1
|
Pasyukov DV, Shevchenko MA, Minyaev ME, Chernyshev VM, Ananikov VP. 4-Halomethyl-Substituted Imidazolium Salts: A Versatile Platform for the Synthesis of Functionalized NHC Precursors. Chem Asian J 2024; 19:e202400866. [PMID: 39288314 DOI: 10.1002/asia.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
N,N'-Diarylimidazolium salts containing haloalkyl functional groups that are reactive with various nucleophiles are considered to be promising reagents for the preparation of functionalized N-heterocyclic carbene (NHC) ligands, which are in demand in catalysis, materials science, and biomedical research. Recently, 4-chloromethyl-functionalized N,N'-diarylimidazolium salts became readily available via the condensation of N,N'-diaryl-2-methyl-1,4-diaza-1,3-butadienes with ethyl orthoformate and Me3SiCl, but these compounds were found to have insufficient reactivity in reactions with many nucleophiles. These chloromethyl salts were studied as precursors in the synthesis of bromo- and iodomethyl-functionalized imidazolium salts by halide anion exchange. The 4-ICH2-functionalized products were found to be unstable, whereas a series of novel 4-bromomethyl functionalized N,N'-diarylimidazolium salts were obtained in good yields. These bromomethyl-functionalized imidazolium salts were found to be significantly more reactive towards various N, O and S nucleophiles than the chloromethyl counterparts and enabled the preparation of previously inaccessible heteroatom-functionalized imidazolium salts, some of which were successfully used as NHC proligands in the preparation of Pd/NHC and Au/NHC complexes.
Collapse
Affiliation(s)
- Dmitry V Pasyukov
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Maxim A Shevchenko
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
- Skolkovo Institute of Science and Technology, Center for Energy Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Technology Department, Prosveschenya 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
2
|
Ingram AA, Wang D, Schwaneberg U, Okuda J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. J Inorg Biochem 2024; 258:112616. [PMID: 38833874 DOI: 10.1016/j.jinorgbio.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsaturated six- and seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
4
|
Kissman EN, Sosa MB, Millar DC, Koleski EJ, Thevasundaram K, Chang MCY. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024; 631:37-48. [PMID: 38961155 DOI: 10.1038/s41586-024-07506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Living systems contain a vast network of metabolic reactions, providing a wealth of enzymes and cells as potential biocatalysts for chemical processes. The properties of protein and cell biocatalysts-high selectivity, the ability to control reaction sequence and operation in environmentally benign conditions-offer approaches to produce molecules at high efficiency while lowering the cost and environmental impact of industrial chemistry. Furthermore, biocatalysis offers the opportunity to generate chemical structures and functions that may be inaccessible to chemical synthesis. Here we consider developments in enzymes, biosynthetic pathways and cellular engineering that enable their use in catalysis for new chemistry and beyond.
Collapse
Affiliation(s)
- Elijah N Kissman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Max B Sosa
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Douglas C Millar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Edward J Koleski
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Michelle C Y Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Yu K, Zou Z, Igareta NV, Tachibana R, Bechter J, Köhler V, Chen D, Ward TR. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C( sp3)-H Bonds. J Am Chem Soc 2023; 145:16621-16629. [PMID: 37471698 PMCID: PMC10401721 DOI: 10.1021/jacs.3c03969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 07/22/2023]
Abstract
Enantioselective C-H amidation offers attractive means to assemble C-N bonds to synthesize high-added value, nitrogen-containing molecules. In recent decades, complementary enzymatic and homogeneous-catalytic strategies for C-H amidation have been reported. Herein, we report on an artificial metalloenzyme (ArM) resulting from anchoring a biotinylated Ir-complex within streptavidin (Sav). The resulting ArM catalyzes the enantioselective amidation of unactivated C(sp3)-H bonds. Chemogenetic optimization of the Ir cofactor and Sav led to significant improvement in both the activity and enantioselectivity. Up to >700 TON and 92% ee for the amidation of unactivated C(sp3)-H bonds was achieved. The single crystal X-ray analysis of the artificial nitrene insertase (ANIase) combined with quantum mechanics-molecular mechanics (QM-MM) calculations sheds light on critical second coordination sphere contacts leading to improved catalytic performance.
Collapse
Affiliation(s)
- Kun Yu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Zhi Zou
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Julia Bechter
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| |
Collapse
|
6
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
7
|
Church DC, Davis E, Caparco AA, Takiguchi L, Chung YH, Steinmetz NF, Pokorski JK. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101067. [PMID: 36816463 PMCID: PMC9933924 DOI: 10.1016/j.xcrp.2022.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-polymer conjugates (PPCs) improve therapeutic efficacy of proteins and have been widely used for the treatment of various diseases such as cancer, diabetes, and hepatitis. PEGylation is considered as the "gold standard" in bioconjugation, although in practice its clinical applications are becoming limited because of extensive evidence of immunogenicity induced by pre-existing anti-PEG antibodies in patients. Here, optimized reaction conditions for living aqueous grafting-from ring-opening metathesis polymerization (ROMP) are utilized to synthesize water-soluble polynorbornene (PNB)-based PPCs of lysozyme (Lyz-PPCs) and bacteriophage Qβ (Qβ-PPCs) as PEG alternatives. Lyz-PPCs retain nearly 100% bioactivity and Qβ-PPCs exhibit up to 35% decrease in protein immunogenicity. Qβ-PPCs derived from NB-PEG show no reduction in recognition by anti-PEG antibodies while Qβ-PPCs derived from NB-Zwit show >95% reduction as compared with Qβ-PEG. This work demonstrates a new method for PPC synthesis and the utility of grafting from PPCs to evade immune recognition.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Adam A. Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Lead contact
| |
Collapse
|
8
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
9
|
Patrzałek M, Zieliński A, Pasparakis G, Vamvakaki M, Ruszczyńska A, Bulska E, Kajetanowicz A, Grela K. Testing Diverse Strategies for Ruthenium Catalyst Removal After Aqueous Homogeneous Olefin Metathesis. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Flores JC, Silbestri GF, de Jesús E. Water-soluble transition-metal complexes with hydrophilic N-heterocyclic carbene ligands for aqueous-phase applications. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Lenzen K, Planchestainer M, Feller I, Padrosa DR, Paradisi F, Albrecht M. Minimalistic peptidic scaffolds harbouring an artificial carbene-containing amino acid modulate reductase activity. Chem Commun (Camb) 2021; 57:9068-9071. [PMID: 34498652 PMCID: PMC8427656 DOI: 10.1039/d1cc03158a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the boom of new artificial metalloenzymes, we developed an Fmoc-protected histidinium salt (Hum) as N-heterocyclic carbene precursor. Hum was placed via solid-phase peptide synthesis into short 7-mer peptides. Upon iridation, the metallo-peptidic construct displayed activity in catalytic hydrogenation that outperforms small molecule analogues and which is dependent on the peptide sequence, a typical feature of metalloenzymes.
Collapse
Affiliation(s)
- Karst Lenzen
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Matteo Planchestainer
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Isabelle Feller
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
13
|
Fischer S, Ward TR, Liang AD. Engineering a Metathesis-Catalyzing Artificial Metalloenzyme Based on HaloTag. ACS Catal 2021; 11:6343-6347. [PMID: 34055452 PMCID: PMC8154321 DOI: 10.1021/acscatal.1c01470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Indexed: 12/21/2022]
Abstract
Artificial metalloenzymes (ArMs) are created by embedding a synthetic metal catalyst into a protein scaffold. ArMs have the potential to merge the catalytic advantages of natural enzymes with the reaction scope of synthetic catalysts. The choice of the protein scaffold is of utmost importance to tune the activity of the ArM. Herein, we show the repurposing of HaloTag, a self-labeling protein widely used in chemical biology, to create an ArM scaffold for metathesis. This monomeric protein scaffold allows for covalent attachment of metathesis cofactors, and the resulting ArMs are capable of catalyzing ring-closing metathesis. Both chemical and genetic engineering were explored to determine the evolvability of the resulting ArM. Additionally, exploration of the substrate scope revealed a reaction with promising turnover numbers (>48) and conversion rates (>96%).
Collapse
Affiliation(s)
- Sandro Fischer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BRP 1096, Rosental CH-4058 Basel, Switzerland
| | - Thomas R. Ward
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BRP 1096, Rosental CH-4058 Basel, Switzerland
| | - Alexandria D. Liang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BRP 1096, Rosental CH-4058 Basel, Switzerland
| |
Collapse
|
14
|
Thiel A, Sauer DF, Markel U, Mertens MAS, Polen T, Schwaneberg U, Okuda J. An artificial ruthenium-containing β-barrel protein for alkene-alkyne coupling reaction. Org Biomol Chem 2021; 19:2912-2916. [PMID: 33735355 DOI: 10.1039/d1ob00279a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A modified Cp*Ru complex, equipped with a maleimide group, was covalently attached to a cysteine of an engineered variant of Ferric hydroxamate uptake protein component: A (FhuA). This synthetic metalloprotein catalyzed the intermolecular alkene-alkyne coupling of 3-butenol with 5-hexynenitrile. When compared with the protein-free Cp*Ru catalyst, the biohybrid catalyst produced the linear product with higher regioselectivity.
Collapse
Affiliation(s)
- Andreas Thiel
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021; 60:12446-12454. [DOI: 10.1002/anie.202100369] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
16
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
17
|
Matsuo T. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
18
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
19
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Sauer DF, Wittwer M, Markel U, Minges A, Spiertz M, Schiffels J, Davari MD, Groth G, Okuda J, Schwaneberg U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemogenetic engineering turned the heme protein nitrobindin into an artificial epoxygenase: MnPPIX was introduced and subsequent protein engineering increased the activity in the epoxidation of styrene derivatives by overall 7-fold.
Collapse
Affiliation(s)
- Daniel F. Sauer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Malte Wittwer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Markel
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Markus Spiertz
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Mehdi D. Davari
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
22
|
Planchestainer M, McMaster J, Schulz C, Paradisi F, Albrecht M. Carbene-Induced Rescue of Catalytic Activity in Deactivated Nitrite Reductase Mutant. Chemistry 2020; 26:15206-15211. [PMID: 32543723 DOI: 10.1002/chem.202002444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 11/10/2022]
Abstract
The role of His145 in the T1 copper center of nitrite reductase (NiR) is pivotal for the activity of the enzyme. Mutation to a glycine at this position enables the reconstitution of the T1 center by the addition of imidazole as exogenous ligands, however the catalytic activity is only marginally rescued. Here, we demonstrate that the uptake of 1,3-dimethylimidazolylidene as N-heterocyclic carbene (NHC) by the H145G NiR mutant instead of imidazole yields a significantly more active catalyst, suggesting a beneficial role of such C-bonding. Spectroscopic analyses of the formed H145G≈NHC variant as well as an analogue without the catalytic T2 copper center reveal no significant alteration of the T1 site compared to the wild type or the variant containing imidazole as exogenous N-bound surrogate of H145. However, the presence of the carbene doubles the catalytic activity of the mutant compared to the imidazole variant. This enhanced activity has been attributed to a faster electron transfer to the T1 center in the NHC variant and a concomitant change of the rate-limiting step.
Collapse
Affiliation(s)
- Matteo Planchestainer
- University of Bern, Department of Chemistry & Biochemistry, Freiestr. 3, 3012, Bern, Switzerland.,University of Nottingham, School of Chemistry, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan McMaster
- University of Nottingham, School of Chemistry, University Park, Nottingham, NG7 2RD, UK
| | - Christine Schulz
- Max-Planck Institut für Kohlenforschung, Department of Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Francesca Paradisi
- University of Bern, Department of Chemistry & Biochemistry, Freiestr. 3, 3012, Bern, Switzerland.,University of Nottingham, School of Chemistry, University Park, Nottingham, NG7 2RD, UK
| | - Martin Albrecht
- University of Bern, Department of Chemistry & Biochemistry, Freiestr. 3, 3012, Bern, Switzerland
| |
Collapse
|
23
|
Qin L, Yuan X, Cui Y, Sun Q, Duan X, Zhuang K, Chen L, Qiu J, Guo K. Visible‐Light‐Mediated S−H Bond Insertion Reactions of Diazoalkanes with Cysteine Residues in Batch and Flow. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Long‐Zhou Qin
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Yu‐Sheng Cui
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Qi Sun
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiu Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Kai‐Qiang Zhuang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Lin Chen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Jiang‐Kai Qiu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
24
|
Church DC, Takiguchi L, Pokorski JK. Optimization of Ring-Opening Metathesis Polymerization (ROMP) under Physiologically Relevant Conditions. Polym Chem 2020; 11:4492-4499. [PMID: 33796158 PMCID: PMC8009303 DOI: 10.1039/d0py00716a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly under ambient conditions and is highly functional group tolerant when performed in organic solvents. However, achieving the same level of success in aqueous media has proved to be challenging, often requiring an organic co-solvent or a very low pH to obtain fast initiation and high monomer conversion. The ability to efficiently conduct ROMP under neutral pH aqueous conditions would mark an important step towards utilizing aqueous ROMP with acid-sensitive functional groups or within a biological setting. Herein we describe our efforts to optimize ROMP in an aqueous environment under neutral pH conditions. Specifically, we found that the presence of excess chloride in solution as well as relatively small changes in pH near physiological conditions have a profound effect on molecular weight control, polymerization rate and overall monomer conversion. Additionally, we have applied our optimized conditions to polymerize a broad scope of water-soluble monomers and used this methodology to produce nanostructures via ring opening metathesis polymerization induced self-assembly (ROMPISA) under neutral pH aqueous conditions.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Timmer BJJ, Kravchenko O, Ramström O. Selective Cross‐Metathesis of Highly Chelating Substrates in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202002220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Olof Ramström
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University SE 39182 Kalmar Sweden
| |
Collapse
|
26
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
27
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
29
|
Monty OBC, Nyshadham P, Bohren KM, Palaniappan M, Matzuk MM, Young DW, Simmons N. Homogeneous and Functional Group Tolerant Ring-Closing Metathesis for DNA-Encoded Chemical Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:80-88. [PMID: 31913011 PMCID: PMC7014401 DOI: 10.1021/acscombsci.9b00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reaction heterogeneity, poor pH control, and catalyst decomposition in the ring-closing metathesis (RCM) of DNA-chemical conjugates lead to poor yields of the cyclized products. Herein we address these issues with a RCM reaction system that includes a novel aqueous solvent combination to enable reaction homogeneity, an acidic buffer system which masks traditionally problematic functional groups, and a decomposition-resistant catalyst which maximizes conversion to the cyclized product. Additionally, we provide a systematic study of the substrate scope of the on-DNA RCM reaction, a demonstration of its applicability to a single-substrate DNA-encoded chemical library that includes sequencing analysis, and the first successful stapling of an unprotected on-DNA [i, i+4] peptide.
Collapse
Affiliation(s)
- Olivier B. C. Monty
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pranavanand Nyshadham
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kurt M. Bohren
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Murugesan Palaniappan
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Martin M. Matzuk
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W. Young
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Nicholas Simmons
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
30
|
|
31
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
32
|
Fischer J, Renn D, Quitterer F, Radhakrishnan A, Liu M, Makki A, Ghorpade S, Rueping M, Arold ST, Groll M, Eppinger J. Robust and Versatile Host Protein for the Design and Evaluation of Artificial Metal Centers. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Johannes Fischer
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München (TUM), D-85747 Garching, Germany
| | - Dominik Renn
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München (TUM), D-85747 Garching, Germany
| | - Felix Quitterer
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München (TUM), D-85747 Garching, Germany
| | | | | | | | | | | | - Stefan T. Arold
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Michael Groll
- Center for Integrated Protein Science, Department Chemie, Lehrstuhl für Biochemie, Technische Universität München (TUM), D-85747 Garching, Germany
| | | |
Collapse
|
33
|
Matsuo T, Miyake T, Hirota S. Recent developments on creation of artificial metalloenzymes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Sci Rep 2019; 9:13551. [PMID: 31537832 PMCID: PMC6753118 DOI: 10.1038/s41598-019-49844-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
Design and engineering of protein scaffolds are crucial to create artificial metalloenzymes. Herein we report the first example of C-C bond formation catalyzed by artificial metalloenzymes, which consist of monoclonal antibodies (mAbs) and C2 symmetric metal catalysts. Prepared as a tailored protein scaffold for a binaphthyl derivative (BN), mAbs bind metal catalysts bearing a 1,1'-bi-isoquinoline (BIQ) ligand to yield artificial metalloenzymes. These artificial metalloenzymes catalyze the Friedel-Crafts alkylation reaction. In the presence of mAb R44E1, the reaction proceeds with 88% ee. The reaction catalyzed by Cu-catalyst incorporated into the binding site of mAb R44E1 is found to show excellent enantioselectivity with 99% ee. The protein environment also enables the use of BIQ-based catalysts as asymmetric catalysts for the first time.
Collapse
|
35
|
Won Y, Pagar AD, Patil MD, Dawson PE, Yun H. Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0163-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Davis H, Ward TR. Artificial Metalloenzymes: Challenges and Opportunities. ACS CENTRAL SCIENCE 2019; 5:1120-1136. [PMID: 31404244 PMCID: PMC6661864 DOI: 10.1021/acscentsci.9b00397] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 05/04/2023]
Abstract
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
Collapse
|
37
|
|
38
|
Oohora K, Onoda A, Hayashi T. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts. Acc Chem Res 2019; 52:945-954. [PMID: 30933477 DOI: 10.1021/acs.accounts.8b00676] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In nature, heme cofactor-containing proteins participate not only in electron transfer and O2 storage and transport but also in biosynthesis and degradation. The simplest and representative cofactor, heme b, is bound within the heme pocket via noncovalent interaction in many hemoproteins, suggesting that the cofactor is removable from the protein, leaving a unique cavity. Since the cavity functions as a coordination sphere for heme, it is of particular interest to investigate replacement of native heme with an artificial metal complex, because the substituted metal complex will be stabilized in the heme pocket while providing alternative chemical properties. Thus, cofactor substitution has great potential for engineering of hemoproteins with alternative functions. For these studies, myoglobin has been a focus of our investigations, because it is a well-known oxygen storage hemoprotein. However, the heme pocket of myoglobin has been only arranged for stabilizing the heme-bound dioxygen, so the structure is not suitable for activation of small molecules such as H2O2 and O2 as well as for binding an external substrate. Thus, the conversion of myoglobin to an enzyme-like biocatalyst has presented significant challenges. The results of our investigations have provided useful information for chemists and biologists. Our own efforts to develop functionalized myoglobin have focused on the incorporation of a chemically modified cofactor into apomyoglobin in order to (1) construct an artificial substrate-binding site near the heme pocket, (2) increase cofactor reactivity, or (3) promote a new reaction that has never before been catalyzed by a native heme enzyme. In pursuing these objectives, we first found that myoglobin reconstituted with heme having a chemically modified heme-propionate side chain at the exit of the heme pocket has peroxidase activity with respect to oxidation of phenol derivatives. Our recent investigations have succeeded in enhancing oxidation and oxygenation activities of myoglobin as well as promoting new reactions by reconstitution of myoglobin with new porphyrinoid metal complexes. Incorporation of suitable metal porphyrinoids into the heme pocket has produced artificial enzymes capable of efficiently generating reactive high valent metal-oxo and metallocarbene intermediates to achieve the catalytic hydroxylation of C(sp3)-H bonds and cyclopropanation of olefin molecules, respectively. In other efforts, we have focused on nitrobindin, an NO-binding hemoprotein, because aponitrobindin includes a β-barrel cavity, which provides a robust structure highly similar to that of the native holoprotein. It was expected that the aponitrobindin would be suitable for development as a protein scaffold for a metal complex. Recently, it was confirmed that several organometallic complexes can bind to this scaffold and function as catalysts promoting hydrogen evolution or C-C bond formation. The hydrophobic β-barrel structure plays a significant role in substrate binding as well as controlling the stereoselectivity of the reactions. Furthermore, these catalytic activities and stereoselectivities are remarkably improved by mutation-dependent modifications of the cavity structure for the artificial cofactor. This Account demonstrates how apoproteins of hemoproteins can provide useful protein scaffolds for metal complexes. Further development of these concepts will provide a useful strategy for generation of robust and useful artificial metalloenzymes.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Sabatino V, Ward TR. Aqueous olefin metathesis: recent developments and applications. Beilstein J Org Chem 2019; 15:445-468. [PMID: 30873229 PMCID: PMC6404410 DOI: 10.3762/bjoc.15.39] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Olefin metathesis is one of the most powerful C-C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.
Collapse
Affiliation(s)
- Valerio Sabatino
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Building 1096, Mattenstraße 24a, Biopark Rosental, 4058, Basel, Switzerland
| |
Collapse
|
40
|
Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U. Towards the Evolution of Artificial Metalloenzymes—A Protein Engineer's Perspective. Angew Chem Int Ed Engl 2019; 58:4454-4464. [DOI: 10.1002/anie.201811042] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Daniel F. Sauer
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Johannes Schiffels
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1 52056 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| |
Collapse
|
41
|
Markel U, Sauer DF, Schiffels J, Okuda J, Schwaneberg U. Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Protein‐Engineering‐Blickwinkel. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ulrich Markel
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Daniel F. Sauer
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Johannes Schiffels
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| | - Jun Okuda
- Institut für Anorganische Chemie RWTH Aachen Landoltweg 1 52056 Aachen Deutschland
| | - Ulrich Schwaneberg
- DWI Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52074 Aachen Deutschland
- Institut für Biotechnologie RWTH Aachen Worringer Weg 3 52074 Aachen Deutschland
| |
Collapse
|
42
|
Soldevila-Barreda JJ, Metzler-Nolte N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem Rev 2019; 119:829-869. [PMID: 30618246 DOI: 10.1021/acs.chemrev.8b00493] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.
Collapse
Affiliation(s)
- Joan Josep Soldevila-Barreda
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| |
Collapse
|
43
|
Toussaint SNW, Calkins RT, Lee S, Michel BW. Olefin Metathesis-Based Fluorescent Probes for the Selective Detection of Ethylene in Live Cells. J Am Chem Soc 2018; 140:13151-13155. [DOI: 10.1021/jacs.8b05191] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sacha N. W. Toussaint
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Ryan T. Calkins
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
44
|
Planchestainer M, Segaud N, Shanmugam M, McMaster J, Paradisi F, Albrecht M. Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Nathalie Segaud
- Department of Chemistry & BiochemistryUniversität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Muralidharan Shanmugam
- Manchester Institute of BiotechnologyUniversity of Manchester 131 Princess St Manchester M1 7DN UK
| | - Jonathan McMaster
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Martin Albrecht
- Department of Chemistry & BiochemistryUniversität Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
45
|
Planchestainer M, Segaud N, Shanmugam M, McMaster J, Paradisi F, Albrecht M. Carbene in Cupredoxin Protein Scaffolds: Replacement of a Histidine Ligand in the Active Site Substantially Alters Copper Redox Properties. Angew Chem Int Ed Engl 2018; 57:10677-10682. [DOI: 10.1002/anie.201807168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 01/17/2023]
Affiliation(s)
| | - Nathalie Segaud
- Department of Chemistry & BiochemistryUniversität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Muralidharan Shanmugam
- Manchester Institute of BiotechnologyUniversity of Manchester 131 Princess St Manchester M1 7DN UK
| | - Jonathan McMaster
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Martin Albrecht
- Department of Chemistry & BiochemistryUniversität Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
46
|
Heckenbichler K, Schweiger A, Brandner LA, Binter A, Toplak M, Macheroux P, Gruber K, Breinbauer R. Asymmetric Reductive Carbocyclization Using Engineered Ene Reductases. Angew Chem Int Ed Engl 2018; 57:7240-7244. [PMID: 29689601 PMCID: PMC6033016 DOI: 10.1002/anie.201802962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 01/14/2023]
Abstract
Ene reductases from the Old Yellow Enzyme (OYE) family reduce the C=C double bond in α,β-unsaturated compounds bearing an electron-withdrawing group, for example, a carbonyl group. This asymmetric reduction has been exploited for biocatalysis. Going beyond its canonical function, we show that members of this enzyme family can also catalyze the formation of C-C bonds. α,β-Unsaturated aldehydes and ketones containing an additional electrophilic group undergo reductive cyclization. Mechanistically, the two-electron-reduced enzyme cofactor FMN delivers a hydride to generate an enolate intermediate, which reacts with the internal electrophile. Single-site replacement of a crucial Tyr residue with a non-protic Phe or Trp favored the cyclization over the natural reduction reaction. The new transformation enabled the enantioselective synthesis of chiral cyclopropanes in up to >99 % ee.
Collapse
Affiliation(s)
- Kathrin Heckenbichler
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Anna Schweiger
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Lea Alexandra Brandner
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Alexandra Binter
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)Petersgasse 148010GrazAustria
| | - Marina Toplak
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology (ACIB)Petersgasse 148010GrazAustria
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
- Austrian Centre of Industrial Biotechnology (ACIB)Petersgasse 148010GrazAustria
| |
Collapse
|
47
|
Heckenbichler K, Schweiger A, Brandner LA, Binter A, Toplak M, Macheroux P, Gruber K, Breinbauer R. Asymmetrische reduktive Carbocyclisierung durch modifizierte En-Reduktasen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kathrin Heckenbichler
- Institut für Organische Chemie; Technische Universität Graz; Stremayrgasse 9 8010 Graz Österreich
| | - Anna Schweiger
- Institut für Organische Chemie; Technische Universität Graz; Stremayrgasse 9 8010 Graz Österreich
| | - Lea Alexandra Brandner
- Institut für Organische Chemie; Technische Universität Graz; Stremayrgasse 9 8010 Graz Österreich
| | - Alexandra Binter
- Institut für Biochemie; Technische Universität Graz; Petersgasse 10-12 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (ACIB); Petersgasse 14 8010 Graz Österreich
| | - Marina Toplak
- Institut für Biochemie; Technische Universität Graz; Petersgasse 10-12 8010 Graz Österreich
| | - Peter Macheroux
- Institut für Biochemie; Technische Universität Graz; Petersgasse 10-12 8010 Graz Österreich
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology (ACIB); Petersgasse 14 8010 Graz Österreich
- Institut für Molekulare Biowissenschaften; Karl-Franzens-Universität Graz; Humboldtstraße 50 8010 Graz Österreich
| | - Rolf Breinbauer
- Institut für Organische Chemie; Technische Universität Graz; Stremayrgasse 9 8010 Graz Österreich
- Austrian Centre of Industrial Biotechnology (ACIB); Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
48
|
Schmidt M, Pei L, Budisa N. Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:301-315. [PMID: 28567486 DOI: 10.1007/10_2016_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The basic chemical constitution of all living organisms in the context of carbon-based chemistry consists of a limited number of small molecules and polymers. Until the twenty-first century, biology was mainly an analytical science and has now reached a point where it merges with engineering science, paving the way for synthetic biology. One of the objectives of synthetic biology is to try to change the chemical compositions of living cells, that is, to create an artificial biological diversity, which in turn fosters a new sub-field of synthetic biology, xenobiology. In particular, the genetic code in living systems is based on highly standardized chemistry composed of the same "letters" or nucleotides as informational polymers (DNA, RNA) and the 20 amino acids which serve as basic building blocks for proteins. The universality of the genetic code enables not only vertical gene transfer within the same species but also horizontal gene transfer across biological taxa, which require a high degree of standardization and interconnectivity. Although some minor alterations of the standard genetic code are found in nature (e.g., proteins containing non-conical amino acids exist in nature, and some organisms use alternated coding systems), all structurally deep chemistry changes within living systems are generally lethal, making the creation of artificial biological system an extremely difficult challenge.In this context, one of the great challenges for bioscience is the development of a strategy for expanding the standard basic chemical repertoire of living cells. Attempts to alter the meaning of the genetic information stored in DNA as an informational polymer by changing the chemistry of the polymer (i.e., xeno-nucleic acids) or by changes in the genetic code have already yielded successful results. In the future this should enable the partial or full redirection of the biological information flow to generate "new" version(s) of the genetic code derived from the "old" biological world.In addition to the scientific challenges, the attempt to increase biochemical diversity also raises important ethical and philosophical issues. Although promotors of this branch of synthetic biology highlight the many potential applications to come (e.g., novel tools for diagnostics and fighting infection diseases), such developments could also bring risks affecting social, political, and other structures of nearly all societies.
Collapse
Affiliation(s)
- Markus Schmidt
- Biofaction KG, Kundmanngasse 39/12, Vienna, 1030, Austria.
| | - Lei Pei
- Biofaction KG, Kundmanngasse 39/12, Vienna, 1030, Austria
| | - Nediljko Budisa
- AK Biokatalyse, Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623, Berlin, Germany
| |
Collapse
|
49
|
Grimm AR, Sauer DF, Davari MD, Zhu L, Bocola M, Kato S, Onoda A, Hayashi T, Okuda J, Schwaneberg U. Cavity Size Engineering of a β-Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03652] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander R. Grimm
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Leilei Zhu
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Shunsuke Kato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| |
Collapse
|
50
|
Watanabe K, Ohshima T. Bioconjugation with Thiols by Benzylic Substitution. Chemistry 2018; 24:3959-3964. [PMID: 29457301 DOI: 10.1002/chem.201706149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/11/2022]
Abstract
A benzylic substitution of 3-indolyl(hydroxyl)acetate derivatives with thiols proceeded specifically in the presence of amino, carboxy, and phosphate groups in weakly acidic aqueous solutions under nearly physiological condition, while no reaction occurred at pH over 7. Kinetic studies revealed that the reaction followed second-order kinetics (first-order in the reactant and first-order in thiol) in contrast with the SN 1 mechanism of common benzylic substitution of alcohols. The utility of the present method for functionalization of biomacromolecules was demonstrated using several model proteins, such as lysozyme, insulin, trypsin, and serum albumin. The catalytic bioactivity of lysozyme in lysis of Micrococcus lysodeikticus cells was completely retained after the modification.
Collapse
Affiliation(s)
- Kenji Watanabe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|