. The argentophilic interaction in the silver 1b-4b complexes was stronger than the aurophilic interaction in the gold 1c-4c complexes, with the metallophilic interaction decreasing in the order 4b > 1b > 1c > 4c > 3b > 3c > 2b > 2c. The 1b-4b complexes were synthesized from the corresponding amido-functionalized imidazolium chloride 1a-3a and the 1,2,4-triazolium chloride 4a salts upon treatment with Ag2O. The reaction of 1b-4b complexes with (Me2S)AuCl gave the gold 1c-4c complexes.
Collapse
|
16
|
Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing. Molecules 2023; 28:molecules28031231. [PMID: 36770897 PMCID: PMC9920910 DOI: 10.3390/molecules28031231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Improvements in the design of receptors for the detection and quantification of anions are desirable and ongoing in the field of anion chemistry, and remarkable progress has been made in this direction. In this regard, the development of luminescent chemosensors for sensing anions is an imperative and demanding sub-area in supramolecular chemistry. This decade, in particular, witnessed advancements in chemosensors based on ruthenium and iridium complexes for anion sensing by virtue of their modular synthesis and rich chemical and photophysical properties, such as visible excitation wavelength, high quantum efficiency, high luminescence intensity, long lifetimes of phosphorescence, and large Stokes shifts, etc. Thus, this review aims to summarize the recent advances in the development of ruthenium(II) and iridium(III)-based complexes for their application as luminescent chemosensors for anion sensing. In addition, the focus was devoted to designing aspects of polypyridyl complexes of these two transition metals with different recognition motifs, which upon interacting with different inorganic anions, produces desirable quantifiable outputs.
Collapse
|
17
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
18
|
Naithani S, Goswami T, Thetiot F, Kumar S. Imidazo[4,5-f][1,10]phenanthroline based luminescent probes for anion recognition: Recent achievements and challenges. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Gómez de Segura D, Lalinde E, Moreno MT. Polymorphism and Mechanochromism in 2-Phenylbenzothiazole Cyclometalated Pt II Complexes with Chelating N ∧O Ligands. Inorg Chem 2022; 61:20043-20056. [PMID: 36442499 DOI: 10.1021/acs.inorgchem.2c03423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New cyclometalated PtII complexes with 2-phenylbenzothiazole (pbt) and two different picolinate ligands [Pt(pbt)(R-pic-κN,O)] (R = H (1), OH (2)) were prepared. In contrast to 1, the OH substituent group on 2 allows modulation of the packing in the solid state through donor-acceptor H-bonding interactions with the CH2Cl2 solvent. Thus, three pseudopolymorphs of 2 with different aggregation degrees were isolated, including yellow 2-Y, orange-red 2-R (2·0.5CH2Cl2) and black 2-B (2·0.75CH2Cl2) with emissions at 540, 656, and 740 nm, respectively, in the solid state at 298 K. 2-R and 2-B can be transformed to the pristine solid 2. Studies of their crystal structures show that 1 and 2-Y stack in columns with only π···π stacking interactions, whereas 2-R displays strong aggregated 1D infinite chains based on Pt···Pt and π···π stacking interactions, consistent with the colors and the photophysical properties, measured in several media. Interestingly, 1 and 2 exhibit reversible mechanochromic behavior with high contrast in the color and color emission upon mechanical grinding due to a phase transition between a crystalline and an amorphous state, as confirmed by powder X-ray diffraction (PXRD) studies. Theoretical calculations indicate that Pt···Pt contacts are more relevant in the trimers and tetramers than in the dimers, particularly in their T1 states, associated with a change from a 3IL/3MLCT transition in the monomer to 3MM(L+L')CT in the oligomers. Noncovalent interaction (NCI) theoretical studies indicate that the π···π stacking among chelates also exerts a strong influence in the metal-metal-to-ligand charge transfer transition character.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
20
|
Triplet Emitting C^N^C Cyclometalated Dibenzo[c,h]Acridine Pt(II) Complexes. Molecules 2022; 27:molecules27228054. [PMID: 36432153 PMCID: PMC9697690 DOI: 10.3390/molecules27228054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
In a series of Pt(II) complexes [Pt(dba)(L)] containing the very rigid, dianionic, bis-cyclometalating, tridentate C^N^C2− heterocyclic ligand dba2− (H2dba = dibenzo[c,h]acridine), the coligand (ancillary ligand) L = dmso, PPh3, CNtBu and Me2Imd (N,N’-dimethylimidazolydene) was varied in order to improve its luminescence properties. Beginning with the previously reported dmso complex, we synthesized the PPh3, CNtBu and Me2Imd derivatives and characterized them by elemental analysis, 1H (and 31P) NMR spectroscopy and MS. Cyclic voltammetry showed partially reversible reduction waves ranging between −1.89 and −2.10 V and increasing along the series Me2Imd < dmso ≈ PPh3 < CNtBu. With irreversible oxidation waves ranging between 0.55 (L = Me2Imd) and 1.00 V (dmso), the electrochemical gaps range between 2.65 and 2.91 eV while increasing along the series Me2Imd < CNtBu < PPh3 < dmso. All four complexes show in part vibrationally structured long-wavelength absorption bands peaking at around 530 nm. TD-DFT calculated spectra agree quite well with the experimental spectra, with only a slight redshift. The photoluminescence spectra of all four compounds are very similar. In fluid solution at 298 K, they show broad, only partially structured bands, with maxima at around 590 nm, while in frozen glassy matrices at 77 K, slightly blue-shifted (~580 nm) bands with clear vibronic progressions were found. The photoluminescence quantum yields ΦL ranged between 0.04 and 0.24, at 298 K, and between 0.80 and 0.90 at 77 K. The lifetimes τ at 298 K ranged between 60 and 14040 ns in Ar-purged solutions and increased from 17 to 43 µs at 77 K. The TD-DFT calculated emission spectra are in excellent agreement with the experimental findings. In terms of high ΦL and long τ, the dmso and PPh3 complexes outperform the CNtBu and Me2Imd derivatives. This is remarkable in view of the higher ligand strength of Me2Imd, compared with all other coligands, as concluded from the electrochemical data.
Collapse
|
21
|
Prakash O, Lindh L, Kaul N, Rosemann NW, Losada IB, Johnson C, Chábera P, Ilic A, Schwarz J, Gupta AK, Uhlig J, Ericsson T, Häggström L, Huang P, Bendix J, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited States. Inorg Chem 2022; 61:17515-17526. [PMID: 36279568 PMCID: PMC9644379 DOI: 10.1021/acs.inorgchem.2c02410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/30/2022]
Abstract
Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]-, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]-. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]- by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6-1.7 ns) and sizable emission quantum yields (1.7-1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Nidhi Kaul
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Nils W. Rosemann
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Iria Bolaño Losada
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Catherine Johnson
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Aleksandra Ilic
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Jesper Schwarz
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Jens Uhlig
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Tore Ericsson
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Lennart Häggström
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100Copenhagen, Denmark
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Reiner Lomoth
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box 523, SE-75120Uppsala, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100Lund, Sweden
| |
Collapse
|
22
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
23
|
Mule RD, Roy R, Mandal K, Chopra D, Dutta T, Sancheti SP, Shinde PS, Banerjee S, Lal Koner A, Bhowal R, Senthilkumar B, Patil NT. Interplay of Anion‐π
+
and π
+
‐π
+
Interactions in Novel Pyrido[2,1‐
a
]isoquinolinium‐Based AIEgens ‐ Substituent‐ and Counterion‐Dependent Fluorescence Modulation and Applications in Live Cell Mitochondrial Imaging**. Chemistry 2022; 28:e202200632. [DOI: 10.1002/chem.202200632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Ravindra D. Mule
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Rupam Roy
- Bionanotechnology Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Koushik Mandal
- Crystallography and Crystal Chemistry Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Tanoy Dutta
- Bionanotechnology Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Shashank P. Sancheti
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Popat S. Shinde
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Somsuvra Banerjee
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Rohit Bhowal
- Crystallography and Crystal Chemistry Laboratory Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| | - Beeran Senthilkumar
- Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Nitin T. Patil
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462 066 India
| |
Collapse
|
24
|
Baranov AY, Slavova SO, Berezin AS, Petrovskii SK, Samsonenko DG, Bagryanskaya IY, Fedin VP, Grachova EV, Artem'ev AV. Controllable Synthesis and Luminescence Behavior of Tetrahedral Au@Cu 4 and Au@Ag 4 Clusters Supported by tris(2-Pyridyl)phosphine. Inorg Chem 2022; 61:10925-10933. [PMID: 35775806 DOI: 10.1021/acs.inorgchem.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein a family of polynuclear complexes, [Au@Ag4(Py3P)4]X5 and [Au@Cu4(Py3P)4]X5 [X = NO3, ClO4, OTf, BF4, SbF6], containing unprecedented Au-centered Ag4 and Cu4 tetrahedral cores supported by tris(2-pyridyl)phosphine (Py3P) ligands. The [Au@Ag4]5+ clusters are synthesized via controlled substitution of the central Ag(I) ion in all-silver [Ag@Ag4]5+ precursors by the reaction with Au(tht)Cl, while the [Au@Cu4]5+ cluster is assembled through the treatment of a pre-organized [Au(Py3P)4]+ metallo-ligand with 4 equiv of a Cu(I) source. The structure of the Au@M4 clusters has been experimentally and theoretically investigated to reveal very weak intermolecular Au-M metallophilic interactions. At ambient temperature, the designed compounds emit a modest turquoise-to-yellow luminescence with microsecond lifetimes. Based on the temperature-dependent photophysical experiments and DFT/TD-DFT computations, the emission observed has been assigned to an MLCT or LLCT type depending on composition of the cluster core.
Collapse
Affiliation(s)
- Andrey Yu Baranov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sofia O Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Stanislav K Petrovskii
- Institute of Chemistry, St Petersburg University, 26, Universitetskiy Pr., St. Petersburg 198504, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University, 26, Universitetskiy Pr., St. Petersburg 198504, Russia
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
25
|
Supramolecular Dimeric Silver(I) Complex Based on the 1,1′-Bis(diphenylphosphino)ferrocene: Thermal Behaviors, Luminescence Studies and Cytotoxic Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Sathya Priyadarshini G, Subramani R, Elakkiya S, Gopal S. Synthesis of novel luminescent cyclometallated platinum (IV) complexes with a quinoline Schiff bases ligand and their photophysical properties. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Ramesh Subramani
- Department of Food Processing Technology and Management, PSGR Krishnammal College for Women, Coimbatore, India
| | - S. Elakkiya
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, India
| | - Selvi Gopal
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, India
| |
Collapse
|
27
|
Synthesis and Characterization of Heteroleptic Bis-Cyclometalated Iridium(III) Complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Santibañez D, Mendizabal F. Quantum chemistry study in metallophilic interactions on complexes based in Au(I)-Pb(II) and Au(I)-Bi(III). MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2068802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Daniel Santibañez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Naina VR, Krätschmer F, Roesky PW. Selective coordination of coinage metals using orthogonal ligand scaffolds. Chem Commun (Camb) 2022; 58:5332-5346. [PMID: 35416815 DOI: 10.1039/d2cc01093c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Group 11 metal complexes with their ability to form metallophilic interations are widely pursued to develop multifunctional luminescent materials. Heteronuclear coinage metal complexes are promising candidates to tune electronic and optical properties which are not readily accessed by their homometallic congeners. In this review, we present the concept of orthogonal ligands which are rationally designed to access heteronuclear coinage metal complexes and studied in terms of their photophysical properties. Bifunctional ligands containing soft and hard donor atoms have the potential of providing different coordination modes to selectively synthesise heterobimetallic complexes in a predictable manner. This review deals with ligand sets composed of pyridine, bipyridine- or iminopyridine-substituted NHCs featuring C-N coordination modes, phosphine-based N-heterocycles and amidinate ligand scaffolds comprising of P-N functionalities and mixed phosphine-phosphine oxide with P-O donor sites. Therefore, the scope of this perspective is the discussion of heteronuclear coinage metal complexes supported by recently developed bifunctional ligands in terms of their synthesis, coordination geometries and tunability of optical properties when compared to their homometallic analogues.
Collapse
Affiliation(s)
- Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
30
|
Moutier F, Schiller J, Lecourt C, Khalil AM, Delmas V, Calvez G, Costuas K, Lescop C. Impact of Intermolecular Non‐Covalent Interactions in a Cu
I
8
Pd
II
1
Discrete Assembly: Conformers’ Geometries and Stimuli‐Sensitive Luminescence Properties. Chemistry 2022; 28:e202104497. [DOI: 10.1002/chem.202104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Florent Moutier
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Jana Schiller
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Constance Lecourt
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | | | - Vincent Delmas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Guillaume Calvez
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Karine Costuas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Christophe Lescop
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| |
Collapse
|
31
|
Groué A, Tranchier JP, Rager MN, Gontard G, Métivier R, Buriez O, Khatyr A, Knorr M, Amouri H. Cyclometalated Rhodium and Iridium Complexes Containing Masked Catecholates: Synthesis, Structure, Electrochemistry, and Luminescence Properties. Inorg Chem 2022; 61:4909-4918. [PMID: 35289605 DOI: 10.1021/acs.inorgchem.1c03656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two neutral cyclometalated rhodium and iridium coordination assemblies [(F2ppy)2M(η-Cat)], M = Rh, (2) and M = Ir, (3) (F2ppy: 2,4-difluorophenylpyridine), displaying a masked catecholate (η-Cat = η-O∧O) are described. The catecholate ligand is π-bonded to an organometallic Cp*Ru(II) moiety. The latter brings stability to the whole system in solution and suppresses the formation of the related paramagnetic semiquinone complex. The determination of the molecular structure of the iridium complex [(F2ppy)2Ir(η-Cat)] (3) corroborates the formation of the target compound and reveals the generation of a rare two-dimensional (2D) honeycomb supramolecular architecture in the solid state, in which the Δ-enantiomer self-assembles with the Λ-enantiomer through encoded π-π interactions among individual units. The electrochemistry of complexes 2 and 3 was investigated and showed that reduction occurs at very negative potentials (∼-2.2 V versus saturated calomel electrode (SCE)), while oxidation of the cyclometalated Rh and Ir centers occurs at 0.8 and 0.86 V. In contrast to complexes with 1,2-dioxolene chelates, which are nonemissive, the heterodinuclear diamagnetic complexes 2 and 3 were found to be emissive at room temperature both in solution and in the solid state. Moreover, at 77 K in a solid state, both compounds display opposite emission behavior, for instance, complex 3 displays a blue-shifted emission, while rhodium compound 2 exhibits red-shifted emission to lower energy.
Collapse
Affiliation(s)
- Antoine Groué
- Sorbonne Université- Campus Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-Philippe Tranchier
- Sorbonne Université- Campus Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232, 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | - Geoffrey Gontard
- Sorbonne Université- Campus Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190 Gif-sur-Yvette, France
| | - Olivier Buriez
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Abderrahim Khatyr
- Institut UTINAM, UMR CNRS 6213, 16 Route de Gray, Université Bourgogne Franche-Comté, 25030 Besançon, France
| | - Michael Knorr
- Institut UTINAM, UMR CNRS 6213, 16 Route de Gray, Université Bourgogne Franche-Comté, 25030 Besançon, France
| | - Hani Amouri
- Sorbonne Université- Campus Pierre et Marie Curie, Institut Parisien de Chimie Moléculaire (IPCM) UMR CNRS 8232, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
32
|
Mihaly JJ, Wolf SM, Phillips AT, Mam S, Yung Z, Haley JE, Zeller M, de La Harpe K, Holt E, Grusenmeyer TA, Collins S, Gray TG. Synthetically Tunable White-, Green-, and Yellow-Green-Light Emission in Dual-Luminescent Gold(I) Complexes Bearing a Diphenylamino-2,7-fluorenyl Moiety. Inorg Chem 2022; 61:1228-1235. [PMID: 34982547 DOI: 10.1021/acs.inorgchem.1c02405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The syntheses and photophysical characterization of five new gold(I) complexes bearing diphenylamine-substituted fluorenyl moieties are reported; four are characterized by X-ray diffraction crystallography. Ancillary ligation on gold(I) is provided by organophosphine and N-heterocyclic carbene ligands. Two complexes, Au-DPA0 and Au-DPA1, are σ-aryls, two, Au-ADPA0 and Au-ADPA1, are σ-alkynyls, and one, Au-TDPA1, is a σ-triazolyl bound through carbon. All complexes show vibronically structured absorption and luminescence bands that are assignable to π-π* transitions localized on the diphenylamine-substituted fluorenyl π system. The excited-state dynamics of all five chromophores are governed by selection of the ancillary ligand and σ attachment of the diphenylamine-substituted fluorenyl moiety. All of these chromophores are dual luminescent in a toluene solution at 298 K. The luminescence from the aryl derivatives, Au-ADPA0 and Au-DPA1, appears green. The alkynyl derivative containing a phosphine ancillary ligand, Au-ADPA0, is a white-light emitter, while the alkynyl derivative containing an N-heterocyclic carbene ancillary ligand, Au-ADPA1, is a yellow-light emitter. The luminescence from the triazolyl-linked chromophore, Au-TDPA1, appears as yellow-green. Spin-restricted density functional theory calculations support the assignments of ligand-centric optical transitions but with contributions of ligand-to-metal charge transfer involving the vacant Au 6p orbital.
Collapse
Affiliation(s)
- Joseph J Mihaly
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Steven M Wolf
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States.,General Dynamics Information Technology, 5000 Springfield Pike, Dayton, Ohio 45431, United States
| | - Alexis T Phillips
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Sokhalita Mam
- Department of Chemistry, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Zheng Yung
- Department of Chemistry, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Joy E Haley
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Ethan Holt
- Department of Chemistry, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, United States
| | - Tod A Grusenmeyer
- Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Stephanie Collins
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
33
|
He YC, Wu S, Zhang J, Qin WH, Liu J, Zhao FH, Liu L, Jing Z. Syntheses, structures, and luminescence properties of five new coordination polymers based on 3-carboxy-1-(3′-carboxybenzyl)-2-oxidopyridinium and neutral ligands. CrystEngComm 2022. [DOI: 10.1039/d2ce00921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five CPs have been synthesized by a new semi-rigid dicarboxyl ligand and neutral ligands under hydrothermal conditions, and their luminescent sensing experiments for different small molecules/ions were studied in detail.
Collapse
Affiliation(s)
- Yuan-Chun He
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shuang Wu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wen-Hui Qin
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fang-Hua Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Zhihong Jing
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
34
|
Tudor CA, Iliş M, Secu M, Ferbinteanu M, Cîrcu V. Luminescent heteroleptic copper(I) complexes with phosphine and N-benzoyl thiourea ligands: Synthesis, structure and emission properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Zheng HW, Yang DD, Liang QF, Zheng XJ. Acetonitrile-induced structure fine-tuning of a trinuclear zinc complex showing multistimuli responsive luminescence. NEW J CHEM 2022. [DOI: 10.1039/d2nj00200k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A trinuclear zinc complex (1) exhibits mechanochromic and acidochromic luminescence properties with five-color switching. The structure of complex 2 shows that the acetonitrile molecules induce fine-tuning of the structures compared with 1.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
36
|
Eppel D, Oberhof N, Dietl MC, Cieslik P, Rudolph M, Eberle L, Krämer P, Stuck F, Rominger F, Dreuw A, Hashmi ASK. Gold(III) Meets Azulene: A Class of [( tBuC ∧N ∧C)Au III(azulenyl)] Pincer Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Eppel
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Nils Oberhof
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg University, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Martin C. Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Patrick Cieslik
- Anorganisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Fabian Stuck
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg University, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Heidelberg Center for the Environment (HCE), Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Dahlen M, Seifert TP, Lebedkin S, Gamer MT, Kappes MM, Roesky PW. Tetra- and hexanuclear string complexes of the coinage metals. Chem Commun (Camb) 2021; 57:13146-13149. [PMID: 34807965 DOI: 10.1039/d1cc06034a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the PNNP ligand system N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate (dpfam) featuring different coordination compartments with [AuCl(tht)], [CuMes]5, [AgMes]4, or [AuC6F5(tht)] (tht = tetrahydrothiophene) resulted in tetranuclear homo- and heterometallic coinage metal complexes, as well as a hexanuclear gold complex. All of them feature a metal string conformation. Photophysical investigation revealed a significant dependence of the photoluminescence properties on the metal composition. Below 100 K, the PL efficiency of three compounds approaches nearly 100%.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Tim P Seifert
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| | - Manfred M Kappes
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2, Karlsruhe 76131, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, Karlsruhe 76131, Germany.
| |
Collapse
|
38
|
Conceptual advances in the preparation and excited-state properties of neutral luminescent (C^N) and (C^C*) monocyclometalated gold(III) complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Shahsavari HR, Chamyani S, Hu J, Aghakhanpour RB, Rheingold AL, Paziresh S, Rahal D, Tsuji M, Momand B, Beyzavi H. The Utilization of
Para
‐Substituted Triphenylphosphine Derivatives to Synthesize Highly Emissive Cyclometalated Platinum(II) Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Samira Chamyani
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Jiyun Hu
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Reza Babadi Aghakhanpour
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Arnold L. Rheingold
- Department of Chemistry University of California San Diego, La Jolla California 92093 United States
| | - Sareh Paziresh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Dania Rahal
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Miu Tsuji
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Bilal Momand
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas 72701 United States
| |
Collapse
|
40
|
Zheng HW, Yang DD, Liang QF, Zheng XJ. Multi-stimuli-responsive Zn(II)-Schiff base complexes adjusted by rotatable aromatic rings. Dalton Trans 2021; 50:16803-16809. [PMID: 34766609 DOI: 10.1039/d1dt02476k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multifunctional luminescent materials have attracted intensive interest. However, the mechanisms behind them are still to be explored. In this work, three Zn(II) complexes based on Schiff bases (HL1 and HL2) that contain rotatable aromatic rings were designed and prepared. They exhibited different mechanochromic luminescence (MCL) and acidochromism. The polymorphous ZnL12 and ZnL1a2 crystallize in different crystal systems with different conformations. The ligands in ZnL12 adopt a more twisted conformation than those in ZnL1a2. ZnL12 exhibits MCL with high contrast, while ZnL1a2 exhibits a negligible MCL property. This may be due to the looser packing of the complex induced by the more twisted conformation of the ligand HL1. ZnL12 could undergo crystal phase transformation into ZnL1a2 by grinding/fuming cycles. To increase the flexibility of the ligand, a methylene group was introduced to result in HL2, which can improve the mechanochromic luminescence effect of the Zn(II) complex with high color contrast. The ligands involved in coordination generally adopt a more twisted conformation than those free ligands due to the steric hindrance, resulting in more obvious MCL for complexes. By comparing the luminescence of ligands and their complexes under acid-base stimulation, it is found that the acidochromic properties could be attributed to the generation of ligands at the surface of complexes via the gaseous HCl-solid Zn(II) complex reaction. The high contrast mechanochromic and acidochromic luminescence properties would lead to promising potential applications of these complexes in smart fluorescent materials, and would also provide some ideas for the design of multi-stimuli responsive molecules.
Collapse
Affiliation(s)
- Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
41
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
42
|
Stück R, Krause M, Brünink D, Buss S, Doltsinis NL, Strassert CA, Klein A. Luminescent Pd(II) Complexes with Tridentate
−
Aryl‐pyridine‐(benzo)thiazole Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- René Stück
- Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Department für Chemie Institut für Anorganische Chemie Greinstraße 6 D-50939 Köln
| | - Maren Krause
- Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Department für Chemie Institut für Anorganische Chemie Greinstraße 6 D-50939 Köln
| | - Dana Brünink
- Westfälische Wilhelms-Universität Münster Institut für Festkörpertheorie and Center for Multiscale Theory and Computation Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Stefan Buss
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech Heisenbergstraße 11 D-48149 Münster Germany
| | - Nikos L. Doltsinis
- Westfälische Wilhelms-Universität Münster Institut für Festkörpertheorie and Center for Multiscale Theory and Computation Wilhelm-Klemm-Straße 10 D-48149 Münster Germany
| | - Cristian A. Strassert
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech Heisenbergstraße 11 D-48149 Münster Germany
| | - Axel Klein
- Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Department für Chemie Institut für Anorganische Chemie Greinstraße 6 D-50939 Köln
| |
Collapse
|
43
|
Dahlen M, Hollesen EH, Kehry M, Gamer MT, Lebedkin S, Schooss D, Kappes MM, Klopper W, Roesky PW. Bright Luminescence in Three Phases—A Combined Synthetic, Spectroscopic and Theoretical Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| | - Eike H. Hollesen
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Max Kehry
- Karlsruhe Institute of Technology (KIT) Institute of Physical Chemistry (Theoretical Chemistry) Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Michael T. Gamer
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Detlef Schooss
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred M. Kappes
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Wim Klopper
- Karlsruhe Institute of Technology (KIT) Institute of Physical Chemistry (Theoretical Chemistry) Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Peter W. Roesky
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstrasse 15 76131 Karlsruhe Germany
| |
Collapse
|
44
|
Dahlen M, Hollesen EH, Kehry M, Gamer MT, Lebedkin S, Schooss D, Kappes MM, Klopper W, Roesky PW. Bright Luminescence in Three Phases-A Combined Synthetic, Spectroscopic and Theoretical Approach. Angew Chem Int Ed Engl 2021; 60:23365-23372. [PMID: 34415105 PMCID: PMC8597132 DOI: 10.1002/anie.202110043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/08/2023]
Abstract
Combining phase-dependent photoluminescence (PL) measurements and quantum chemical calculations is a powerful approach to help understand the influence of the molecular surroundings on the PL properties. Herein, a phosphine functionalized amidinate was used to synthesize a recently presented bimetallic gold complex, featuring an unusual charge separation. The latter was subsequently used as metalloligand to yield heterotetrametallic complexes with an Au-M-M-Au "molecular wire" arrangement (M=Cu, Ag, Au) featuring metallophilic interactions. All compounds show bright phosphorescence in the solid state, also at ambient temperature. The effect of the molecular environment on the PL was studied in detail for these tetrametallic complexes by comparative measurements in solution, in the solid state and in the gas phase and contrasted to time-dependent density functional theory computations.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Eike H. Hollesen
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Max Kehry
- Karlsruhe Institute of Technology (KIT)Institute of Physical Chemistry (Theoretical Chemistry)Kaiserstrasse 1276131KarlsruheGermany
| | - Michael T. Gamer
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Sergei Lebedkin
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Detlef Schooss
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Manfred M. Kappes
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Wim Klopper
- Karlsruhe Institute of Technology (KIT)Institute of Physical Chemistry (Theoretical Chemistry)Kaiserstrasse 1276131KarlsruheGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| |
Collapse
|
45
|
Dahlen M, Kehry M, Lebedkin S, Kappes MM, Klopper W, Roesky PW. Bi- and trinuclear coinage metal complexes of a PNNP ligand featuring metallophilic interactions and an unusual charge separation. Dalton Trans 2021; 50:13412-13420. [PMID: 34477184 DOI: 10.1039/d1dt02226a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A selective synthesis of bi- and trinuclear complexes featuring a tetradentate monoanionic PNNP ligand is presented. The binuclear coinage metal complexes show a typical fourfold coordination for Cu and Ag, which changes to a bifold coordination for Au. The latter is accompanied by an unusual charge separation. Optical properties are investigated using photoluminescence spectroscopy and complemented by time-dependent density-functional-theory calculations. All compounds demonstrate clearly distinguished features dependent on the metals chosen and differences in the complex scaffold.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Max Kehry
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
46
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
47
|
Li G, Liu H, Feng R, Kang TS, Wang W, Ko CN, Wong CY, Ye M, Ma DL, Wan JB, Leung CH. A bioactive ligand-conjugated iridium(III) metal-based complex as a Keap1-Nrf2 protein-protein interaction inhibitor against acetaminophen-induced acute liver injury. Redox Biol 2021; 48:102129. [PMID: 34526248 PMCID: PMC8710994 DOI: 10.1016/j.redox.2021.102129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatotoxicity caused by an overdose of acetaminophen (APAP) is the leading reason for acute drug-related liver failure. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein that helps to regulate redox homeostasis and coordinate stress responses via binding to the Kelch-like ECH-associated protein 1 (Keap1). Targeting the Keap1-Nrf2 interaction has recently emerged as a potential strategy to alleviate liver injury caused by APAP. Here, we designed and synthesized a number of iridium (III) and rhodium (III) complexes bearing ligands with reported activity against oxidative stress, which is associated with Nrf2 transcriptional activation. The iridium (III) complex 1 bearing a bioactive ligand 2,9-dimethyl-1,10-phenanthroline and 4-chloro-2-phenylquinoline, a derivative of the bioactive ligand 2-phenylquinoline, was identified as a direct small-molecule inhibitor of the Keap1–Nrf2 protein-protein interaction. 1 could stabilize Keap1 protein, upregulate HO-1 and NQO1, and promote Nrf2 nuclear translocation in normal liver cells. Moreover, 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction and without inducing organ damage and immunotoxicity in mice. Our study demonstrates the identification of a selective and efficacious antagonist of Keap1–Nrf2 interaction possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo, and, more importantly, validates the feasibility of conjugating metal complexes with bioactive ligands to generate metal-based drug leads as non-toxic Keap1–Nrf2 interaction inhibitors for treating APAP-induced acute liver injury. 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction without inducing organ damage or immunotoxicity. Complex 1 possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo. Conjugating metal complexes with bioactive ligands opens a novel avenue for the treatment of APAP-induced liver damage.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
48
|
Reichenauer F, Wang C, Förster C, Boden P, Ugur N, Báez-Cruz R, Kalmbach J, Carrella LM, Rentschler E, Ramanan C, Niedner-Schatteburg G, Gerhards M, Seitz M, Resch-Genger U, Heinze K. Strongly Red-Emissive Molecular Ruby [Cr(bpmp) 2] 3+ Surpasses [Ru(bpy) 3] 2. J Am Chem Soc 2021; 143:11843-11855. [PMID: 34296865 DOI: 10.1021/jacs.1c05971] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.
Collapse
Affiliation(s)
- Florian Reichenauer
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Naz Ugur
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ricardo Báez-Cruz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jens Kalmbach
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Luca M Carrella
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Markus Gerhards
- Department of Chemistry and Research Center Optimas, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
49
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
50
|
Kakizoe D, Nishikawa M, Ohkubo T, Sanga M, Iwamura M, Nozaki K, Tsubomura T. Photophysical Properties of Simple Palladium(0) Complexes Bearing Triphenylphosphine Derivatives. Inorg Chem 2021; 60:9516-9528. [PMID: 34105940 DOI: 10.1021/acs.inorgchem.1c00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd(0) complexes with monodentate phosphine ligands, [Pd(P)n] (n = 3, 4), are well-known catalysts. However, the nature of the Pd(0) complex, especially the basic photophysical properties of the Pd(0) complexes, has not been extensively explored. In this work, we measured the general photophysical properties and crystal structures of Pd(0)-bearing PPh3 derivatives in the solid state and in solution. In the solid state, four-coordinated Pd(0) complexes exhibited blue-yellow emission. On the other hand, three-coordinated Pd(0) complexes displayed yellow-orange emission. In solution, orange emission of three-coordinated complexes was observed, and prompt fluorescence was detected using time-resolved emission spectroscopy, which suggests a thermally activated delayed fluorescence mechanism. Density functional theory (DFT) and time-dependent DFT calculations show that the difference in the transition mechanism between the [Pd(PPh3)4] and [Pd(PPh3)3] complexes explains the different emission colors. The emitting states of both complexes have metal-to-ligand charge-transfer character, but the metal-centered d → p transition is considerably incorporated for emission of the tris complex.
Collapse
Affiliation(s)
- Daichi Kakizoe
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| | - Michihiro Nishikawa
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| | - Takuma Ohkubo
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| | - Masashi Sanga
- Graduate School of Science and Engineering, Toyama University, Gofuku, Toyama 930-8355, Japan
| | - Munetaka Iwamura
- Graduate School of Science and Engineering, Toyama University, Gofuku, Toyama 930-8355, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, Toyama University, Gofuku, Toyama 930-8355, Japan
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| |
Collapse
|