1
|
Aghaei Y, Aldekheel M, Tohidi R, Badami MM, Farahani VJ, Sioutas C. Development and performance evaluation of online monitors for near real-time measurement of total and water-soluble organic carbon in fine and coarse ambient PM. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2024; 319:120316. [PMID: 38250566 PMCID: PMC10795521 DOI: 10.1016/j.atmosenv.2023.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In this study, we developed two online monitors for total organic carbon (TOC) and water-soluble organic carbon (WSOC) measurements in fine (dp < 2.5μm) and coarse (2.5μm < dp < 10μm) particulate matter (PM), respectively. Their performance has been evaluated in laboratory and field tests to demonstrate the feasibility of using these monitors to measure near real-time concentrations, with consideration of their potential for being employed in long-term measurements. The fine PM collection setup was equipped with a versatile aerosol concentration enrichment system (VACES) connected to an aerosol-into-liquid-sampler (AILS), whereas two virtual impactors (VIs) in tandem with a modified BioSampler were used to collect coarse PM. These particle collection setups were in tandem with a Sievers M9 TOC analyzer to read TOC and WSOC concentrations in aqueous samples hourly. The average hourly TOC concentration measured by our developed monitors in fine and coarse PM were 5.17 ± 2.41 and 0.92 ± 0.29 μg/m3, respectively. In addition, our TOC readings showed good agreement and were comparable with those quantified using Sunset Lab EC/OC analyzer operating in parallel as a reference. Furthermore, we conducted field tests to produce diurnal profiles of fine PM-bound WSOC, which can show the effects of ambient temperature on maximum values in the nighttime chemistry of the winter, as well as on increased photochemical activities in afternoon peaks during the summer. According to our experimental campaign, WSOC mean values during the study period (3.07 μg/m3 for the winter and 2.7 μg/m3 for the summer) were in a comparable range with those of earlier studies in Los Angeles. Overall, our results corroborate the performance of our developed monitors in near real-time measurements of TOC and WSOC, which can be employed for future source apportionment studies in Los Angeles and other areas, aiding in understanding the health impacts of different pollution sources.
Collapse
Affiliation(s)
- Yashar Aghaei
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
2
|
Ribble A, Hellmann J, Conklin DJ, Bhatnagar A, Haberzettl P. Fine particulate matter (PM 2.5)-induced pulmonary oxidative stress contributes to increases in glucose intolerance and insulin resistance in a mouse model of circadian dyssynchrony. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162934. [PMID: 36934930 PMCID: PMC10164116 DOI: 10.1016/j.scitotenv.2023.162934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Results of human and animal studies independently suggest that either ambient fine particulate matter (PM2.5) air pollution exposure or a disturbed circadian rhythm (circadian dyssynchrony) are important contributing factors to the rapidly evolving type-2-diabetes (T2D) epidemic. The objective of this study is to investigate whether circadian dyssynchrony increases the susceptibility to PM2.5 and how PM2.5 affects metabolic health in circadian dyssynchrony. We examined systemic and organ-specific changes in glucose homeostasis and insulin sensitivity in mice maintained on a regular (12/12 h light/dark) or disrupted (18/6 h light/dark, light-induced circadian dyssynchrony, LICD) light cycle exposed to air or concentrated PM2.5 (CAP, 6 h/day, 30 days). Exposures during Zeitgeber ZT3-9 or ZT11-17 (Zeitgeber in circadian time, ZT0 = begin of light cycle) tested for time-of-day PM2.5 sensitivity (chronotoxicity). Mice transgenic for lung-specific overexpression of extracellular superoxide dismutase (ecSOD-Tg) were used to assess the contribution of CAP-induced pulmonary oxidative stress. Both, CAP exposure from ZT3-9 or ZT11-17, decreased glucose tolerance and insulin sensitivity in male mice with LICD, but not in female mice or in mice kept on a regular light cycle. Although changes in glucose homeostasis in CAP-exposed male mice with LICD were not associated with obesity, they were accompanied by white adipose tissue (WAT) inflammation, impaired insulin signaling in skeletal muscle and liver, and systemic and pulmonary oxidative stress. Preventing CAP-induced oxidative stress in the lungs mitigated the CAP-induced decrease in glucose tolerance and insulin sensitivity in LICD. Our results demonstrate that circadian dyssynchrony is a novel susceptibility state for PM2.5 and suggest that PM2.5 by inducing pulmonary oxidative stress increases glucose intolerance and insulin resistance in circadian dyssynchrony.
Collapse
Affiliation(s)
- Amanda Ribble
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jason Hellmann
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Petra Haberzettl
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Wang X, Gronstal S, Lopez B, Jung H, Chen LWA, Wu G, Ho SSH, Chow JC, Watson JG, Yao Q, Yoon S. Evidence of non-tailpipe emission contributions to PM 2.5 and PM 10 near southern California highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120691. [PMID: 36435278 DOI: 10.1016/j.envpol.2022.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Particulate Matter (PM) concentrations near highways are influenced by vehicle tailpipe and non-tailpipe emissions, other emission sources, and urban background aerosols. This study collected PM2.5 and PM10 filter samples near two southern California highways (I-5 and I-710) over two weeks in winter 2020. Samples were analyzed for chemical source markers. Mean PM2.5 and PM10 concentrations were approximately 10-15 and 30 μg/m3, respectively. Organic matter, mineral dust, and elemental carbon (EC) were the most abundant PM components. EC and polycyclic aromatic hydrocarbons at I-710 were 19-26% and 47% higher than those at the I-5 sites, respectively, likely due to a larger proportion of diesel vehicles. High correlations were found for elements with common sources, such as markers for brake wear (e.g., Fe, Ba, Cu, and Zr) and road dust (e.g., Al, Si, Ca, and Mn). Based on rubber abundances, the contributions of tire tread particles to PM2.5 and PM10 mass were approximately 8.0% at I-5 and 5.5% at I-710. Two different tire brands showed significantly different Si, Zn, carbon, and natural rubber abundances.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA.
| | - Steven Gronstal
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA
| | - Brenda Lopez
- University of California-Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
| | - Heejung Jung
- University of California-Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
| | - L-W Antony Chen
- University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Guoyuan Wu
- University of California-Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
| | - Steven Sai Hang Ho
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA; Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Judith C Chow
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA
| | - John G Watson
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA
| | - Qi Yao
- California Air Resources Board, 1001 I St, Sacramento, CA, 95814, USA
| | - Seungju Yoon
- California Air Resources Board, 1001 I St, Sacramento, CA, 95814, USA
| |
Collapse
|
4
|
Habre R, Girguis M, Urman R, Fruin S, Lurmann F, Shafer M, Gorski P, Franklin M, McConnell R, Avol E, Gilliland F. Contribution of tailpipe and non-tailpipe traffic sources to quasi-ultrafine, fine and coarse particulate matter in southern California. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:209-230. [PMID: 32990509 PMCID: PMC8112073 DOI: 10.1080/10962247.2020.1826366] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 05/19/2023]
Abstract
Exposure to traffic-related air pollution (TRAP) in the near-roadway environment is associated with multiple adverse health effects. To characterize the relative contribution of tailpipe and non-tailpipe TRAP sources to particulate matter (PM) in the quasi-ultrafine (PM0.2), fine (PM2.5) and coarse (PM2.5-10) size fractions and identify their spatial determinants in southern California (CA). Month-long integrated PM0.2, PM2.5 and PM2.5-10 samples (n = 461, 265 and 298, respectively) were collected across cool and warm seasons in 8 southern CA communities (2008-9). Concentrations of PM mass, elements, carbons and major ions were obtained. Enrichment ratios (ER) in PM0.2 and PM10 relative to PM2.5 were calculated for each element. The Positive Matrix Factorization model was used to resolve and estimate the relative contribution of TRAP sources to PM in three size fractions. Generalized additive models (GAMs) with bivariate loess smooths were used to understand the geographic variation of TRAP sources and identify their spatial determinants. EC, OC, and B had the highest median ER in PM0.2 relative to PM2.5. Six, seven and five sources (with characteristic species) were resolved in PM0.2, PM2.5 and PM2.5-10, respectively. Combined tailpipe and non-tailpipe traffic sources contributed 66%, 32% and 18% of PM0.2, PM2.5 and PM2.5-10 mass, respectively. Tailpipe traffic emissions (EC, OC, B) were the largest contributor to PM0.2 mass (58%). Distinct gasoline and diesel tailpipe traffic sources were resolved in PM2.5. Others included fuel oil, biomass burning, secondary inorganic aerosol, sea salt, and crustal/soil. CALINE4 dispersion model nitrogen oxides, trucks and intersections were most correlated with TRAP sources. The influence of smaller roadways and intersections became more apparent once Long Beach was excluded. Non-tailpipe emissions constituted ~8%, 11% and 18% of PM0.2, PM2.5 and PM2.5-10, respectively, with important exposure and health implications. Future efforts should consider non-linear relationships amongst predictors when modeling exposures. Implications: Vehicle emissions result in a complex mix of air pollutants with both tailpipe and non-tailpipe components. As mobile source regulations lead to decreased tailpipe emissions, the relative contribution of non-tailpipe traffic emissions to near-roadway exposures is increasing. This study documents the presence of non-tailpipe abrasive vehicular emissions (AVE) from brake and tire wear, catalyst degradation and resuspended road dust in the quasi-ultrafine (PM0.2), fine and coarse particulate matter size fractions, with contributions reaching up to 30% in PM0.2 in some southern California communities. These findings have important exposure and policy implications given the high metal content of AVE and the efficiency of PM0.2 at reaching the alveolar region of the lungs and other organ systems once inhaled. This work also highlights important considerations for building models that can accurately predict tailpipe and non-tailpipe exposures for population health studies.
Collapse
Affiliation(s)
- Rima Habre
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Mariam Girguis
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Robert Urman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Scott Fruin
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | | | - Martin Shafer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI
- Environmental Chemistry & Technology Program, University of Wisconsin-Madison, Madison WI
| | - Patrick Gorski
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI
| | - Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Ed Avol
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Frank Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
5
|
Haberzettl P. Circadian toxicity of environmental pollution. Inhalation of polluted air to give a precedent. CURRENT OPINION IN PHYSIOLOGY 2018; 5:16-24. [PMID: 30931418 DOI: 10.1016/j.cophys.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exposures to environmental stressors that derive from pollution (e.g. air, light) or lifestyle choices (e.g. diet, activity, 24-hour-×-7-day) are associated with adverse human health outcomes. For instance, there is evidence that air pollution exposure and changes in sleep/wake pattern increase the risk for vascular and cardiometabolic disorders. Interestingly, air pollution exposure affects pulmonary and cardiovascular functions that follow circadian rhythmicity and increases the risk for pulmonary and cardiovascular events that occur in diurnal patterns suggesting a link between air pollution induced cardiovascular and pulmonary injury and changes in circadian rhythm. Indeed, recent research identified circadian rhythm as an air pollution target and circadian rhythm as factor that increases air pollution sensitivity. Using air pollution exposure as precedent, this review highlights research on how environmental pollution affect circadian rhythm and how circadian rhythm affects the toxicity of environmental stressors.
Collapse
Affiliation(s)
- Petra Haberzettl
- Diabetes and Obesity Center, Institute of Molecular Cardiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Perez IR, O’Neill MS, Osornio-Vargas AR. TNFα and IL-6 Responses to Particulate Matter in Vitro: Variation According to PM Size, Season, and Polycyclic Aromatic Hydrocarbon and Soil Content. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:406-12. [PMID: 26372663 PMCID: PMC4829995 DOI: 10.1289/ehp.1409287] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 09/10/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. OBJECTIVES We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. METHODS We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. RESULTS PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. CONCLUSIONS Variations in PM soil and PAH content underlie seasonal and PM size-related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. CITATION Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O'Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406-412; http://dx.doi.org/10.1289/ehp.1409287.
Collapse
Affiliation(s)
- Natalia Manzano-León
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
| | | | - Brisa N. Sánchez
- Department of Environmental Health Sciences, and
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Raúl Quintana-Belmares
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
| | - Elizabeth Vega
- Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo, México, DF, México
- Gerencia de Ciencias Ambientales, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Ocoyoacac, Estado de México, México
| | - Inés Vázquez-López
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
| | | | | | - Felipe Vadillo-Ortega
- National Autonomous University of Mexico (UNAM) at the National Institute of Genomic Medicine, México, DF, México
| | | | | | | | - Alvaro R. Osornio-Vargas
- Departamento de Investigación Básica, Instituto Nacional de Cancerología, México, DF, México
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
- Address correspondence to A.R. Osornio-Vargas, Department of Paediatrics, University of Alberta, 3-591 ECHA, 11405 87th Ave., Edmonton, T6G1C9, Canada. Telephone (780) 492-7092. E-mail:
| |
Collapse
|
7
|
Villalobos AM, Barraza F, Jorquera H, Schauer JJ. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:133-142. [PMID: 25617780 DOI: 10.1016/j.scitotenv.2015.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 05/03/2023]
Abstract
Santiago is one of the largest cities in South America and has experienced high fine particulate matter (PM2.5) concentrations in fall and winter months for decades. To better understand the sources of fall and wintertime pollution in Santiago, PM2.5 samples were collected for 24 h every weekday from March to October 2013 for chemical analysis. Samples were analyzed for mass, elemental carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), water soluble nitrogen (WSTN), secondary inorganic ions, and particle-phase organic tracers for source apportionment. Selected samples were analyzed as monthly composites for organic tracers. PM2.5 concentrations were considerably higher in the coldest months (June-July), averaging (mean ± standard deviation) 62±15 μg/m(3) in these two months. Average fine particle mass concentration during the study period was 40±20 μg/m(3). Organic matter during the peak winter months was the major component of fine particles comprising around 70% of the particle mass. Source contributions to OC were calculated using organic molecular markers and a chemical mass balance (CMB) receptor model. The four combustion sources identified were wood smoke, diesel engine emission, gasoline vehicles, and natural gas. Wood smoke was the predominant source of OC, accounting for 58±42% of OC in fall and winter. Wood smoke and nitrate were the major contributors to PM2.5. In fall and winter, wood smoke accounted for 9.8±7.1 μg/m(3) (21±15%) and nitrate accounted for 9.1±4.8 μg/m(3) (20±10%) of fine PM. The sum of secondary inorganic ions (sulfate, nitrate, and ammonium) represented about 30% of PM2.5 mass. Secondary organic aerosols contributed only in warm months, accounting for about 30% of fine PM during this time.
Collapse
Affiliation(s)
- Ana M Villalobos
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison , 660 North Park Street, Madison, WI 53706, USA
| | - Francisco Barraza
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago 6904411, Chile
| | - Héctor Jorquera
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago 6904411, Chile
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison , 660 North Park Street, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Wang D, Shafer MM, Schauer JJ, Sioutas C. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:227-234. [PMID: 25681818 DOI: 10.1016/j.envpol.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings.
Collapse
Affiliation(s)
- Dongbin Wang
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Martin M Shafer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Hasheminassab S, Pakbin P, Delfino RJ, Schauer JJ, Sioutas C. Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 187:1-9. [PMID: 24413160 PMCID: PMC3943950 DOI: 10.1016/j.envpol.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 05/15/2023]
Abstract
Diurnal and seasonal variations in the apparent density of ambient fine and coarse particulate matter (PM2.5 and CPM [PM2.5-10], respectively) were investigated in a location near downtown Los Angeles. The apparent densities, determined by particle mass-to-volume ratios, showed strong diurnal and seasonal variations, with higher values during the warm phase (June to August 2013) compared to cold phase (November 2012 to February 2013). PM2.5 apparent density showed minima during the morning and afternoon rush hours of the cold phase (1.20g cm(-3)), mainly due to the increased contribution of traffic-emitted soot particles, and highest values were found during the midday in the warm phase (2.38g cm(-3)). The lowest CPM apparent density was observed during the morning rush hours of the cold phase (1.41g cm(-3)), while highest in early afternoon during the warm phase (2.91g cm(-3)), most likely due to the increased wind-induced resuspension of road dust.
Collapse
Affiliation(s)
- Sina Hasheminassab
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Payam Pakbin
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Ralph J Delfino
- University of California, Department of Epidemiology, School of Medicine, 224 Irvine Hall, Irvine, CA 92697, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:441-51. [PMID: 24345242 DOI: 10.1080/10934529.2014.854677] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A year-long sampling campaign of quasi-ultrafine particles (dp < 0.25 μm) was conducted at 10 distinct sites representing source, urban and/or near-freeway, rural receptor and desert locations across the Los Angeles air basin. Redox activity of the PM samples was measured by means of the Dithiothreitol (DTT) assay and detailed chemical analysis was performed to measure the concentrations of chemical species. DTT activity per unit air volume and unit PM mass (expressed in nmol min(-1) m(-3) and nmol/min/μg PM, respectively) showed similar trends across sites and seasons. DTT activity was generally higher during cold seasons (winter and fall) compared to warm seasons (summer and spring). Noticeable peaks were observed at urban near-freeway locations representing "source" sites impacted by fresh traffic emissions. Regression analysis indicated strong association (R > 0.7) between the DTT activity and the concentrations of carbonaceous species (OC, EC, WSOC and WIOC) across all seasons and strong winter-time correlations with organic tracers of primary vehicular emissions including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and steranes. Strong correlations were also observed, particularly during winter, between DTT activity and transition metals (e.g., Cr, Mn, V, Fe, Cu, Cd and Zn), which share similar vehicular sources with primary organics. A multivariate linear regression analysis indicated that the variability in DTT activity is best explained by the variability in concentrations of WSOC, WIOC, EC and hopanes. Combined contributions from these species explained 88% of the DTT activity. The appearance of WSOC as a typical tracer of secondary organic aerosol, along with EC, WIOC and hopanes, all markers of emissions from primary combustion sources, emphasizes the contributions of both primary and secondary sources to the overall oxidative potential of quasi-ultrafine particles. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Collapse
Affiliation(s)
- Arian Saffari
- a University of Southern California , Department of Civil and Environmental Engineering , Los Angeles , California , USA
| | | | | | | | | |
Collapse
|
11
|
Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM₀.₂₅) particles in the Los Angeles metropolitan area and characterization of their sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:14-23. [PMID: 23800424 DOI: 10.1016/j.envpol.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 05/08/2023]
Abstract
Year-long sampling campaign of quasi-ultrafine particles (PM₀.₂₅) was conducted at 10 distinct locations across the Los Angeles south coast air basin and concentrations of trace elements and metals were quantified at each site using high-resolution inductively coupled plasma sector field mass spectrometry. In order to characterize sources of trace elements and metals, principal component analysis (PCA) was applied to the dataset. The major sources were identified as road dust (influenced by vehicular emissions as well as re-suspended soil), vehicular abrasion, residual oil combustion, cadmium sources and metal plating. These sources altogether accounted for approximately 85% of the total variance of quasi-ultrafine elemental content. The concentrations of elements originating from source and urban locations generally displayed a decline as we proceeded from the coast to the inland. Occasional concentration peaks in the rural receptor sites were also observed, driven by the dominant westerly/southwesterly wind transporting the particles to the receptor areas.
Collapse
Affiliation(s)
- Arian Saffari
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
12
|
Cheung K, Shafer MM, Schauer JJ, Sioutas C. Historical trends in the mass and chemical species concentrations of coarse particulate matter in the Los Angeles Basin and relation to sources and air quality regulations. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2012; 62:541-556. [PMID: 22696804 DOI: 10.1080/10962247.2012.661382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 microg/m3) compared with CPM (0.39 microg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3(-), SO4(2-) and Cl(-)) in urban areas. IMPLICATIONS Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials: Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.
Collapse
Affiliation(s)
- Kalam Cheung
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
13
|
Cheung K, Shafer MM, Schauer JJ, Sioutas C. Diurnal trends in oxidative potential of coarse particulate matter in the Los Angeles Basin and their relation to sources and chemical composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3779-87. [PMID: 22380575 DOI: 10.1021/es204211v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To investigate the relationship among sources, chemical composition, and redox activity of coarse particulate matter (CPM), three sampling sites were set up up in the Los Angeles Basin to collect ambient coarse particles at four time periods (morning, midday, afternoon, and overnight) in summer 2009 and winter 2010. The generation of reactive oxygen species (ROS) was used to assess the redox activity of these particles. Our results present distinct diurnal profiles of CPM-induced ROS formation in the two seasons, with much higher levels in summer than winter. Higher ROS activity was observed in the midday/afternoon during summertime, while the peak activity occurred in the overnight period in winter. Crustal materials, the major component of CPM, demonstrated very low water-solubility, in contrast with the modestly water-soluble anthropogenic metals, including Ba and Cu. The water-soluble fraction of four elements (V, Pd, Cu, and Rh) with primary anthropogenic origins displayed the highest associations with ROS activity (R(2) > 0.60). Our results show that coarse particles generated by anthropogenic activities, despite their low contribution to CPM mass, are important to the biological activity of CPM, and that a more targeted control strategy may be needed to protect the public health from these toxic CPM sources.
Collapse
Affiliation(s)
- Kalam Cheung
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|