1
|
Çakmak A, Fuerkaiti S, Karagüzel D, Karaaslan Ç, Gümüşderelioğlu M. Enhanced Osteogenic Potential of Noggin Knockout C2C12 Cells on BMP-2 Releasing Silk Scaffolds. ACS Biomater Sci Eng 2023; 9:6175-6185. [PMID: 37796024 PMCID: PMC10646847 DOI: 10.1021/acsbiomaterials.3c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
The CRISPR/Cas9 mechanism offers promising therapeutic approaches for bone regeneration by stimulating or suppressing critical signaling pathways. In this study, we aimed to increase the activity of BMP-2 signaling through knockout of Noggin, thereby establishing a synergistic effect on the osteogenic activity of cells in the presence of BMP-2. Since Noggin is an antagonist expressed in skeletal tissues and binds to subunits of bone morphogenetic proteins (BMPs) to inhibit osteogenic differentiation, here Noggin expression was knocked out using the CRISPR/Cas9 system. In accordance with this purpose, C2C12 (mouse myoblast) cells were transfected with CRISPR/Cas9 plasmids. Transfection was achieved with Lipofectamine and confirmed with intense fluorescent signals in microscopic images and deletion in target sequence in Sanger sequencing analysis. Thus, Noggin knockout cells were identified as a new cell source for tissue engineering studies. Then, the transfected cells were seeded on highly porous silk scaffolds bearing BMP-2-loaded silk nanoparticles (30 ng BMP-2/mg silk nanoparticle) in the size of 288 ± 62 nm. BMP-2 is released from the scaffolds in a controlled manner for up to 60 days. The knockout of Noggin by CRISPR/Cas9 was found to synergistically promote osteogenic differentiation in the presence of BMP-2 through increased Coll1A1 and Ocn expression and mineralization. Gene editing of Noggin and BMP-2 increased almost 2-fold Col1A1 expression and almost 3-fold Ocn expression compared to the control group. Moreover, transfected cells produced extracellular matrix (ECM) containing collagen fibers on the scaffolds and mineral-like structures were formed on the fibers. In addition, mineralization characterized by intense Alizarin red staining was detected in transfected cells cultured in the presence of BMP-2, while the other groups did not exhibit any mineralized areas. As has been demonstrated in this study, the CRISPR/Cas9 mechanism has great potential for obtaining new cell sources to be used in tissue engineering studies.
Collapse
Affiliation(s)
- Anıl
Sera Çakmak
- Department
of Chemical Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Sümeyra Fuerkaiti
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Dilara Karagüzel
- Department
of Biology, Molecular Biology Section, Hacettepe
University, 06800 Ankara, Turkey
| | - Çağatay Karaaslan
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
- Department
of Biology, Molecular Biology Section, Hacettepe
University, 06800 Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Department
of Chemical Engineering, Hacettepe University, 06800 Ankara, Turkey
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Pourkhodadad S, Hosseinkazemi H, Bonakdar S, Nekounam H. Biomimetic engineered approaches for neural tissue engineering: Spinal cord injury. J Biomed Mater Res B Appl Biomater 2023; 111:701-716. [PMID: 36214332 DOI: 10.1002/jbm.b.35171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 01/21/2023]
Abstract
The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.
Collapse
Affiliation(s)
| | - Hessam Hosseinkazemi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Łagiewka J, Girek T, Ciesielski W. Cyclodextrins-Peptides/Proteins Conjugates: Synthesis, Properties and Applications. Polymers (Basel) 2021; 13:1759. [PMID: 34072062 PMCID: PMC8198514 DOI: 10.3390/polym13111759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides mostly composed of six, seven, or eight α-D-glucopyranose units with α-1,4-glycosidic bonds to form toroidal structures. The CDs possess a hydrophilic exterior and hydrophobic interior with the ability to form an inclusion complex, especially with hydrophobic molecules. However, most existing studies are about conjugation CDs with peptide/protein focusing on the formation of new systems. The CD-peptide/protein can possess new abilities; particularly, the cavity can be applied in modulation properties of more complexed proteins. Most studies are focused on drug delivery, such as targeted delivery in cell-penetrating peptides or co-delivery. The co-delivery is based mostly on polylysine systems; on the other hand, the CD-peptide allows us to understand biomolecular mechanisms such as fibryllation or stem cell behaviour. Moreover, the CD-proteins are more complexed systems with a focus on targeted therapy; these conjugates might be controllable with various properties due to changes in their stability. Finally, the studies of CD-peptide/protein are promising in biomedical application and provide new possibilities for the conjugation of simple molecules to biomolecules.
Collapse
Affiliation(s)
- Jakub Łagiewka
- Faculty of Mathematics and Natural Science, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave., 13/15, 42 201 Czestochowa, Poland; (T.G.); (W.C.)
| | | | | |
Collapse
|
4
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
5
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Shan L, Kadhum AAH, Al-Furjan MSH, Weng W, Gong Y, Cheng K, Zhou M, Dong L, Chen G, Takriff MS, Sulong AB. In Situ Controlled Surface Microstructure of 3D Printed Ti Alloy to Promote Its Osteointegration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E815. [PMID: 30857349 PMCID: PMC6427748 DOI: 10.3390/ma12050815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
It is well known that three-dimensional (3D) printing is an emerging technology used to produce customized implants and surface characteristics of implants, strongly deciding their osseointegration ability. In this study, Ti alloy microspheres were printed under selected rational printing parameters in order to tailor the surface micro-characteristics of the printed implants during additive manufacturing by an in situ, controlled way. The laser path and hatching space were responsible for the appearance of the stripy structure (S), while the bulbous structure (B) and bulbous⁻stripy composite surface (BS) were determined by contour scanning. A nano-sized structure could be superposed by hydrothermal treatment. The cytocompatibility was evaluated by culturing Mouse calvaria-derived preosteoblastic cells (MC3T3-E1). The results showed that three typical microstructured surfaces, S, B, and BS, could be achieved by varying the 3D printing parameters. Moreover, the osteogenic differentiation potential of the S, B, and BS surfaces could be significantly enhanced, and the addition of nano-sized structures could be further improved. The BS surface with nano-sized structure demonstrated the optimum osteogenic differentiation potential. The present research demonstrated an in situ, controlled way to tailor and optimize the surface structures in micro-size during the 3D printing process for an implant with higher osseointegration ability.
Collapse
Affiliation(s)
- Lijun Shan
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| | - Abdul Amir H Kadhum
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| | - M S H Al-Furjan
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Maoying Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Guojin Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Mohd S Takriff
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.
| | - Abu Bakar Sulong
- Department of Mechanical and Materials Engineering, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia.
| |
Collapse
|
7
|
Designing Novel Interfaces via Surface Functionalization of Short-Chain-Length Polyhydroxyalkanoates. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/3831251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoates (PHA), a microbial plastic has emerged as promising biomaterial owing to the broad range of mechanical properties. However, some studies revealed that PHA is hydrophobic and has no recognition site for cell attachment and this is often a limitation in tissue engineering aspects. Owing to this, the polymer is tailored accordingly in order to enhance the biocompatibilityin vivoas well as to suit the intended application. Thus far, these surface modifications have led to PHA being widely used in various biomedical and pharmaceutical applications such as cardiac patches, wound management, nerve, bone, and cartilage repair. This review addresses the surface modification on biomedical applications focusing on short-chain-length PHA such as poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)].
Collapse
|
8
|
Izadi Z, Hajizadeh-Saffar E, Hadjati J, Habibi-Anbouhi M, Ghanian MH, Sadeghi-Abandansari H, Ashtiani MK, Samsonchi Z, Raoufi M, Moazenchi M, Izadi M, Nejad ASSH, Namdari H, Tahamtani Y, Ostad SN, Akbari-Javar H, Baharvand H. Tolerance induction by surface immobilization of Jagged-1 for immunoprotection of pancreatic islets. Biomaterials 2018; 182:191-201. [DOI: 10.1016/j.biomaterials.2018.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
|
9
|
Zhang Y, Wang Z, Wang Y, Li L, Wu Z, Ito Y, Yang X, Zhang P. A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. J Pharm Sci 2018; 108:551-562. [PMID: 30321547 DOI: 10.1016/j.xphs.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The highly damaging state of spinal cord injuries has provided much inspiration for the design of surface modification of the implants that can promote nerve regeneration and functional reconstruction. DOPA-IGF-1, a new recombinant protein designed in our previous study, exhibited strong binding affinity to titanium and significantly enhanced the growth of NIH3T3 cells on the surface of titanium with the same biological activity as IGF-1. In this article, surface modification of poly(lactide-co-glycolide) (PLGA) films with recombinant DOPA-IGF-1 was performed to promote the paracrine activity of human umbilical cord mesenchymal stem cells (hUCMSCs) by secreting neurotrophic factors. DOPA-IGF-1 exhibited the strongest binding ability to PLGA films than commercial IGF-1 and nonhydroxylated YKYKY-IGF-1. In vitro cultures of hUCMSCs on the modified PLGA films showed that DOPA-IGF-1@PLGA substrates significantly improved the proliferation, adhesion, and neurotrophic factors secretion of hUCMSCs, especially for nerve growth factor, as confirmed by qRT-PCR and western blot analysis. Subsequently, the acquired neurotrophic factors secreted by the hUCMSCs cultured on the DOPA-IGF-1@PLGA films obviously enhanced neurite outgrowth of PC12 cells. Taken together, PLGA substrates with DOPA-IGF-1 immobilization is a promising platform for neural tissue engineering via neurotrophic factors secretion from MSCs and should be further tested in vivo.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhenxu Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science 2-1 Hirosawa, Wako-shi, Saitama 351-0198 Japan
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun 130041, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
10
|
Joddar B, Kumar SA, Kumar A. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochem Biophys 2018; 76:187-195. [PMID: 28942575 PMCID: PMC5866207 DOI: 10.1007/s12013-017-0828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500W University Avenue, El Paso, TX, 79968, USA.
| | - Shweta Anil Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Alok Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
11
|
Qin J, Yang D, Maher S, Lima-Marques L, Zhou Y, Chen Y, Atkins GJ, Losic D. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J Mater Chem B 2018; 6:3136-3144. [DOI: 10.1039/c7tb03251j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
3D printing technology combined with electrochemical nano-structuring and HA modification is a promising approach for the fabrication of Ti implants with improved osseointegration.
Collapse
Affiliation(s)
- Jie Qin
- School of Chemical Engineering
- The University of Adelaide
- Australia
- Departments of Dental Implantology
- School and Hospital of Stomatology
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research
- Adelaide Medical School
- Discipline of Orthopaedics and Trauma
- The University of Adelaide
- Australia
| | - Shaheer Maher
- School of Chemical Engineering
- The University of Adelaide
- Australia
- Faculty of Pharmacy
- Assiut University
| | - Luis Lima-Marques
- The Institute for Photonics and Advanced Sensing
- The University of Adelaide
- Australia
| | - Yanmin Zhou
- Departments of Dental Implantology
- School and Hospital of Stomatology
- Jilin University
- China
| | - Yujie Chen
- School of Mechanical Engineering
- The University of Adelaide
- Australia
| | - Gerald J. Atkins
- Centre for Orthopaedic and Trauma Research
- Adelaide Medical School
- Discipline of Orthopaedics and Trauma
- The University of Adelaide
- Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- Australia
| |
Collapse
|
12
|
Lantigua D, Kelly YN, Unal B, Camci-Unal G. Engineered Paper-Based Cell Culture Platforms. Adv Healthc Mater 2017; 6. [PMID: 29076283 DOI: 10.1002/adhm.201700619] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Paper is used in various applications in biomedical research including diagnostics, separations, and cell cultures. Paper can be conveniently engineered due to its tunable and flexible nature, and is amenable to high-throughput sample preparation and analysis. Paper-based platforms are used to culture primary cells, tumor cells, patient biopsies, stem cells, fibroblasts, osteoblasts, immune cells, bacteria, fungi, and plant cells. These platforms are compatible with standard analytical assays that are typically used to monitor cell behavior. Due to its thickness and porous nature, there are no mass transport limitations to/from the cells in paper scaffolds. It is possible to pattern paper in different scales (micrometer to centimeter), generate modular configurations in 3D, fabricate multicellular and compartmentalized tissue mimetics for clinical applications, and recover cells from the scaffolds for further analysis. 3D paper constructs can provide physiologically relevant tissue models for personalized medicine. Layer-by layer strategies to assemble tissue-like structures from low-cost and biocompatible paper-based materials offer unique opportunities that include understanding fundamental biology, developing disease models, and assembling different tissues for organ-on-paper applications. Paper-based platforms can also be used for origami-inspired tissue engineering. This work provides an overview of recent progress in engineered paper-based biomaterials and platforms to culture and analyze cells.
Collapse
Affiliation(s)
- Darlin Lantigua
- Department of Biological Sciences; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Yan Ni Kelly
- Department of Biomedical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| | - Baris Unal
- Triton Systems, Inc.; 200 Turnpike Road Chelmsford MA 01824 USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering; University of Massachusetts Lowell; One University Avenue Lowell MA 01854 USA
| |
Collapse
|
13
|
Fusion of polymeric material-binding peptide to cell-adhesion artificial proteins enhances their biological function. Biointerphases 2017; 12:021002. [DOI: 10.1116/1.4979577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Savoji H, Maire M, Lequoy P, Liberelle B, De Crescenzo G, Ajji A, Wertheimer MR, Lerouge S. Combining Electrospun Fiber Mats and Bioactive Coatings for Vascular Graft Prostheses. Biomacromolecules 2016; 18:303-310. [PMID: 27997154 DOI: 10.1021/acs.biomac.6b01770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The patency of small-diameter (<6 mm) synthetic vascular grafts (VGs) is still limited by the absence of a confluent, blood flow-resistant monolayer of endothelial cells (ECs) on the lumen and of vascular smooth muscle cell (VSMC) growth into the media layer. In this research, electrospinning has been combined with bioactive coatings based on chondroitin sulfate (CS) to create scaffolds that possess optimal morphological and bioactive properties for subsequent cell seeding. We fabricated random and aligned electrospun poly(ethylene terephthalate), ePET, mats with small pores (3.2 ± 0.5 or 3.9 ± 0.3 μm) and then investigated the effects of topography and bioactive coatings on EC adhesion, growth, and resistance to shear stress. Bioactive coatings were found to dominate the cell behavior, which enabled creation of a near-confluent EC monolayer that resisted physiological shear-flow conditions. CS is particularly interesting since it prevents platelet adhesion, a key issue to avoid blood clot formation in case of an incomplete EC monolayer or partial cell detachment. Regarding the media layer, circumferentially oriented nanofibers with larger pores (6.3 ± 0.5 μm) allowed growth, survival, and inward penetration of VSMCs, especially when the CS was further coated with tethered, oriented epithelial growth factor (EGF). In summary, the techniques developed here can lead to adequate scaffolds for the luminal and media layers of small-diameter synthetic VGs.
Collapse
Affiliation(s)
- Houman Savoji
- Laboratory of Endovascular Biomaterials (LBeV), Research Centre, Centre Hospitalier de l'Université de Montreal (CRCHUM) , Montreal, Québec H2W 1T7, Canada
| | - Marion Maire
- Laboratory of Endovascular Biomaterials (LBeV), Research Centre, Centre Hospitalier de l'Université de Montreal (CRCHUM) , Montreal, Québec H2W 1T7, Canada
| | - Pauline Lequoy
- Laboratory of Endovascular Biomaterials (LBeV), Research Centre, Centre Hospitalier de l'Université de Montreal (CRCHUM) , Montreal, Québec H2W 1T7, Canada.,Department of Mechanical Engineering, École de Technologie Supérieure , Montreal, Québec H3C 1K3, Canada
| | | | | | | | | | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV), Research Centre, Centre Hospitalier de l'Université de Montreal (CRCHUM) , Montreal, Québec H2W 1T7, Canada.,Department of Mechanical Engineering, École de Technologie Supérieure , Montreal, Québec H3C 1K3, Canada
| |
Collapse
|
15
|
Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA. Biomacromolecule immobilization: grafting of fish-scale collagen peptides onto aminolyzed P(3HB-co-4HB) scaffolds as a potential wound dressing. ACTA ACUST UNITED AC 2016; 11:055009. [PMID: 27710927 DOI: 10.1088/1748-6041/11/5/055009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polyhydroxyalkanoate (PHA) is a microbial polymer that has been at the forefront of many attempts at tissue engineering. However, the surface of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is hydrophobic with few recognition sites for cell attachment. Various concentrations of fish-scale collagen peptides (FSCPs) were incorporated into P(3HB-co-4HB) copolymer by aminolysis. Later, FSCPs were introduced onto the aminolyzed P(3HB-co-4HB) scaffolds. Introduction of the FSCP groups was verified using Fourier transform infrared spectroscopy and the ninhydrin method. The effect of the incorporation of FSCPs on hydrophilicity was investigated using the water contact angle. As the concentration of FSCPs increased, the water contact angle decreased. In vitro study demonstrated that P(3HB-co-4HB)/FSCP scaffolds provided better cell attachment and growth of L929 mouse fibroblast cells and better cell proliferation. In vivo study showed that P(3HB-co-4HB)/1.5 wt% FSCPs had a significant effect on wound contractions, with the highest percentage of wound closure (61%) in 7 d.
Collapse
Affiliation(s)
- S Vigneswari
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, MOSTI, 11700 Penang, Malaysia. Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia. School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | | | | | | | |
Collapse
|
16
|
Noel S, Fortier C, Murschel F, Belzil A, Gaudet G, Jolicoeur M, De Crescenzo G. Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater 2016; 37:69-82. [PMID: 27039978 DOI: 10.1016/j.actbio.2016.03.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/11/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity. STATEMENT OF SIGNIFICANCE This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial growth factor (VEGF) was then co-immobilized with the cell adhesive RGD peptide within our dextran coating through a relevant strategy featuring orientation and specificity. Altogether, both adhesive and proliferative cues could be incorporated into our construct with additive, if not synergetic, effects.
Collapse
|
17
|
Satué M, Monjo M, Ronold HJ, Lyngstadaas SP, Ramis JM. Titanium implants coated with UV-irradiated vitamin D precursor and vitamin E: in vivo performance and coating stability. Clin Oral Implants Res 2016; 28:424-431. [PMID: 26926140 DOI: 10.1111/clr.12815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed at evaluating the biological response of titanium implants coated with UV-irradiated 7-dehydrocholesterol (7-DHC) and vitamin E (VitE) in vivo and analyzing the effects of aging on their stability and bioactivity in vitro. MATERIAL AND METHODS Titanium surfaces were coated with 7-DHC and VitE, UV-irradiated and incubated for 48 h at 23°C to allow cholecalciferol synthesis. The in vivo biological response was tested using a rabbit tibia model after 8 weeks of healing by analyzing the wound fluid and the mRNA levels of several markers at the bone-implant interface (N = 8). The stability of the coating after storage up to 12 weeks was determined using HPLC analysis, and the bioactivity of the stored modified implants was studied by an in vitro study with MC3T3-E1 cells (N = 6). RESULTS A significant increase in gene expression levels of osteocalcin was found in the bone tissue attached to implants coated with the low dose of 7-DHC and VitE, together with a higher ALP activity in the wound fluid. Implants treated with the high dose of 7-DHC and VitE showed increased tissue necrosis and inflammation. Regarding the aging effects, coated implants were stable and bioactive up to 12 weeks when stored at 4°C and avoiding oxygen, light and moisture. CONCLUSION This study demonstrates that Ti implants coated with UV-irradiated 7-DHC and VitE promote in vivo gene expression of bone formation markers and ALP activity, while they keep their osteopromotive potential in vitro and composition when stored up to 12 weeks at 4°C.
Collapse
Affiliation(s)
- María Satué
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain
| | - Marta Monjo
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Hans Jacob Ronold
- Department of Prosthetics and Oral Function, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | - Joana M Ramis
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca, Spain.,Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| |
Collapse
|
18
|
Sutar P, Maji TK. Coordination polymer gels: soft metal–organic supramolecular materials and versatile applications. Chem Commun (Camb) 2016; 52:8055-74. [DOI: 10.1039/c6cc01955b] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Lequoy P, Murschel F, Liberelle B, Lerouge S, De Crescenzo G. Controlled co-immobilization of EGF and VEGF to optimize vascular cell survival. Acta Biomater 2016; 29:239-247. [PMID: 26485166 DOI: 10.1016/j.actbio.2015.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/09/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023]
Abstract
Growth factors (GFs) are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Co-immobilizing GFs on materials while preserving their bioactivity still represents a major challenge in the field of tissue regeneration and bioactive implants. In this study, we explore the potential of an oriented immobilization technique based on two high affinity peptides, namely the Ecoil and Kcoil, to allow for the simultaneous capture of the epidermal growth factor (EGF) and the vascular endothelial growth factor (VEGF) on a chondroitin sulfate coating. This glycosaminoglycan layer was selected as it promotes cell adhesion but reduces non-specific adsorption of plasma proteins. We demonstrate here that both Ecoil-tagged GFs can be successfully immobilized on chondroitin sulfate surfaces that had been pre-decorated with the Kcoil peptide. As shown by direct ELISA, changing the incubation concentration of the various GFs enabled to control their grafted amount. Moreover, cell survival studies with endothelial and smooth muscle cells confirmed that our oriented tethering strategy preserved GF bioactivity. Of salient interest, co-immobilizing EGF and VEGF led to better cell survival compared to each GF captured alone, suggesting a synergistic effect of these GFs. Altogether, these results demonstrate the potential of coiled-coil oriented GF tethering for the co-immobilization of macromolecules; it thus open the way to the generation of biomaterials surfaces with fine-tuned biological properties. STATEMENT OF SIGNIFICANCE Growth factors are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Controlled coimmobilization of growth factors on biomaterials while preserving their bioactivity represents a major challenge in the field of tissue regeneration and bioactive implants. This study demonstrates the potential of an oriented immobilization technique based on two high affinity peptides to allow for the simultaneous capture of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Our system allowed an efficient control on growth factor immobilization by adjusting the incubation concentrations of EGF and VEGF. Of salient interest, co-immobilizing of specific ratios of EGF and VEGF demonstrated a synergistic effect on cell survival compared to each GF captured alone.
Collapse
Affiliation(s)
- Pauline Lequoy
- Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 boul. Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada
| | - Frederic Murschel
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 boul. Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| |
Collapse
|
20
|
Murschel F, Zaimi A, Noel S, Jolicoeur M, De Crescenzo G. Specific Adsorption via Peptide Tags: Oriented Grafting and Release of Growth Factors for Tissue Engineering. Biomacromolecules 2015; 16:3445-54. [DOI: 10.1021/acs.biomac.5b00955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frederic Murschel
- Department of Chemical Engineering and ‡Institute of
Biomedical Engineering,
Groupe de Recherche en Sciences et Technologies Biomédicales
(GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, Quebec, Canada H3C 3A7
| | - Aldo Zaimi
- Department of Chemical Engineering and ‡Institute of
Biomedical Engineering,
Groupe de Recherche en Sciences et Technologies Biomédicales
(GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, Quebec, Canada H3C 3A7
| | - Samantha Noel
- Department of Chemical Engineering and ‡Institute of
Biomedical Engineering,
Groupe de Recherche en Sciences et Technologies Biomédicales
(GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, Quebec, Canada H3C 3A7
| | - Mario Jolicoeur
- Department of Chemical Engineering and ‡Institute of
Biomedical Engineering,
Groupe de Recherche en Sciences et Technologies Biomédicales
(GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, Quebec, Canada H3C 3A7
| | - Gregory De Crescenzo
- Department of Chemical Engineering and ‡Institute of
Biomedical Engineering,
Groupe de Recherche en Sciences et Technologies Biomédicales
(GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, Quebec, Canada H3C 3A7
| |
Collapse
|
21
|
Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications. J Dent 2015; 43:1162-1174. [DOI: 10.1016/j.jdent.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 01/06/2023] Open
|
22
|
Sato S, Ikemi M, Kikuchi T, Matsumura S, Shiba K, Fujita M. Bridging Adhesion of a Protein onto an Inorganic Surface Using Self-Assembled Dual-Functionalized Spheres. J Am Chem Soc 2015; 137:12890-6. [PMID: 26190770 DOI: 10.1021/jacs.5b06184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the bridging adhesion of different classes of materials in their intact functional states, the adhesion of biomolecules onto inorganic surfaces is a necessity. A new molecular design strategy for bridging adhesion was demonstrated by the introduction of two independent recognition groups on the periphery of spherical complexes self-assembled from metal ions (M) and bidentate ligands (L). These dual-functionalized M12L24 spheres were quantitatively synthesized in one step from two ligands, bearing either a biotin for streptavidin recognition or a titania-binding aptamer, and Pd(II) ions. The selective recognition of titania surfaces was achieved by ligands with hexapeptide aptamers (Arg-Lys-Leu-Pro-Asp-Ala: minTBP-1), whose fixation ability was enhanced by the accumulation effect on the surface of the M12L24 spheres. These well-defined spherical structures can be specifically tailored to promote interactions with both titania and streptavidin simultaneously without detrimentally affecting either recognition motif. The irreversible immobilization of the spheres onto titania was revealed quantitatively by quartz crystal microbalance measurements, and the adhesion of streptavidin to the titania surface mediated by the biotin surrounding the spheres was visually demonstrated by lithographic patterning experiments.
Collapse
Affiliation(s)
- Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masatoshi Ikemi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Kikuchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research , 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research , 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:490-6. [PMID: 26117781 DOI: 10.1016/j.msec.2015.05.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/28/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Insulin like growth factor binding protein-3 (IGFBP-3) in bone cells and its utilization in dental implants have not been well studied. The aim of this study was to determine the osteogenic efficacy of chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 coated titanium (Ti) implants. Ch-GNPs were conjugated with IGFBP-3 plasmid DNA through a coacervation process. Conjugation was cast over Ti surfaces, and cells were seeded on coated surfaces. For in vitro analysis the expression of different proteins was analyzed by immunoblotting. For in vivo analysis, Ch-GNP/IGFBP-3 coated implants were installed in rat mandibles. Four weeks post-implantation, mandibles were examined by microcomputed tomography (μCT), immunohistochemistry, hematoxylin & eosin and tartrate resistance acid phosphatase staining. In vitro overexpressed Ch-GNP/IGFBP-3 coated Ti surfaces was associated with activation of extracellular signal related kinase (ERK), inhibition of the stress activated protein c-Jun N-terminal kinase (JNK) and enhanced bone morphogenetic protein (BMP)-2 and 7 compared to control. Further, in vivo, Ch-GNP/IGFBP-3 coated implants were associated with inhibition of implant induced osteoclastogenesis molecules, receptor activator of nuclear factor kappa-B ligand (RANKL) and enhanced expression of osteogenic molecules including BMP2/7 and osteopontin (OPN). The μCT analysis demonstrated that IGFBP-3 increased the volume of newly formed bone surrounding the implants compared to control (n=5; p<0.05). These results support the view that IGFBP-3 overexpression diminishes osteoclastogenesis and enhances osteogenesis of Ti implants, and can serve as a potent molecule for the development of good implantation.
Collapse
|
24
|
Ahmed TAE, Ringuette R, Wallace VA, Griffith M. Autologous fibrin glue as an encapsulating scaffold for delivery of retinal progenitor cells. Front Bioeng Biotechnol 2015; 2:85. [PMID: 25692127 PMCID: PMC4315092 DOI: 10.3389/fbioe.2014.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022] Open
Abstract
The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal(®)FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors.
Collapse
Affiliation(s)
- Tamer A E Ahmed
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City) , Alexandria , Egypt ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Randy Ringuette
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Valerie A Wallace
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; Vision Science Research Program, Toronto Western Research Institute , Toronto, ON , Canada
| | - May Griffith
- Vision Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, ON , Canada ; Department of Clinical and Experimental Medicine, Integrative Regenerative Medicine Centre, Linköping University , Linköping , Sweden
| |
Collapse
|
25
|
Yamamoto M, Rafii S, Rabbany SY. Scaffold biomaterials for nano-pathophysiology. Adv Drug Deliv Rev 2014; 74:104-14. [PMID: 24075835 DOI: 10.1016/j.addr.2013.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/11/2013] [Accepted: 09/20/2013] [Indexed: 01/20/2023]
Abstract
This review is intended to provide an overview of tissue engineering strategies using scaffold biomaterials to develop a vascularized tissue engineered construct for nano-pathophysiology. Two primary topics are discussed. The first is the biological or synthetic microenvironments that regulate cell behaviors in pathological conditions and tissue regeneration. Second is the use of scaffold biomaterials with angiogenic factors and/or cells to realize vascularized tissue engineered constructs for nano-pathophysiology. These topics are significantly overlapped in terms of three-dimensional (3-D) geometry of cells and blood vessels. Therefore, this review focuses on neovascularization of 3-D scaffold biomaterials induced by angiogenic factors and/or cells. The novel strategy of this approach in nano-pathophysiology is to utilize the vascularized tissue engineered construct as a tissue model to predict the distribution and subsequent therapeutic efficacy of a drug delivery system with different physicochemical and biological properties.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
| | - Sina Y Rabbany
- Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA; Bioengineering Program, Hofstra University, 110 Weed Hall, Hempstead, NY 11549, USA
| |
Collapse
|
26
|
Tada S, Timucin E, Kitajima T, Sezerman OU, Ito Y. Direct in vitro selection of titanium-binding epidermal growth factor. Biomaterials 2014; 35:3497-503. [DOI: 10.1016/j.biomaterials.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/07/2014] [Indexed: 02/01/2023]
|
27
|
Forte G, Travaglia A, Magrì A, Satriano C, La Mendola D. Adsorption of NGF and BDNF derived peptides on gold surfaces. Phys Chem Chem Phys 2014; 16:1536-44. [DOI: 10.1039/c3cp52499j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Joddar B, Hoshiba T, Chen G, Ito Y. Stem cell culture using cell-derived substrates. Biomater Sci 2014; 2:1595-1603. [DOI: 10.1039/c4bm00126e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There have been great efforts to develop cell culture systems using chemically-fixed cells or decellularized matrices to regulate stem cell functions.
Collapse
Affiliation(s)
| | - Takashi Hoshiba
- Department of Biochemical Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa, Japan
- Tissue Regeneration Materials Unit
| | - Guoping Chen
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Wako, Japan
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
| |
Collapse
|
29
|
Li H, Cooper-White JJ. Changing ligand number and type within nanocylindrical domains through kinetically constrained self-assembly – impacts of ligand ‘redundancy’ on human mesenchymal stem cell adhesion and morphology. Biomater Sci 2014; 2:1693-705. [DOI: 10.1039/c4bm00109e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this paper, we firstly describe a facile method by which sequential attachment of different adhesion peptides to a nanotopographical, self-assembled block copolymer cell culture surface is made possible through orthogonal click chemistry.
Collapse
Affiliation(s)
- Haiqing Li
- Tissue Engineering and Microfluidic Laboratory
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- , Australia
| | - Justin J. Cooper-White
- Tissue Engineering and Microfluidic Laboratory
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- , Australia
- School of Chemical Engineering
| |
Collapse
|
30
|
Oyman G, Geyik C, Ayranci R, Ak M, Odaci Demirkol D, Timur S, Coskunol H. Peptide-modified conducting polymer as a biofunctional surface: monitoring of cell adhesion and proliferation. RSC Adv 2014. [DOI: 10.1039/c4ra08481k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A designed bio-functional surface is a promising candidate forcell-culture-on-a-chipapplications.
Collapse
Affiliation(s)
- Gizem Oyman
- Ege University
- Graduate School of Natural and Applied Sciences
- Biotechnology Dept
- 35100-Bornova/Izmir, Turkey
| | - Caner Geyik
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
| | - Rukiye Ayranci
- Pamukkale University
- Faculty of Arts and Science
- Chemistry Dept
- Denizli, Turkey
| | - Metin Ak
- Pamukkale University
- Faculty of Arts and Science
- Chemistry Dept
- Denizli, Turkey
| | - Dilek Odaci Demirkol
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
- Ege University
- Faculty of Science
| | - Suna Timur
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
- Ege University
- Faculty of Science
| | - Hakan Coskunol
- Ege University
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science
- 35100-Bornova/Izmir, Turkey
- Ege University
- Faculty of Medicine
| |
Collapse
|
31
|
Immobilization of bone morphogenetic protein on DOPA- or dopamine-treated titanium surfaces to enhance osseointegration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:265980. [PMID: 24459666 PMCID: PMC3888698 DOI: 10.1155/2013/265980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/16/2013] [Accepted: 11/25/2013] [Indexed: 01/31/2023]
Abstract
Titanium was treated with 3,4-dihydroxy-L-phenylalanine (DOPA) or dopamine to immobilize bone morphogenetic protein-2 (BMP2), a biomolecule. DOPA and dopamine solutions turned into suspensions, and precipitates were produced at high pH. Both treatments produced a brown surface on titanium that was thicker at high pH than low pH. Dopamine produced a thicker layer than DOPA. The hydrophobicity of the surfaces increased after treatment with dopamine independent of pH. Furthermore, there were more amino groups in the layers formed at pH 8.5 than pH 4.5 in both treatments. Dopamine treatment produced more amino groups in the layer than DOPA. BMP2 was immobilized on the treated surfaces via a coupling reaction using carbodiimide. More BMP2 was immobilized on surfaces treated at pH 8.5 than pH 4.5 in both treatments. The immobilized BMP induced specific signal transduction and alkali phosphatase, a differentiation marker. Thus, the present study demonstrates that titanium treated with DOPA or dopamine can become bioactive via the surface immobilization of BMP2, which induces specific signal transduction.
Collapse
|
32
|
Park SH, Zhu L, Tada S, Obuse S, Yoshida Y, Nakamura M, Son TI, Tsuneda S, Ito Y. Phosphorylated gelatin to enhance cell adhesion to titanium. POLYM INT 2013. [DOI: 10.1002/pi.4647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shin-Hye Park
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Life Science and Medical Bio-Science, Waseda University; 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Liping Zhu
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Seiichi Tada
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Sei Obuse
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yasuhiro Yoshida
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Biomaterials, Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-Cho Kikta-Ku, Okayama 700-8558 Japan
| | - Mariko Nakamura
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Dental Hygiene Program; Kibi International College; 8 Iga-cho, Takahashi Okayama 716-8508 Japan
| | - Tae Il Son
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Bioscience and Biotechnology; Chung-Ang University; 40-1 San, Nae-Ri, Daeduck-myun Ansung-si Kyungki-do 456-756 Korea
| | - Satoshi Tsuneda
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Life Science and Medical Bio-Science, Waseda University; 2-2 Wakamatsu-cho; Shinjuku-ku Tokyo 162-8480 Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
33
|
Li H, Frith J, Cooper-White JJ. Modulation of Stem Cell Adhesion and Morphology via Facile Control over Surface Presentation of Cell Adhesion Molecules. Biomacromolecules 2013; 15:43-52. [DOI: 10.1021/bm4012562] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiqing Li
- Tissue Engineering and Microfluidic Laboratory, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of Cooper and College Road, Brisbane, 4072 Queensland, Australia
| | - Jessica Frith
- Tissue Engineering and Microfluidic Laboratory, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of Cooper and College Road, Brisbane, 4072 Queensland, Australia
| | - Justin J. Cooper-White
- Tissue Engineering and Microfluidic Laboratory, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of Cooper and College Road, Brisbane, 4072 Queensland, Australia
- School of Chemical Engineering, The University of Queensland, College Road, Brisbane, 4072 Queensland, Australia
- Division of Materials Science and Engineering, CSIRO, Clayton, 3169 Victoria, Australia
| |
Collapse
|
34
|
An epidermal growth factor derivative with binding affinity for hydroxyapatite and titanium surfaces. Biomaterials 2013; 34:9747-53. [DOI: 10.1016/j.biomaterials.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 11/15/2022]
|
35
|
Joddar B, Ito Y. Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. J Biotechnol 2013; 168:218-28. [DOI: 10.1016/j.jbiotec.2013.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/13/2013] [Accepted: 04/29/2013] [Indexed: 01/27/2023]
|
36
|
Sivakumar PM, Zhou D, Son TI, Ito Y. Design and Synthesis of Photoreactive Polymers for Biomedical Applications. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
Bio-orthogonal and combinatorial approaches for the design of binding growth factors. Biomaterials 2013; 34:7565-74. [PMID: 23859658 DOI: 10.1016/j.biomaterials.2013.06.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/23/2013] [Indexed: 11/22/2022]
Abstract
Merrifield chemistry enables the convenient synthesis of oligonucleotides and peptides, while recombinant DNA technology has facilitated protein engineering. Recently, protein engineering has been extended into bio-orthogonal protein engineering by the development of specific chemical or enzymatic modification technologies. The combinatorial approach of molecular evolutionary engineering (or in vitro selection) has also provided a new design tool for functional peptides. These methodologies have enabled the development of various new proteinaceous materials for biological and medical applications. Here, we will discuss recent progress in the molecular design of proteins with respect to the preparation of binding growth factors, which are of increasing importance in the biomaterials field.
Collapse
|
38
|
Jung JH, Lee JH, Silverman JR, John G. Coordination polymer gels with important environmental and biological applications. Chem Soc Rev 2013. [PMID: 23192282 DOI: 10.1039/c2cs35407a] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination Polymer Gels (CPGs) constitute a subset of solid-like metal ion and bridging organic ligand structures (similar to metal-organic frameworks) that form multi-dimensional networks through a trapped solvent as a result of non-covalent interactions. While physical properties of these gels are similar to conventional high molecular weight organic polymer gels, coordination polymer gel systems are often fully reversible and can be assembled and disassembled in the presence of additional energy (heat, sonication, shaking) to give a solution of solvated gelators. Compared to gels resulting from purely organic self-assembled low molecular weight gelators, metal ions incorporated into the fibrilar networks spanning the bulk solvent can impart CPGs with added functionalities. The solid/liquid nature of the gels allows for species to migrate through the gel system and interact with metals, ligands, and the solvent. Chemosensing, catalysis, fluorescence, and drug-delivery applications are some of the many potential uses for these dynamic systems, taking advantage of the metal ion's coordination, the organic polydentate ligand's orientation and functionality, or a combination of these properties. By fine tuning these systems through metal ion and ligand selection and by directing self-assembly with external stimuli the rational synthesis of practical systems can be envisaged.
Collapse
Affiliation(s)
- Jong Hwa Jung
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| | | | | | | |
Collapse
|
39
|
Joddar B, Albayrak A, Kang J, Nishihara M, Abe H, Ito Y. Sustained delivery of siRNA from dopamine-coated stainless steel surfaces. Acta Biomater 2013; 9:6753-61. [PMID: 23333442 DOI: 10.1016/j.actbio.2013.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Dopamine, an adhesive protein can be covalently deposited onto biomaterials. In this study, we evaluated the ability of dopamine-coated surfaces for small interfering RNA (siRNA) immobilization and release. Dopamine was deposited onto 316L stainless steel discs either as a monolayer at acidic pH or as polydopamine at alkaline pH, following which siRNA was immobilized onto these discs. To investigate the RNA interference ability of immobilized siRNA, reduction of luciferase expression in HeLa, and reduction of Egr-1 expression and cell proliferation in human aortic smooth muscle cells (HAoSMCs) were determined. Dopamine treatment of 316L stainless steel discs under both the acidic and alkaline conditions resulted in the deposition of amino (NH2) groups, which enabled electrostatic immobilization of siRNA. The immobilized siRNA was released from both types of coatings, and enhanced the percent suppression of firefly luciferase activity of HeLa significantly up to ~96.5% compared to HeLa on non-dopamine controls (18%). Both the release of siRNA and the percent suppression of firefly luciferase activity were sustained for at least 7 days. In another set of experiments, siRNA sequences targeting to inhibit the activity of the transcription factor Egr-1 were eluted from dopamine-coated surfaces to HAoSMCs. Egr-1 siRNA eluted from dopamine-coated surfaces, significantly reduced the proliferation of HAoSMCs and their protein expression of Egr-1. Therefore, this method of surface immobilization of siRNA onto dopamine-coated surfaces might be effective for nucleic acid delivery from stents.
Collapse
|
40
|
Ross AM, Lahann J. Surface engineering the cellular microenvironment via patterning and gradients. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23275] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Zhou D, Ito Y. Inorganic material surfaces made bioactive by immobilizing growth factors for hard tissue engineering. RSC Adv 2013. [DOI: 10.1039/c3ra23313h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
42
|
Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 2012; 64:1820-39. [PMID: 22705547 DOI: 10.1016/j.addr.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.
Collapse
Affiliation(s)
- Peter Koegler
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
44
|
Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci 2012; 13:6053-6072. [PMID: 22754349 PMCID: PMC3382770 DOI: 10.3390/ijms13056053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023] Open
Abstract
Growth factors play important roles in tissue regeneration. However, because of their instability and diffusible nature, improvements in their performance would be desirable for therapeutic applications. Conferring binding affinities would be one way to improve their applicability. Here we review techniques for conjugating growth factors to polypeptides with particular affinities. Conjugation has been designed at the level of gene fusion and of polypeptide ligation. We summarize and discuss the designs and applications of binding growth factors prepared by such conjugation approaches.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kitajima
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
45
|
KITAJIMA T, TADA S, ITO Y. Creation of Binding Growth Factors and Their Applications. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|