1
|
Mura M, Carucci C, Caddeo E, Sovová Š, Piludu M, Pekař M, Jachimska B, Parsons DF, Salis A. Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 2025; 677:540-547. [PMID: 39106779 DOI: 10.1016/j.jcis.2024.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.
Collapse
Affiliation(s)
- Monica Mura
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Elena Caddeo
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Šárka Sovová
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Marco Piludu
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Drew F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| |
Collapse
|
2
|
Du W, Wang S, Yang Y, Xu C, Hu F, Ding W, Lv J. Carbonate weakens the interactions between potassium and calcareous soil. RSC Adv 2024; 14:35275-35285. [PMID: 39502184 PMCID: PMC11536059 DOI: 10.1039/d4ra05988c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The ion interfacial transport driven by ion-surface interactions in calcareous soil has a profound impact on the nutrient storage and environmental buffer capacity of the main agricultural soils in dry and semi-arid areas. The roles that carbonate plays in preserving the soil's inorganic carbon pool and soil structure stability have been widely investigated, but its significance in the aforementioned microscopic processes, especially the influence of carbonate on the interfacial reaction kinetics of nutrient elements, is yet to be determined. In this study, potassium (K) was used as an indicator ion to investigate its affinity in carbonate-removed (CREM) and carbonate-reserved (CRES) calcareous soil using the general theory of ion diffusion in an external electric field. We discovered that (1) at a given initial K concentration, the carbonate in CRES soil retards the adsorption rate and diminishes the adsorption amount of K in calcareous soil, reducing the interfacial transport properties of nutrient ions at the solid-liquid interface of calcareous soils compared with CREM soil; and (2) this weakening of the interfacial transport effect on nutrient K originates from the soil carbonate, which prefers to weaken the electrostatic interaction intensity between K and the calcareous soil surface. Furthermore, this is due to the carbonate shielding effect on the surface adsorption sites of other soil components and the competitive relationship between K+ and cations released by carbonate dissolution. The influence of carbonate on the nutrient ion transport at the solid-liquid interface of calcareous soil has been investigated by soil electrochemistry theory-based ion adsorption kinetics, and the links between kinetic features and ion-surface binding energy have been clarified.
Collapse
Affiliation(s)
- Wei Du
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 China +86-29-87080051 +86-29-87080051
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi Province 712100 China
| | - Shifeng Wang
- Agricultural Technology Extension Center of Yongdeng County Lanzhou Gansu Province 730300 China
| | - Yizhe Yang
- Cultivated Land Quality and Agricultural Environmental Protection Workstation Xi'an Shaanxi Province 710000 China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 China +86-29-87080051 +86-29-87080051
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi Province 712100 China
| | - Feinan Hu
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University Yangling Shaanxi 712100 China
| | - Wuquan Ding
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Science Chongqing 402168 China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University Yangling Shaanxi Province 712100 China +86-29-87080051 +86-29-87080051
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture Yangling Shaanxi Province 712100 China
| |
Collapse
|
3
|
Alasadi E, Baiz CR. Ion effects on minimally hydrated polymers: hydrogen bond populations and dynamics. SOFT MATTER 2024; 20:8291-8302. [PMID: 39387354 DOI: 10.1039/d4sm00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F-, Cl-, Br-) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.
Collapse
Affiliation(s)
- Eman Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Yang Y, Zhao L, Zhang Y, Yang Z, Lai WH, Liang Y, Dou SX, Liu M, Wang YX. Challenges and Prospects of Low-Temperature Rechargeable Batteries: Electrolytes, Interfaces, and Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410318. [PMID: 39435752 DOI: 10.1002/advs.202410318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Rechargeable batteries have been indispensable for various portable devices, electric vehicles, and energy storage stations. The operation of rechargeable batteries at low temperatures has been challenging due to increasing electrolyte viscosity and rising electrode resistance, which lead to sluggish ion transfer and large voltage hysteresis. Advanced electrolyte design and feasible electrode engineering to achieve desirable performance at low temperatures are crucial for the practical application of rechargeable batteries. Herein, the failure mechanism of the batteries at low temperature is discussed in detail from atomic perspectives, and deep insights on the solvent-solvent, solvent-ion, and ion-ion interactions in the electrolytes at low temperatures are provided. The evolution of electrode interfaces is discussed in detail. The electrochemical reactions of the electrodes at low temperatures are elucidated, and the approaches to accelerate the internal ion diffusion kinetics of the electrodes are highlighted. This review aims to deepen the understanding of the working mechanism of low-temperature batteries at the atomic scale to shed light on the future development of low-temperature rechargeable batteries.
Collapse
Affiliation(s)
- Yaxuan Yang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, School of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yiyang Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Zhuo Yang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yaru Liang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Min Liu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, School of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yun-Xiao Wang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
5
|
Wong K, Qi R, Yang Y, Luo Z, Guldin S, Butler KT. Predicting Colloidal Interaction Parameters from Small-Angle X-ray Scattering Curves Using Artificial Neural Networks and Markov Chain Monte Carlo Sampling. JACS AU 2024; 4:3492-3500. [PMID: 39328751 PMCID: PMC11423300 DOI: 10.1021/jacsau.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Small-angle X-ray scattering (SAXS) is a characterization technique that allows for the study of colloidal interactions by fitting the structure factor of the SAXS profile with a selected model and closure relation. However, the applicability of this approach is constrained by the limited number of existing models that can be fitted analytically, as well as the narrow operating range for which the models are valid. In this work, we demonstrate a proof of concept for using an artificial neural network (ANN) trained on SAXS curves obtained from Monte Carlo (MC) simulations to predict values of the effective macroion valency (Z eff) and the Debye length (κ-1) for a given SAXS profile. This ANN, which was trained on 200,000 simulated SAXS curves, was able to predict values of Z eff and κ-1 for a test set containing 25,000 simulated SAXS curves, where most predicted values had errors smaller than 20%. Subsequently, an ANN was used as a surrogate model in a Markov chain Monte Carlo sampling algorithm to obtain maximum a posteriori estimates of Z eff and κ-1, as well as the associated confidence intervals and correlations between Z eff and κ-1 for an experimentally obtained SAXS profile.
Collapse
Affiliation(s)
- Kelvin Wong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Langmu Bio, Building 2, 112 Jinjiadulu, Yuhang, Hangzhou 311112, China
| | - Ye Yang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
- Langmu Bio, Building 2, 112 Jinjiadulu, Yuhang, Hangzhou 311112, China
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
- Department of Life Science Engineering, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
- TUMCREATE, 1 CREATE Way, #10-02 CREATE Tower, 138602, Singapore
| | - Keith T Butler
- Department of Chemistry, University College London, Kathleen Lonsdale Building, Gower Place, London, WC1E 6BS, U.K
| |
Collapse
|
6
|
Chi Z, Xie X, Pi K, Wu Y, Wang Y. Spectroscopic and modeling approaches of arsenic (III/V) adsorption onto Illite. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135284. [PMID: 39047555 DOI: 10.1016/j.jhazmat.2024.135284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Illite plays an essential role in arsenic (As) transportation in the subsurface. Despite extensive investigations into As adsorption onto illite, debates persist due to the absence of direct evidence revealing the underlying processes. In this research, we conducted batch experiments and employed spherical aberration-corrected scanning transmission electron microscope, X-ray absorption spectroscopy, and density functional theory-based calculations to elucidate the mechanisms for the adsorption of two major inorganic As species (As(III) and As(V)) onto illite. Experimental results indicate adsorption capacities of 0.251 and 0.667 μmol/g for As(III) and As(V) onto illite, respectively. As(III) adsorption occurs within 300 min, whereas As(V) is rapidly adsorbed within 500 min, after which it tends to stabilize. Both As species can adsorbed onto the basal surface via electrostatic forces, where cations act as a bridge, leading to specific-cation effects. Conversely, As adsorption onto the edge surface can be ascribed to inner-sphere complexes via As-O-Al bonds, causing a negatively shifted isoelectric point of illite. These mechanisms collectively account for the partially reversible adsorption and two-stage kinetics pattern. Finally, a process-based surface complexation model was developed to predict As adsorption onto illite, which includes the inner/outer-sphere complexation and monodentate/bidentate complexes.
Collapse
Affiliation(s)
- Zeyong Chi
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Kunfu Pi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
7
|
Huang B, Yang M, Zhong H, Lin J, Jiang F, Wang MK, Zhang Y, Huang Y. Specific ion effects on the soil shear strength and clay surface properties of collapsing wall in Benggang. PeerJ 2024; 12:e17796. [PMID: 39247553 PMCID: PMC11378760 DOI: 10.7717/peerj.17796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 09/10/2024] Open
Abstract
Benggangs are a special type of soil erosion in the hilly granite regions of the tropical and subtropical areas of Southern China. They cause severe soil and water loss, which can severely deteriorate soil quality and threat to the local ecological environment. Soils (red soil, sandy soil and detritus soil) were collected from collapsing wall of a typical Benggang in Changting County of Fujian Province, and their physicochemical and mineralogical properties were analyzed. Five different monovalent cations were used to saturate the soil samples to examine the specific ion effects on the shear strength and clay surface properties. Red soil had a higher clay content, plastic limit, liquid limit and shear strength than sandy soil and detritus soil. The studied soils mainly consisted of kaolinite, hydroxy-interlayer vermiculite, illite and gibbsite clay minerals. The soils saturated with K+, NH4 +and Cs+ had greater cohesion than the Li+- and Na+-saturated soils, e.g., the cohesion of the red soil saturated with Li+, K+, NH4 + and Cs+ cations were 1.05, 1.23, 1.45 and 1.20 times larger than that of the Na+-saturated soil, respectively. While the internal friction angle was slightly different, which indicated that different monovalent cations affected the shear strength differently. K+-, NH4 +- and Cs+-saturated clay particles had higher zeta potentials and thinner shear plane thicknesses than Li+- and Na+-saturated clay particles and showed strong specific ion effects on the clay surface properties. The changes in clay surface properties strongly affected the soil mechanical properties. Soils saturated with K+, NH4 + and Cs+ could increase the shear strength, and then increase the stability of the collapsing wall, thus might decrease the erosion intensity of Benggang. The results provide a scientific basis for the interpretation of and practical treatment of Benggang.
Collapse
Affiliation(s)
- Bifei Huang
- Department of Forensic Science, Fujian Police College, Fuzhou, Fujian, China
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Maojin Yang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Honglin Zhong
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinshi Lin
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fangshi Jiang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ming-Kuang Wang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yue Zhang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanhe Huang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Clark JA, Douglas JF. Do Specific Ion Effects on Collective Relaxation Arise from Perturbation of Hydrogen-Bonding Network Structure? J Phys Chem B 2024; 128:6362-6375. [PMID: 38912895 PMCID: PMC11229691 DOI: 10.1021/acs.jpcb.4c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The change in the transport properties (i.e., water diffusivity, shear viscosity, etc.) when adding salts to water has been used to classify ions as either being chaotropic or kosmotropic, a terminology based on the presumption that this phenomenon arises from respective breakdown or enhancement of the hydrogen-bonding network structure. Recent quasi-elastic neutron scattering measurements of the collective structural relaxation time, τC, in aqueous salt solutions were interpreted as confirming this proposed origin of ion effects on the dynamics of water. However, we find similar changes in τC in the same salt solutions based on molecular dynamics (MD) simulations using a coarse-grained water model in which no hydrogen bonding exists, challenging this conventional interpretation of mobility change resulting from the addition of salts to water. A thorough understanding of specific ion effects should be useful in diverse material manufacturing and biomedical applications, where these effects are prevalent, but poorly understood.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering
Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Holkar A, Gao S, Villaseñor K, Lake M, Srivastava S. Quantitative turbidimetric characterization of stabilized complex coacervate dispersions. SOFT MATTER 2024; 20:5060-5070. [PMID: 38743276 DOI: 10.1039/d3sm01761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stabilizing complex coacervate microdroplets is desirable due to their various applications, such as bioreactors, drug delivery vehicles, and encapsulants. Here, we present quantitative characterization of complex coacervate dispersion stability inferred by turbidimetry measurements. The stability of the dispersions is shown to be modulated by the concentrations of comb polyelectrolyte (cPE) stabilizers and salt. We demonstrate cPEs as effective stabilizers for complex coacervate dispersions independent of the chemistry or length of the constituent polyelectrolytes, salts, or preparation routes. By monitoring the temporal evolution of dispersion turbidity, we show that cPEs suppress microdroplet coalescence with minimal change in microdroplet sizes over 48 hours, even at salt concentrations up to 300 mM. The number density and average microdroplet size are shown to be controlled by varying the cPE and salt concentrations. Lastly, turbidity maps, akin to binodal phase maps, depict an expansion of the turbid two-phase region and an increase in the salt resistance of the coacervates upon the introduction of cPEs. The coacervate salt resistance is shown to increase by >3×, and this increase is maintained for up to 15 days, demonstrating that cPEs impart higher salt resistance over extended durations.
Collapse
Affiliation(s)
- Advait Holkar
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shang Gao
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kathleen Villaseñor
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Lake
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samanvaya Srivastava
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Swanson P, Arnold GP, Curley CE, Wakita SC, Waters JDV, Balog ERM. Understanding the Phase Behavior of a Multistimuli-Responsive Elastin-like Polymer: Insights from Dynamic Light Scattering Analysis. J Phys Chem B 2024; 128:5756-5765. [PMID: 38830627 PMCID: PMC11181320 DOI: 10.1021/acs.jpcb.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Elastin-like polymers are a class of stimuli-responsive protein polymers that hold immense promise in applications such as drug delivery, hydrogels, and biosensors. Yet, understanding the intricate interplay of factors influencing their stimuli-responsive behavior remains a challenging frontier. Using temperature-controlled dynamic light scattering and zeta potential measurements, we investigate the interactions between buffer, pH, salt, water, and protein using an elastin-like polymer containing ionizable lysine residues. We observed the elevation of transition temperature in the presence of the common buffering agent HEPES at low concentrations, suggesting a "salting-in" effect of HEPES as a cosolute through weak association with the protein. Our findings motivate a more comprehensive investigation of the influence of buffer and other cosolute molecules on elastin-like polymer behavior.
Collapse
Affiliation(s)
- Peter
C. Swanson
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Galen P. Arnold
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Carolyn E. Curley
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Savannah C. Wakita
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Jeffery D. V. Waters
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Eva Rose M. Balog
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| |
Collapse
|
11
|
Bossa GV, Caetano DLZ. Differential capacitance of curved electrodes: role of hydration interactions and charge regulation. Phys Chem Chem Phys 2024; 26:16774-16781. [PMID: 38819431 DOI: 10.1039/d4cp00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The functioning of supercapacitors relies on establishing electrostatic double-layer capacitance across a larger surface area, offering numerous advantages over conventional batteries, such as an extended lifespan and elevated safety standards. The differential capacitance is a fundamental property within the electrical double layer, playing a pivotal role in the advancement of electrical double-layer supercapacitors. In addition to electrostatic interactions, multiple theoretical and experimental studies have indicated that the differential capacitance is influenced by factors such as the physical structure of the electrode, solvent-mediated hydration interactions, and the specific type of electrolyte utilized. In this work, we incorporate hydration interactions into the Poisson-Boltzmann theory to explore curved electrodes whose surfaces can be covered by either acidic or basic groups. We examine how the electrostatic interaction, charge regulation, hydration effects, and the finite size of ions collectively modify the differential capacitance. Furthermore, we explore different scenarios of electrode curvature and how it may be used to achieve larger capacitance depending on the electrolyte type and pH.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile.
| | | |
Collapse
|
12
|
Higuchi Y, Saleh MA, Anada T, Tanaka M, Hishida M. Rotational Dynamics of Water near Osmolytes by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:5008-5017. [PMID: 38728154 DOI: 10.1021/acs.jpcb.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The behavior of water molecules around organic molecules has attracted considerable attention as a crucial factor influencing the properties and functions of soft matter and biomolecules. Recently, it has been suggested that the change in protein stability upon the addition of small organic molecules (osmolytes) is dominated by the change in the water dynamics caused by the osmolyte, where the dynamics of not only the directly interacting water molecules but also the long-range hydration layer affect the protein stability. However, the relation between the long-range structure of hydration water in various solutions and the water dynamics remains unclear at the molecular level. We performed density-functional tight-binding molecular dynamics simulations to elucidate the varying rotational dynamics of water molecules in 15 osmolyte solutions. A positive correlation was observed between the rotational relaxation time and our proposed normalized parameter obtained by dividing the number of hydrogen bonds between water molecules by the number of nearest-neighbor water molecules. For the 15 osmolyte solutions, an increase or a decrease in the value of the normalized parameter for the second hydration shell tended to result in water molecules with slow and fast rotational dynamics, respectively, thus illustrating the importance of the second hydration shell for the rotational dynamics of water molecules. Our simulation results are anticipated to advance the current understanding of water dynamics around organic molecules and the long-range structure of water molecules.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Abu Saleh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
13
|
Basu T, Das S, Majumdar S. Elucidating the influence of electrostatic force on the re-arrangement of H-bonds of protein polymers in the presence of salts. SOFT MATTER 2024; 20:2361-2373. [PMID: 38372459 DOI: 10.1039/d3sm01440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyampholytes/proteins have an intriguing network of hydrogen bonds (H-bonds), especially their secondary structure, which plays a crucial role in determining the conformational stability of the polymer. The changes in protein secondary structure in the protein-salt system have been extensively deciphered by researchers, yet their pathways for breakage and recreation are unknown. Understanding the mechanism of protein conformational changes towards their biological activities, like protein folding, remains one of the main challenges and requires multiscale analysis of this strongly correlated system. Herein, salts have been used to reveal the re-arrangement behavior in the H-bond network of proteins under the influence of electrostatic interactions, as the strength of electrostatic forces is much stronger than that of H-bonds. At lower salt concentrations, there are negligible changes in the secondary structures as the electrostatic forces induced by the salt ions are less. Later, the existing H-bonds break and reconstruct new H-bonds at higher salt concentrations due to the influence of the stronger electrostatic interaction induced by the large number of salt ions. Molecular dynamics (MD) simulations and FTIR studies have been used rigorously to decipher the reason behind the re-arrangement of the H-bonds within gelatin (protein). The re-arrangement in the H-bond has also been observed with time from simulations and experiments. Thus, this study could provide a fresh perspective on the conformational changes of polyampholytes/proteins and will also influence the studies of protein folding-unfolding interaction in the presence of salt ions.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, 502285, India.
| |
Collapse
|
14
|
Trevitt CR, Yashwanth Kumar DR, Fowler NJ, Williamson MP. Interactions between the protein barnase and co-solutes studied by NMR. Commun Chem 2024; 7:44. [PMID: 38418894 PMCID: PMC10902301 DOI: 10.1038/s42004-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Protein solubility and stability depend on the co-solutes present. There is little theoretical basis for selection of suitable co-solutes. Some guidance is provided by the Hofmeister series, an empirical ordering of anions according to their effect on solubility and stability; and by osmolytes, which are small organic molecules produced by cells to allow them to function in stressful environments. Here, NMR titrations of the protein barnase with Hofmeister anions and osmolytes are used to measure and locate binding, and thus to separate binding and bulk solvent effects. We describe a rationalisation of Hofmeister (and inverse Hofmeister) effects, which is similar to the traditional chaotrope/kosmotrope idea but based on solvent fluctuation rather than water withdrawal, and characterise how co-solutes affect protein stability and solubility, based on solvent fluctuations. This provides a coherent explanation for solute effects, and points towards a more rational basis for choice of excipients.
Collapse
Affiliation(s)
- Clare R Trevitt
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Certara UK Ltd, Level 2-Acero, 1 Concourse Way, Sheffield, S1 3BJ, UK
| | | | - Nicholas J Fowler
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
15
|
Das S, Basu T, Majumdar S. Molecular interactions of acids and salts with polyampholytes. J Chem Phys 2024; 160:054901. [PMID: 38299631 DOI: 10.1063/5.0190821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
The Hofmeister series characterizes the ability of salt anions to precipitate polyampholytes/proteins. However, the variation of protein size in the bulk solution of acids and the effect of salts on the same have not been studied well. In this article, the four acids (CH3COOH, HNO3, H2SO4, and HCl) and their effects on the hydrodynamic radius (RH) of gelatin in the bulk solution are investigated. The effects of Na salt with the same anions are also considered to draw a comparison between the interactions of acids and salts with polyampholytes. It is suggested that the interactions of polyampholytes with acids are different from those of salts. The interaction series of polyampholytes with acids with respect to the RH of the polyampholyte is CH3COO->NO3->Cl->SO42- whereas the interaction series with salts is SO42->CH3COO->Cl->NO3-. These different interactions are due to equilibration between acid dissociation and protonation of polyampholytes. Another important factor contributing to the interactions in weak acids is the fact that undissociated acid hinders the movement of dissociated acid. Experiments and simulations were performed to understand these interactions, and the results were identical in terms of the trend in RH (from the experiments) and the radius of gyration (Rg) (from the simulations). It is concluded that the valence of ions and dissociation affect the interaction in the case of acids. However, the interactions are influenced by the kosmotropic and chaotropic effect, hydration, and mobility in the case of salts.
Collapse
Affiliation(s)
- Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
16
|
Koehnlein W, Kastenmueller E, Meier T, Treu T, Falkenstein R. The beneficial impact of kosmotropic salts on the resolution and selectivity of Protein A chromatography. J Chromatogr A 2024; 1715:464585. [PMID: 38183781 DOI: 10.1016/j.chroma.2023.464585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
During the manufacturing of therapeutic antibodies, effective Protein A chromatography as initial column step is crucial to simplify the remaining purification effort for subsequent polishing steps. This is particularly relevant for molecules with high impurity content so that desired product purity can be attained. The present study demonstrates beneficial effects on impurity removal when applying kosmotropic salts, e.g., sodium sulfate or sodium chloride, in the elution phase. Initially, a screen using negative linear pH gradient elution evaluated the impact of the kosmotropic salts in comparison to no additive and chaotropic urea using three mAbs and three common resins. Retaining acceptable yield, the kosmotropic salts improved resolution of monomer and impurities and reduced the contents of process-related host cell proteins and DNA as well as of product-related low and high molecular weight forms, despite some resin- and mAb-dependent variations. Moreover, a decrease in hydrolytic activity measured by a new assay for polysorbase activity was observed. In contrast, urea was hardly effective. The findings served to establish optimized step elution conditions with 0.25 M of sodium sulfate for a challenging mAb with complex format (bispecific 2 + 1 CrossMab) displaying high relative hydrophobicity and impurity levels. With yield and purity both in the range of 90 %, the contents of all impurity components were reduced, e.g., low molecular weight forms by two-fold and polysorbase activity by four-fold. The study indicates the potential of kosmotropic salts to establish efficient and comprehensive impurity separation by Protein A for facilitated downstream processing and economic manufacturing of complex antibodies.
Collapse
Affiliation(s)
| | | | - Tobias Meier
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | - Tabea Treu
- Roche Diagnostics GmbH, Nonnenwald 2, Penzberg 82377, Germany
| | | |
Collapse
|
17
|
Palliyalil AC, Mohan A, Dash S, Tomar G. Ion-Specific Bubble Coalescence Dynamics in Electrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1035-1045. [PMID: 38134361 DOI: 10.1021/acs.langmuir.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Bubble coalescence time scale is important in applications such as froth flotation, food and pharmaceutical industries, and two-phase thermal management. The time scale of coalescence is sensitive to the dissolved ions. In this study, we investigate the evolution of a thin electrolyte film between a bubble and a hydrophilic substrate during coalescence. We present a thin-film equation-based numerical model that accounts for the dependence of the surface tension gradient and electric double layer (EDL) on the concentration of ions at the air-liquid interface. The influence of Marangoni stresses and the EDL on the hydrodynamics of drainage determines the coalescence time scale. We show that the electrolytes, such as NaCl, Na2SO4, and NaI retard coalescence, in contrast to HCl and HNO3 that have little effect on the coalescence time scale. We also show that the drainage of the electrolyte films with higher concentrations is retarded due to increased Marangoni stresses at the air-water interface. The slow drainage triggers an early formation of the dimple in the thin film, thus trapping more fluid within, which further decreases the drainage rate. For a hydrophilic substrate, EDL along with van der Waals for a given concentration governs the final dynamics of thin films, eventually resulting in a stable thin layer of the electrolyte between the bubble and the substrate. The stabilizing thickness reduces by an order of magnitude as the NaCl concentration increases from 0.01 to 10 mM. For Na2SO4 solution, the film is stabilized at a smaller thickness due to higher valency cations resulting in higher screening of the EDL repulsion.
Collapse
Affiliation(s)
| | - Ananthan Mohan
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Dash
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Gaurav Tomar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Das S, Majumdar S. Enhancing the Properties of Self-Healing Gelatin Alginate Hydrogels by Hofmeister Mediated Electrostatic Effect. Chemphyschem 2024; 25:e202300660. [PMID: 37903355 DOI: 10.1002/cphc.202300660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The cross-linker-free hydrogels have gained attention due to their lack of need for chemically modified polymers, resulting in better biocompatibility. The hydrogel properties can be enhanced by altering physical forces such as electrostatics and H-bonds. Tuning the physical interactions between polymers, salts, and plasticisers can unlock new horizons in material properties. This article examines four different salts and mixtures to determine their impact on gelatin-alginate biomaterial design. Drug release, swelling, and rheological properties are represented using a 3-D plot, and optimum samples are identified. It is concluded that kosmotropes yield better release and swelling results than chaotropes. The physical interactions of these salts with polymers are explained using DLS and FTIR/ATR studies, and these findings are corroborated with release, swelling, and rheological analyses. Another aspect of the biomaterial, self-healing property, is also considered. A 3-D plot is prepared using release kinetics, gel strength, and recovery percentage (three important factors for self-healing hydrogels). Chaotropes are identified as better candidates for self-healing behaviour. However, when considering gel strength, release, and self-healing, kosmotropes are favourable. Hence, different salts can be selected based on the desired application for hydrogels. It is also concluded that electrostatic forces hinder the formation of H-bonds between polymer chains.
Collapse
Affiliation(s)
- Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, 502285, Hyderabad, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, 502285, Hyderabad, India
| |
Collapse
|
19
|
Hishida M. Correlation between Hydration States and Self-assembly Structures of Phospholipid and Surfactant Studied by Terahertz Spectroscopy. J Oleo Sci 2024; 73:419-427. [PMID: 38556277 DOI: 10.5650/jos.ess23188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Phospholipids and surfactants form membranes and other self-assembled structures in water. However, it is not fully understood how the surrounding water (hydration water) is involved in their structure formation. In this paper, I summarize the results of our investigation of the long-range hydration state of phospholipids and surfactants at their surfaces by means of terahertz spectroscopy. By observing the collective rotational dynamics of water in the picosecond time scale, this technique allows us to observe not only the water directly bound to the solute, but also the weakly affected water outside of it. For example, PC phospholipids inhibit water dynamics over long distances, whereas PE phospholipids make water more mobile than bulk water. The causes of this difference in hydration and how it is involved in the structural formation of the membrane are reviewed.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science
| |
Collapse
|
20
|
Zheng A, Greenbaum SG. NMR studies of polymeric sodium ion conductors-a brief review. Front Chem 2023; 11:1296587. [PMID: 38025051 PMCID: PMC10666055 DOI: 10.3389/fchem.2023.1296587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Sodium has long been considered an alternative active battery cation to lithium because of the chemical similarity and the overwhelming natural abundance of Na compared to Li. In the "early days" of poly (ethylene oxide) (PEO) and alkali metal salt complexes proposed as polymer electrolytes, studies of Na-salt/PEO materials were nearly as prevalent as those of lithium analogues. Fast forwarding to the present day, there is growing interest in sodium battery chemistry spurred by the challenges of continued advancement in lithium-based batteries. This article reviews the progress made in sodium-based polymer electrolytes from the early days of PEO to the present time. Other polymeric electrolytes such as gel polymer electrolytes (GPE), including formulations based on ionic liquids (ILs), are also discussed.
Collapse
|
21
|
Li M, Zhou X, Zhao J, Hong Y, Qu S, Wang P. Enhancing the adhesive strength of solar reflective coatings via mechanical activation. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Peychev B, Slavchov RI. Interactions between Small Inorganic Ions and Uncharged Monolayers on the Water/Air Interface. J Phys Chem B 2023; 127:2801-2817. [PMID: 36930736 PMCID: PMC10068745 DOI: 10.1021/acs.jpcb.2c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction of several simple electrolytes with uncharged insoluble monolayers is studied on the basis of tensiometric and potentiometric data for the surface electrolyte solution|air. The induced adsorption of electrolyte on the monolayer is determined via a combination of data for equilibrium spreading pressure and surface pressure versus area isotherms. We show that the monolayer-induced adsorption of electrolyte is not only strongly ion-specific but also surfactant-specific. The comparison between the ion-specific effects on a carboxylic acid monolayer at low pH and an ester monolayer shows that the anion series follows the same order while the cation series reverses. The effect of the electrolyte on the chemical potential of the monolayer shows attraction between the surfactant and the ions at low monolayer densities, but at high surface densities, repulsion seems to come into play. In nearly all investigated cases, a maximum of monolayer-induced electrolyte adsorption is observed at intermediate monolayer densities. This suggests specific interactions between the surfactant headgroup and the ions. The Volta potential data for the monolayers are analyzed on the basis of the equations of quadrupolar electrostatics. The analysis suggests that the ion-specific effect on the Volta potential is due to the ion-specific decrement of the bulk dielectric constant of the electrolyte solution. Moreover, we present evidence that in most cases the effect of the electrolyte on the orientation of the adsorbed dipoles cannot be neglected. Instead, the change in the ion distribution in the electric double layer seems to have a small effect on the Volta potential.
Collapse
Affiliation(s)
- Boyan Peychev
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| | - Radomir I Slavchov
- Queen Mary University of London, School of Engineering and Materials Science, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
23
|
Shumilin I, Harries D. Enhanced solubilization in multi-component mixtures: mechanism of synergistic amplification of cyclodextrin solubility by urea and inorganic salts. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Li Y, Corkery RW, Carretero-Palacios S, Berland K, Esteso V, Fiedler J, Milton KA, Brevik I, Boström M. Origin of anomalously stabilizing ice layers on methane gas hydrates near rock surface. Phys Chem Chem Phys 2023; 25:6636-6652. [PMID: 36790196 DOI: 10.1039/d2cp04883c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of ice layers. In a recent work [Boström et al., Astron. Astrophys., A54, 650, 2021], it was found that a surface region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously stabilizing ice layers. In this paper, it is demonstrated that the Casimir-Lifshitz free energy in multi-layer systems could induce thinner, but more stable, ice layers in cavities than those found for gas hydrates in a large reservoir of cold water. The thickness and stability of such ice layers in a pore filled with cold water could influence the leakage of gas molecules. Additional contributions, e.g. from salt-induced stresses, can also be of importance, and are briefly discussed.
Collapse
Affiliation(s)
- Yang Li
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China. .,Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
| | - Robert W Corkery
- Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden.,Applied Mathematics Department, Research School of Physics and Engineering, The Australian National University, Acton ACT 2610, Australia
| | - Sol Carretero-Palacios
- Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Kristian Berland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Victoria Esteso
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, Sesto F.no 50019, Italy.,Departamento de Física de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, Apdo. 1065, 41080, Sevilla, Spain
| | - Johannes Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.,Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Kimball A Milton
- Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Mathias Boström
- Centre for Materials Science and Nanotechnology, Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway. .,Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
| |
Collapse
|
25
|
Zhang J, Hua Z, Liu G. Effect of Counterion-Mediated Hydrogen Bonding on Polyelectrolytes at the Solid/Water Interface: Current Understanding and Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2881-2889. [PMID: 36780613 DOI: 10.1021/acs.langmuir.2c03470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The counterion-mediated hydrogen bonding (CMHB) effect can be generated in polyelectrolyte systems when hydrogen bonds are formed between the bound counterions and polyelectrolyte chains. This Perspective mainly discusses the effect of CMHB on polyelectrolytes at the solid/water interface. The CMHB effect generated by the hydroxide (OH-) or hydronium (H3O+) counterions gives rise to a pH responsiveness of strong polyelectrolyte brushes (SPBs) whose strength can be modulated by the external salt concentration. Further studies have shown that the CMHB effect on SPBs can be extended beyond the OH- and H3O+ counterions and that the CMHB effect can be observed in the systems of weak polyelectrolyte brushes (WPBs) and polyelectrolyte multilayers (PEMs). Based on the understanding of the mechanisms of the CMHB effect on polyelectrolytes at the solid/water interface, we have demonstrated that a range of important properties of SPBs, WPBs, and PEMs can be tuned by pH with the consideration of the CMHB effect. Future directions for the CMHB effect on polyelectrolytes are also discussed. The insights on the CMHB effect on polyelectrolytes at the solid/water interface would promote the development of smart interfacial polyelectrolyte materials in a wide range of fields.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
26
|
Acar M, Tatini D, Ninham BW, Rossi F, Marchettini N, Lo Nostro P. The Lyotropic Nature of Halates: An Experimental Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238519. [PMID: 36500616 PMCID: PMC9739596 DOI: 10.3390/molecules27238519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Unlike halides, where the kosmotropicity decreases from fluoride to iodide, the kosmotropic nature of halates apparently increases from chlorate to iodate, in spite of the lowering in the static ionic polarizability. In this paper, we present an experimental study that confirms the results of previous simulations. The lyotropic nature of aqueous solutions of sodium halates, i.e., NaClO3, NaBrO3, and NaIO3, is investigated through density, conductivity, viscosity, and refractive index measurements as a function of temperature and salt concentration. From the experimental data, we evaluate the activity coefficients and the salt polarizability and assess the anions' nature in terms of kosmotropicity/chaotropicity. The results clearly indicate that iodate behaves as a kosmotrope, while chlorate is a chaotrope, and bromate shows an intermediate nature. This experimental study confirms that, in the case of halates XO3-, the kosmotropic-chaotropic ranking reverses with respect to halides. We also discuss and revisit the role of the anion's polarizability in the interpretation of Hofmeister phenomena.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
| | - Duccio Tatini
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
| | - Barry W. Ninham
- Materials Physics (Formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT 2612, Australia
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
- Correspondence: ; Tel.: +39-055-4573010
| |
Collapse
|
27
|
Specific Ion Effects on the Enzymatic Degradation of Polyester Films. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
29
|
Ali MA, Volmert B, Evans CM, Braun PV. Static and Dynamic Gradient Based Directional Transportation of Neutral Molecules in Swollen Polymer Films. Angew Chem Int Ed Engl 2022; 61:e202206061. [PMID: 36031709 PMCID: PMC9826203 DOI: 10.1002/anie.202206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/11/2023]
Abstract
Materials which selectively transport molecules offer powerful opportunities for concentrating and separating chemical agents. Here, utilizing static and dynamic chemical gradients, transport of molecules within swollen crosslinked polymers is demonstrated. Using an ≈200 μm static hydroxyl to hexyl gradient, the neutral ambipolar nerve agent surrogate diethyl (cyanomethyl)phosphonate (DECP) is directionally transported and concentrated 60-fold within 4 hours. To accelerate transport kinetics, a dynamic gradient (a "travelling wave") is utilized. Here, the non-polar dye pyrene was transported. The dynamic gradient is generated by an ion exchange process triggered by the localized introduction of an aqueous NaCl solution, which converts the gel from hydrophobic to hydrophilic. As the hydrophilic region expands, associated water enters the gel, and pyrene is pushed ahead of the expansion front. The dynamic gradient provides about 10-fold faster transport kinetics than the static gradient.
Collapse
Affiliation(s)
- Mohammad A. Ali
- Department of Materials Science and EngineeringDepartment of ChemistryBeckman Institute for Advanced Science and Technology, and Materials Research LaboratoryUniversity of Illinois Urbana ChampaignUrbanaIllinois 61801USA
| | - Brett Volmert
- Department of Materials Science and EngineeringDepartment of ChemistryBeckman Institute for Advanced Science and Technology, and Materials Research LaboratoryUniversity of Illinois Urbana ChampaignUrbanaIllinois 61801USA
| | - Christopher M. Evans
- Department of Materials Science and EngineeringDepartment of ChemistryBeckman Institute for Advanced Science and Technology, and Materials Research LaboratoryUniversity of Illinois Urbana ChampaignUrbanaIllinois 61801USA
| | - Paul V. Braun
- Department of Materials Science and EngineeringDepartment of ChemistryBeckman Institute for Advanced Science and Technology, and Materials Research LaboratoryUniversity of Illinois Urbana ChampaignUrbanaIllinois 61801USA
| |
Collapse
|
30
|
Piccoli V, Martínez L. Ionic liquid solvation of proteins in native and denatured states. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Rana B, Fairhurst DJ, Jena KC. Investigation of Water Evaporation Process at Air/Water Interface using Hofmeister Ions. J Am Chem Soc 2022; 144:17832-17840. [PMID: 36131621 DOI: 10.1021/jacs.2c05837] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evaporation is an interfacial phenomenon in which a water molecule breaks the intermolecular hydrogen (H-) bonds and enters the vapor phase. However, a detailed demonstration of the role of interfacial water structure in the evaporation process is still lacking. Here, we purposefully perturb the H-bonding environment at the air/water interface by introducing kosmotropic (HPO4-2, SO4-2, and CO3-2) and chaotropic ions (NO3- and I-) to determine their influence on the evaporation process. Using time-resolved interferometry on aqueous salt droplets, we found that kosmotropes reduce evaporation, whereas chaotropes accelerate the evaporation process, following the Hofmeister series: HPO4-2 < SO4-2 < CO3-2 < Cl- < NO3- < I-. To extract deeper molecular-level insights into the observed Hofmeister trend in the evaporation rates, we investigated the air/water interface in the presence of ions using surface-specific sum frequency generation (SFG) vibrational spectroscopy. The SFG vibrational spectra reveal the significant impact of ions on the strength of the H-bonding environment and the orientation of free OH oscillators from ∼36.2 to 48.4° at the air/water interface, where both the effects follow the Hofmeister series. It is established that the slow evaporating water molecules experience a strong H-bonding environment with free OH oscillators tilted away from the surface normal in the presence of kosmotropes. In contrast, the fast evaporating water molecules experience a weak H-bonding environment with free OH oscillators tilted toward the surface normal in the presence of chaotropes at the air/water interface. Our experimental outcomes showcase the complex bonding environment of interfacial water molecules and their decisive role in the evaporation process.
Collapse
Affiliation(s)
- Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - David J Fairhurst
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, United Kingdom
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
32
|
Uttinger MJ, Hundschell CS, Lautenbach V, Pusara S, Bäther S, Heyn TR, Keppler JK, Wenzel W, Walter J, Kozlowska M, Wagemans AM, Peukert W. Determination of specific and non-specific protein-protein interactions for beta-lactoglobulin by analytical ultracentrifugation and membrane osmometry experiments. SOFT MATTER 2022; 18:6739-6756. [PMID: 36040122 DOI: 10.1039/d2sm00908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein-protein interactions are essential for the understanding of biological processes. Specific protein aggregation is an important aspect for many biological systems. In particular, electrostatic interactions play the key role for protein-protein interactions, as many amino acids have pH-dependent charge states. Moreover, protein dissociation is directly related to the solution pH, ionic strength, temperature and protein concentration. The subtle interplay between different specific and non-specific interactions is demonstrated for beta-lactoglobulin (BLG) with a focus on low salt concentrations, thus mimicking technically relevant processing conditions. BLG is a well-characterized model system, proven to attain its monomer-dimer equilibrium strongly dependent upon the pH of the solution. In this manuscript, we present a unique combination of analytical ultracentrifugation and membrane osmometry experiments, which quantifies specific and non-specific interactions, i.e. in terms of the dimer dissociation constants and the second osmotic virial coefficient, at pH 3 and 7 and sodium chloride concentrations of 10 mM and 100 mM. This provides direct insight to protein-protein interactions for a system with a concentration-dependent monomer-dimer equilibrium. Moreover, using a coarse-grained extended DLVO model in combination with molecular dynamics simulations, we quantify non-specific monomer-monomer, monomer-dimer and dimer-dimer interactions as well as the binding free energy of BLG dimerization from theoretical calculations. The experimentally determined interactions are shown to be mainly governed by electrostatic interactions and further agree with free energy calculations. Our experimental protocol aims to determine non-specific and specific interactions for a dynamically interacting system and provides an understanding of protein-protein interactions for BLG at low salt concentrations.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - C S Hundschell
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - V Lautenbach
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - S Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Bäther
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - T R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - J K Keppler
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - W Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - J Walter
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - M Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - A M Wagemans
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - W Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| |
Collapse
|
33
|
Specific electrolyte effects on hemoglobin in denaturing medium investigated through electro spray ionization mass spectrometry. J Inorg Biochem 2022; 234:111872. [DOI: 10.1016/j.jinorgbio.2022.111872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
|
34
|
Ali MA, Volmert B, Evans CM, Braun PV. Static and Dynamic Gradient Based Directional Transportation of Neutral Molecules in Swollen Polymer Films. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad A Ali
- University of Illinois Urbana-Champaign Materials Research Laboratory UNITED STATES
| | - Brett Volmert
- University of Illinois Urbana-Champaign Materials Science and Engineering UNITED STATES
| | - Christopher M Evans
- University of Illinois Urbana-Champaign Materials Science and Engineering UNITED STATES
| | - Paul V. Braun
- University of Illinois Urbana-Champaign Department of Materials Science and Engineering Materials Science and Engineering 1304 West Green St.Materials Science and Eng. Building 61801 Urbana UNITED STATES
| |
Collapse
|
35
|
Application of Congo red dye as a molecular probe to investigate the kinetics and thermodynamics of the formation processes of arachin and conarachin nanocomplexes. Food Chem 2022; 384:132485. [DOI: 10.1016/j.foodchem.2022.132485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
|
36
|
Effect of Hofmeister series anions on freeze-thaw stability of emulsion stabilized with whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Yuan H, Liu G. Polyelectrolyte Complexation When Considering the Counterion-Mediated Hydrogen Bonding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8179-8186. [PMID: 35748635 DOI: 10.1021/acs.langmuir.2c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we have investigated a pH-modulated complexation between two oppositely charged strong polyelectrolytes to demonstrate the effect of counterion-mediated hydrogen bonding (CMHB) on polyelectrolyte complexation. We have found that such a pH-modulated complexation cannot be understood without considering the CMHB. Thermodynamically, the effect of CMHB on the polyelectrolyte complexation is manifested by the alteration of both enthalpic and entropic contributions to the free energy change. The pH-dependent intrinsic ion-pairing and complex coacervation processes of the polyelectrolyte complexation can be understood when considering the CMHB. Our study demonstrates that both the extent of polyelectrolyte complex formation in bulk solutions and the formation of polyelectrolyte multilayers on surfaces are controlled by the pH-dependent intrinsic ion-pairing process. Furthermore, on the basis of the pH-dependent intrinsic ion pairing, the properties of the multilayers can be tuned by pH. This work provides a new strategy to control the polyelectrolyte complexation with counterions and will inspire new ideas for building advanced polyelectrolyte materials.
Collapse
Affiliation(s)
- Haiyang Yuan
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, P. R. China 230026
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, P. R. China 230026
| |
Collapse
|
38
|
Distaso M, Lautenbach V, Uttinger MJ, Walter J, Lübbert C, Thajudeen T, Peukert W. A widely applicable method to stabilize nanoparticles comprising oxygen-rich functional groups. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Dragulet F, Goyal A, Ioannidou K, Pellenq RJM, Del Gado E. Ion Specificity of Confined Ion-Water Structuring and Nanoscale Surface Forces in Clays. J Phys Chem B 2022; 126:4977-4989. [PMID: 35731697 DOI: 10.1021/acs.jpcb.2c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion specificity and related Hofmeister effects, which are ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large-scale cohesive swelling and shrinkage behaviors of soil and sediments. We have used a semiatomistic computational approach and examined sodium, calcium, and aluminum counterions confined with water between charged surfaces representative of clay materials to show that ion-water structuring in nanoscale confinement is at the origin of surface forces between clay particles which are intrinsically ion-specific. When charged surfaces strongly confine ions and water, the amplitude and oscillations of the net pressure naturally emerge from the interplay of electrostatics and steric effects, which cannot be captured by existing theories. Increasing confinement and surface charge densities promote ion-water structures that increasingly deviate from the ions' bulk hydration shells, being strongly anisotropic, persistent, and self-organizing into optimized, nearly solid-like assemblies where hardly any free water is left. Under these conditions, strongly attractive interactions can prevail between charged surfaces because of the dramatically reduced dielectric screening of water and the highly organized water-ion structures. By unravelling the ion-specific nature of these nanoscale interactions, we provide evidence that ion-specific solvation structures determined by confinement are at the origin of ion specificity in clays and potentially a broader range of confined aqueous systems.
Collapse
Affiliation(s)
- Francis Dragulet
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Abhay Goyal
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States.,Infrastructure Materials Group, Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Katerina Ioannidou
- Laboratoire de Mécanique et Génie Civil, CNRS Université de Montpellier, Montpellier 34090, France
| | - Roland J-M Pellenq
- EPiDaPo, The Joint CNRS and George Washington University Laboratory, Children's National Medical Center, Children's Research Institute, 111 Michigan Avenue NW, Washington, D.C. 20010, United States
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
40
|
Ehtiati K, Moghaddam SZ, Klok HA, Daugaard AE, Thormann E. Specific Counterion Effects on the Swelling Behavior of Strong Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Saeed Z. Moghaddam
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Harm-Anton Klok
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire des Polyméres, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Anders E. Daugaard
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
41
|
Assessing the effect of different pH maintenance situations on bacterial SERS spectra. Anal Bioanal Chem 2022; 414:4977-4985. [PMID: 35606451 DOI: 10.1007/s00216-022-04125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
Phenotyping of bacteria with vibrational spectroscopy has caught much attention in bacteria-related research. It is known that many factors could affect this process. Among them, solution pH maintenance is crucial, yet its impact on the bacterial SERS spectra is surprisingly neglected. In this work, we focused on two situations related to pH maintenance: the effect of the same buffer on the SERS spectra of bacteria under different pH values, and the influence of different buffers on the SERS spectra of bacteria under the same pH value. Specifically, Britton-Robison (BR) buffer was used to evaluate the effect of pH value on bacteria SERS spectra thanks to its wide pH range. Four different buffers, namely BR buffer, acetate buffer, phosphate buffer, and carbonate buffer, were used to illustrate the impact of buffer types on SERS spectra of bacteria. The results showed that the intensity and number of characteristic peaks of the SERS spectra of Gram-negative (G -) bacteria changed more significantly than Gram-positive (G +) bacteria with the change of pH value. Furthermore, compared with phosphate buffer and carbonate buffer, BR buffer could bring more characteristic SERS bands with better reproducibility, but slightly inferior to acetate buffer. In conclusion, the influence of the pH and types of the buffer on the SERS spectra of bacteria are worthy of further discussion.
Collapse
|
42
|
Lu J, Hu O, Gu J, Chen G, Ye D, Hou L, Zhang X, Jiang X. Tough and anti-fatigue double network gelatin/polyacrylamide/DMSO/Na2SO4 ionic conductive organohydrogel for flexible strain sensor. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Meyer G, Schweins R, Youngs T, Dufrêche JF, Billard I, Plazanet M. How Temperature Rise Can Induce Phase Separation in Aqueous Biphasic Solutions. J Phys Chem Lett 2022; 13:2731-2736. [PMID: 35312328 DOI: 10.1021/acs.jpclett.2c00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionic-liquid-based acidic aqueous biphasic solutions (AcABSs) recently offered a breakthrough in the field of metal recycling. The particular mixture of tributyltetradecylphosphonium chloride ([P4,4,4,14]Cl), acid, and water presents the unusual characteristic of a lower solution critical temperature (LCST), leading to phase separation upon a temperature rise of typically a few tens of degrees. We address here the microscopic mechanisms driving the phase separation. Using small-angle neutron scattering, we characterized the spherical micelle formation in a binary ionic liquid/water solution and the micelle aggregation upon the addition of acid due to the screening of electrostatic repulsion. The increase in both the acid concentration and the temperature eventually leads to micelle flocculation and phase separation. This last step is achieved through chloride ion adsorption at the surface of the micelle. This exothermic adsorption compensates for the entropic cost, leading to a counterintuitive behavior, and may be generalized to a number of molecular systems with an LCST.
Collapse
Affiliation(s)
- Gautier Meyer
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Tristan Youngs
- ISIS Pulsed Neutron and Muon Source STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Jean-François Dufrêche
- Institut de Chimie Séparative de Marcoule. UMR 5257 CEA/CNRS/ENSCM/Université Montpellier, Site de Marcoule, Bâtiment 426 BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Isabelle Billard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 1130 rue de la Piscine, 38402 Saint Martin d'Héres, France
| | - Marie Plazanet
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
44
|
Hishida M, Anjum R, Anada T, Murakami D, Tanaka M. Effect of Osmolytes on Water Mobility Correlates with Their Stabilizing Effect on Proteins. J Phys Chem B 2022; 126:2466-2475. [DOI: 10.1021/acs.jpcb.1c10634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Rubaiya Anjum
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
45
|
Enhanced interfacial salt effect on extraction and separation of Er(III) from Mg(II), Al(III), Fe(III) sulfate aqueous solutions using bubble-supported organic liquid membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Klaassen A, Liu F, Mugele F, Siretanu I. Correlation between Electrostatic and Hydration Forces on Silica and Gibbsite Surfaces: An Atomic Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:914-926. [PMID: 35025512 PMCID: PMC8793142 DOI: 10.1021/acs.langmuir.1c02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The balance between hydration and Derjaguin-Landau-Verwey-Overbeek (DLVO) forces at solid-liquid interfaces controls many processes, such as colloidal stability, wetting, electrochemistry, biomolecular self-assembly, and ion adsorption. Yet, the origin of molecular scale hydration forces and their relation to the surface charge density that controls the continuum scale electrostatic forces is poorly understood. We argue that these two types of forces are largely independent of each other. To support this hypothesis, we performed atomic force microscopy experiments using intermediate-sized tips that enable the simultaneous detection of DLVO and molecular scale oscillatory hydration forces at the interface between composite gibbsite:silica-aqueous electrolyte interfaces. We extract surface charge densities from forces measured at tip-sample separations of 1.5 nm and beyond using DLVO theory in combination with charge regulation boundary conditions for various pH values and salt concentrations. We simultaneously observe both colloidal scale DLVO forces and oscillatory hydration forces for an individual crystalline gibbsite particle and the underlying amorphous silica substrate for all fluid compositions investigated. While the diffuse layer charge varies with pH as expected, the oscillatory hydration forces are found to be largely independent of pH and salt concentration, supporting our hypothesis that both forces indeed have a very different origin. Oscillatory hydration forces are found to be distinctly more pronounced on gibbsite than on silica. We rationalize this observation based on the distribution of hydroxyl groups available for H bonding on the two distinct surfaces.
Collapse
Affiliation(s)
- Aram Klaassen
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Fei Liu
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
47
|
Chatterjee S, Kumar I, Ghanta KC, Hens A, Biswas G. Insight into molecular rearrangement of a sessile ionic nanodroplet with applied electric field. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Ribeiro SS, Castro TG, Gomes CM, Marcos JC. Hofmeister effects on protein stability are dependent on the nature of the unfolded state. Phys Chem Chem Phys 2021; 23:25210-25225. [PMID: 34730580 DOI: 10.1039/d1cp02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of a salt's effect on protein stability traditionally discriminates low concentration regimes (<0.3 M), dominated by electrostatic forces, and high concentration regimes, generally described by ion-specific Hofmeister effects. However, increased theoretical and experimental studies have highlighted observations of the Hofmeister phenomena at concentration ranges as low as 0.001 M. Reasonable quantitative predictions of such observations have been successfully achieved throughout the inclusion of ion dispersion forces in classical electrostatic theories. This molecular description is also on the basis of quantitative estimates obtained resorting to surface/bulk solvent partition models developed for ion-specific Hofmeister effects. However, the latter are limited by the availability of reliable structures representative of the unfolded state. Here, we use myoglobin as a model to explore how ion-dependency on the nature of the unfolded state affects protein stability, combining spectroscopic techniques with molecular dynamic simulations. To this end, the thermal and chemical stability of myoglobin was assessed in the presence of three different salts (NaCl, (NH4)2SO4 and Na2SO4), at physiologically relevant concentrations (0-0.3 M). We observed mild destabilization of the native state induced by each ion, attributed to unfavorable neutralization and hydrogen-bonding with the protein side-chains. Both effects, combined with binding of Na+, Cl- and SO42- to the thermally unfolded state, resulted in an overall destabilization of the protein. Contrastingly, ion binding was hindered in the chemically unfolded conformation, due to occupation of the binding sites by urea molecules. Such mechanistic action led to a lower degree of destabilization, promoting surface tension effects that stabilized myoglobin according to the Hofmeister series. Therefore, we demonstrate that Hofmeister effects on protein stability are modulated by the heterogeneous physico-chemical nature of the unfolded state. Altogether, our findings evidence the need to characterize the structure of the unfolded state when attempting to dissect the molecular mechanisms underlying the effects of salts on protein stability.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João C Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
49
|
Sthoer AA, Tyrode EC. Anion Specific Effects at Negatively Charged Interfaces: Influence of Cl -, Br -, I -, and SCN - on the Interactions of Na + with the Carboxylic Acid Moiety. J Phys Chem B 2021; 125:12384-12391. [PMID: 34705447 PMCID: PMC8591606 DOI: 10.1021/acs.jpcb.1c07758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/10/2021] [Indexed: 11/30/2022]
Abstract
Unlike counterion interactions with charged interfaces, the influence of co-ions is only scarcely reported in the literature. In this work, the effect of SCN- and the halide co-ions in the interactions of Na+ with carboxylic acid Langmuir monolayers is investigated by using vibrational sum frequency spectroscopy. At 1 M concentrations in the subphase, the identity of the anion is shown to have a remarkable influence on the charging behavior and degree of deprotonation of the monolayer, with ions ordering in the sequence I- > SCN- > Cl- ≈ Br-. The same trend is observed at both pH 6 and pH 9 when the monolayer is intrinsically more charged. Spectroscopic evidence is found for both the presence of I- and SCN- in the interfacial region at levels close to their detection limits. The results contradict electrostatic theories on charged interfaces where co-ions are not expected to play any significant role. The higher propensity for the large polarizable anions to deprotonate the monolayer is explained in terms of their ability to modify the cations affinity toward the carboxylic acid groups present at the surface.
Collapse
Affiliation(s)
- Adrien
P. A. Sthoer
- Department of Chemistry, KTH, Dröttning Kristinas väg 51, SE-10044 Stockholm, Sweden
| | - Eric C. Tyrode
- Department of Chemistry, KTH, Dröttning Kristinas väg 51, SE-10044 Stockholm, Sweden
| |
Collapse
|
50
|
Xu Z, Niu Z, Pan D, Zhao X, Wei X, Li X, Tan Z, Chen X, Liu C, Wu W. Mechanisms of bentonite colloid aggregation, retention, and release in saturated porous media: Role of counter ions and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148545. [PMID: 34328966 DOI: 10.1016/j.scitotenv.2021.148545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In the subsurface environment, colloids play an important role in pollutant transport by acting as the carriers. Understanding colloid release, transport, and deposition in porous media is a prerequisite for evaluating the potential role of colloids in subsurface contaminant transport. In this work, the aggregation, retention, and release of bentonite colloid in saturated porous sand media were investigated by kinetic aggregation and column experiments, the correlation and mechanism of these processes were revealed by combining colloid filtration theory, interaction energy calculation and density functional theory. The results showed that the retention and release of colloids were closely related to the dispersion stability and filtration effect. Multivalent cations with higher mineral affinity reduced the colloid stability, and the dispersion stability and mobility of the colloid were greatly improved by humic acid due to the enhancement of electrostatic repulsion and steric hindrance effects. The primary minimum interaction was found to contribute more to irreversible colloid retention in a Ca2+ system, while the secondary energy minimum was found to be responsible for colloid release with the occurrence of transient solution chemistry. The deposited colloid aggregates could be redistributed and released when the solution chemistry became favorable towards dispersion. These findings provide essential insight into the environmental colloid fate as well as a vital reference for the risk of colloid-driven transport of contaminants in the subsurface aquifer environment.
Collapse
Affiliation(s)
- Zhen Xu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhiwei Niu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Duoqiang Pan
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China.
| | - Xiaodong Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Xiaoyan Wei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Li
- China Academy of Engineering Physics, Mianyang 621000, China
| | - Zhaoyi Tan
- China Academy of Engineering Physics, Mianyang 621000, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wangsuo Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|