1
|
Zhang Y, Zhang M, Li W, Hu T, Liu Y, Huang H, Kang Z. Improving the mechanical property of silk by feeding silkworm with chiral carbon dots. Int J Biol Macromol 2024; 281:136644. [PMID: 39423973 DOI: 10.1016/j.ijbiomac.2024.136644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The influence of chiral materials on organisms is crucial. However, there is little research on the impact of chiral carbon dots (CDs), a kind of typical chiral materials, on biology. Herein, chiral CDs (L-/D-CDs) were synthesized using the thermal polymerization method from citric acid and chiral cysteine. The effect of chiral CDs on silkworms was explored through feeding silkworms with chiral CDs. The breaking strength of silk fibers (667.9 MPa) in D-CDs group exhibit a 71.4 % increase compared with control-silk (389.5 MPa), while the breaking strength of silk fibers in L-CDs group increases by 51.6 %. In addition, Fourier transform infrared spectra display CDs can prevent the transformation from random coil/α-helix structures to β-sheet structures. Furthermore, D-CDs group exhibit the highest percentage of four primary amino acids (glycine, alanine, serine, and tyrosine) relative to the total amino acids in silkworm hemolymph. This percentage is elevated by 70.5 % compared to the control group, thereby furnishing an ample supply of raw materials for the synthesis of silk proteins. In contrast, L-CDs group exhibit increase by 39.3 %. Our work provides new ideas and approaches for studying the effects of chiral materials on living organisms.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| |
Collapse
|
2
|
Palermo G, Rippa M, Aceti DM, Guglielmelli A, Valente L, Sagnelli D, D'Avino A, Guilcapi B, Maccaferri N, Petti L, Strangi G. Intrinsic Superchirality in Planar Plasmonic Metasurfaces. NANO LETTERS 2024; 24:10202-10209. [PMID: 39106044 DOI: 10.1021/acs.nanolett.4c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Plasmonic metasurfaces with spatial symmetry breaking are crucial materials with significant applications in fields such as polarization-controlled photonic devices and nanophotonic platforms for chiral sensing. In this paper, we introduce planar plasmonic metasurfaces, less than one-tenth of a wavelength thick, featuring nanocavities formed by three equilateral triangles. This configuration creates uniform, thin metasurfaces. Through a combination of experimental measurements and numerical modeling, we demonstrate the inherent superchirality of these plasmonic metasurfaces. We address the challenge of achieving a strong enhancement of optical chirality in the visible spectrum, reaching levels comparable to those of 3D chiral metasurfaces.
Collapse
Affiliation(s)
- Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" CNR, 80078 Pozzuoli, Italy
| | - Dante M Aceti
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Liliana Valente
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Domenico Sagnelli
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" CNR, 80078 Pozzuoli, Italy
| | - Amalia D'Avino
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" CNR, 80078 Pozzuoli, Italy
| | - Bryan Guilcapi
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" CNR, 80078 Pozzuoli, Italy
| | - Nicolò Maccaferri
- Department of Physics, Integrated Science Lab and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" CNR, 80078 Pozzuoli, Italy
| | - Giuseppe Strangi
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Liu W, Han H, Wang J. Recent Advances in the 3D Chiral Plasmonic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305725. [PMID: 37828637 DOI: 10.1002/smll.202305725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
From the view of geometry, chirality is that an object cannot overlap with its mirror image, which has been a fundamental scientific problem in biology and chemistry since the 19th century. Chiral inorganic nanomaterials serve as ideal templates for investigating chiral transfer and amplification mechanisms between molecule and bulk materials, garnering widespread attentions. The chiroptical property of chiral plasmonic nanomaterials is enhanced through localized surface plasmon resonance effects, which exhibits distinctive circular dichroism (CD) response across a wide wavelength range. Recently, 3D chiral plasmonic nanomaterials are becoming a focal research point due to their unique characteristics and planar-independence. This review provides an overview of recent progresses in 3D chiral plasmonic nanomaterials studies. It begins by discussing the mechanisms of plasmonic enhancement of molecular CD response, following by a detailed presentation of novel classifications of 3D chiral plasmonic nanomaterials. Finally, the applications of 3D chiral nanomaterials such as biology, sensing, chiral catalysis, photology, and other fields have been discussed and prospected. It is hoped that this review will contribute to the flourishing development of 3D chiral nanomaterials.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Han
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
4
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Endo K, Hashiyada S, Narushima T, Togawa Y, Okamoto H. Circular dichroism of pseudo-two-dimensional metal nanostructures: Rotational symmetry and reciprocity. J Chem Phys 2023; 159:234706. [PMID: 38112510 DOI: 10.1063/5.0178943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Circular dichroism (CD) spectra for pseudo-two-dimensional chiral nanomaterials were systematically investigated and analyzed in relation to the rotational symmetry of the nanomaterials. Theoretically, an ideal two-dimensional chiral matter is CD inactive for light incident normal to the plane if it possesses threefold or higher rotational symmetry. If the matter has two- or onefold rotational symmetry, it should exhibit CD activity, and the CD signal measured from the back side of the matter is expected to be inverted from that measured from the front side. For pseudo-two-dimensional chiral gold nanostructures fabricated on glass substrates using electron beam lithography, matter with fourfold rotational symmetry is found to be CD active, even when special care is taken to ensure that the optical environments for the front and back sides of the sample are equivalent. In this case, the CD signal measured from the back side is found to be almost exactly the same as that measured from the front side. It is revealed that the observed chiro-optical behavior arises from three-dimensional chiral characteristics due to differences in the surface shape between the front and back sides of the structures. For matter that is two- or onefold rotationally symmetric, the CD signal measured from the back side is not coincident with that from the front side. For certain wavelength regions, the CD signals measured from the front side and back side are observed to be similar, while at other wavelengths, the inverted component of the CD signals is found to dominate. The observed CD spectral behavior for reciprocal optical measurement configurations is considered to be determined by a balance between the in-plane isotropic and anisotropic components of the chiral permittivity.
Collapse
Affiliation(s)
- Kensaku Endo
- Department of Physics and Electronics, School of Engineering, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shun Hashiyada
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuya Narushima
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshihiko Togawa
- Department of Physics and Electronics, School of Engineering, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiromi Okamoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
6
|
Duan Y, Che S. Chiral Mesostructured Inorganic Materials with Optical Chiral Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205088. [PMID: 36245314 DOI: 10.1002/adma.202205088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fabricating chiral inorganic materials and revealing their unique quantum confinement-determined optical chiral responses are crucial tasks in the multidisciplinary fields of chemistry, physics, and biology. The field of chiral mesostructured inorganic materials started from the synthesis of individual nanocrystals and evolved to include their assembly from metals, semiconductors, ceramics, and inorganic salts endowed with various chiral structures ranging from atomic to micron scales. This tutorial review highlights the recent research on chiral mesostructured inorganic materials, especially the novel expression of mesostructured chirality and endowed optical chiral response, and it may inspire us with new strategies for the design of chiral inorganic materials and new opportunities beyond the traditional applications of chirality. Fabrication methods for chiral mesostructured inorganic materials are classified according to chirality type, scale, and symmetry-breaking mechanism. Special attention is given to highlight systems with original discoveries, exceptional phenomena, or unique mechanisms of optical chiral response for left- and right-handedness.
Collapse
Affiliation(s)
- Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Basu S, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Amdursky N. Excitation-Dependent Fluorescence with Excitation-Selective Circularly Polarized Luminescence from Hierarchically Organized Atomic Nanoclusters. ACS NANO 2023; 17:16644-16655. [PMID: 37638669 DOI: 10.1021/acsnano.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
9
|
Ikram M, Li Y, Zhang Z. Magnetic field caused enhanced absorption and circular dichroism of an achiral plasmonic nanostructure. APPLIED OPTICS 2023; 62:5386-5393. [PMID: 37706854 DOI: 10.1364/ao.492636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 09/15/2023]
Abstract
In this paper, modulation of light-matter interactions by a magnetic field is used to generate circular dichroism (CD) from an achiral plasmonic nanostructure. Theoretical investigations show an increase in light absorption by the nanostructure in the presence of a magnetic field. The achiral nanostructure exhibits CD in external magnetic field parallel to circularly polarized light (CPL) incidence. The CD emergence is caused by modulation of electron motion to reduced/enhanced frequencies under CPL incidence. Compared to previous studies, in this paper the mechanism of CD emergence, and the physical reasoning behind the change in CD due to change in magnetic field direction and intensity, are explained. CD intensity increases with increasing magnetic field intensity, while CD sign changes on magnetic field direction reversal. Varying structural parameters significantly influences CD intensity. This study can be helpful in magneto-optics and in magneto-chiral applications.
Collapse
|
10
|
Alzahrani A, Alsulami T, Salamatullah AM, Ahmed SR. Non-spherical gold nanoparticles enhanced fluorescence of carbon dots for norovirus-like particles detection. J Biol Eng 2023; 17:33. [PMID: 37106392 PMCID: PMC10142488 DOI: 10.1186/s13036-023-00351-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Norovirus is a common pathogen that causes foodborne outbreaks every year and the increasing number of deaths caused by it has become a substantial concern in both developed and underdeveloped countries. To date, no vaccines or drugs are able to control the outbreak, highlighting the importance of finding specific, and sensitive detection tools for the viral pathogen. Current diagnostic tests are limited to public health laboratories and/or clinical laboratories and are time-consuming. Hence, a rapid and on-site monitoring strategy for this disease is urgently needed to control, prevent and raise awareness among the general public. RESULTS The present study focuses on a nanohybridization technique to build a higher sensitivity and faster detection response to norovirus-like particles (NLPs). Firstly, the wet chemical-based green synthesis of fluorescent carbon quantum dots and gold nanoparticles (Au NPs) has been reported. Then, a series of characterization studies were conducted on the synthesized carbon dots and Au NPs, for example, high-resolution transmission emission microscopy, fluorescence spectroscopy, fluorescence life-lime measurement, UV-visible spectroscopy, and X-ray diffraction (XRD). The fluorescence emission of the as-synthesized carbon dots and the absorption of Au NPs were located at 440 nm and 590 nm, respectively. Then, the plasmonic properties of Au NPs were utilized to enhance the fluorescence emission of carbon dots in the presence of NLPs in human serum. Here, the enhanced fluorescence response was linearly correlated up to 1 μg mL-1. A limit of detection (LOD) value was calculated to be 80.3 pg mL-1 demonstrating that the sensitivity of the proposed study is 10 times greater than that of the commercial diagnostic kits. CONCLUSIONS The proposed exciton-plasmon interaction-based NLPs-sensing strategy was highly sensitive, specific, and suitable for controlling upcoming outbreaks. Most importantly, the overall finding in the article will take the technology a step further to applicable point-of-care (POC) devices.
Collapse
Affiliation(s)
- Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Tawfiq Alsulami
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
11
|
Brooks SC, Jin R, Zerbach VC, Zhang Y, Walsh TR, Rosi NL. Single Amino Acid Modifications for Controlling the Helicity of Peptide-Based Chiral Gold Nanoparticle Superstructures. J Am Chem Soc 2023; 145:6546-6553. [PMID: 36912863 PMCID: PMC10037318 DOI: 10.1021/jacs.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Assembling nanoparticles (NPs) into well-defined superstructures can lead to emergent collective properties that depend on their 3-D structural arrangement. Peptide conjugate molecules designed to both bind to NP surfaces and direct NP assembly have proven useful for constructing NP superstructures, and atomic- and molecular-level alterations to these conjugates have been shown to manifest in observable changes to nanoscale structure and properties. The divalent peptide conjugate, C16-(PEPAu)2 (PEPAu = AYSSGAPPMPPF), directs the formation of one-dimensional helical Au NP superstructures. This study examines how variation of the ninth amino acid residue (M), which is known to be a key Au anchoring residue, affects the structure of the helical assemblies. A series of conjugates of differential Au binding affinities based on variation of the ninth residue were designed, and Replica Exchange with Solute Tempering (REST) Molecular Dynamics simulations of the peptides on an Au(111) surface were performed to determine the approximate surface contact and to assign a binding score for each new peptide. A helical structure transition from double helices to single helices is observed as the peptide binding affinity to the Au(111) surface decreases. Accompanying this distinct structural transition is the emergence of a plasmonic chiroptical signal. REST-MD simulations were also used to predict new peptide conjugate molecules that would preferentially direct the formation of single-helical AuNP superstructures. Significantly, these findings demonstrate how small modifications to peptide precursors can be leveraged to precisely direct inorganic NP structure and assembly at the nano- and microscale, further expanding and enriching the peptide-based molecular toolkit for controlling NP superstructure assembly and properties.
Collapse
Affiliation(s)
- Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruitao Jin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Victoria C Zerbach
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuyu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
Luo JJ, Zhang H, Zou HL, Luo HQ, Li NB, Li BL. Tracking the Growth of Chiral Plasmonic Nanocrystals at Molybdenum Disulfide Heterostructural Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3052-3061. [PMID: 36787386 DOI: 10.1021/acs.langmuir.2c03101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The way of accurately regulating the growth of chiral plasmonics is of great importance for exploring the chirality information and improving its potential values. Herein, cysteine enantiomers modulate the anisotropic and epitaxial growth of gold nanoplasmonics on seeds of exfoliated MoS2 nanosheets. The heterostructural Au and MoS2 hybrids induced by enantiomeric cysteine are presented with chiroptical characteristics, dendritic morphologies, and plasmonic performances. Moreover, the synthesis, condition optimization, formation mechanism, and plasmonic properties of Au and MoS2 dendritic nanostructures are studied. The chirality characteristics are identified using the circular dichroism spectra and scanning electron microscopy. Time-resolved transmission electron microscopy and UV-vis spectra of the intermediate products captured are analyzed to confirm the formation mechanism of dendritic plasmonic nanostructures at heterostructural surfaces. The specific dendritic morphologies originate from the synergistic impacts of heterostructural MoS2 interfaces and enantiomeric cysteine-induced anisotropic manipulation. Significantly, the developed synthesis strategy of chiral nanostructures at heterostructural interfaces is highly promising in promoting the understanding of the plasmonic function and crucial chirality bioinformation.
Collapse
Affiliation(s)
- Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hang Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
13
|
Zhang R, Zhang Z, Fan Y, Zhang H, Chu J. Single-Layer Transmissive Chiral Plasma Metasurface with High Circular Polarization Extinction Ratio in Visible Wavelength. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050813. [PMID: 36903692 PMCID: PMC10005011 DOI: 10.3390/nano13050813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 05/08/2023]
Abstract
Chiral metamaterials are extensively applied in the fields of photoelectric detection, biomedical diagnostics and micro-nano polarization imaging. Currently, single-layer chiral metamaterials are unfortunately limited by several issues, such as a weaker circular polarization extinction ratio and circular polarization transmittance difference. To tackle these issues, a single-layer transmissive chiral plasma metasurface (SCPMs) suitable for visible wavelength is proposed in this paper. Its basic unit is composed of double orthogonal rectangular slots and a spatial π/4 inclined arrangement of the rectangular slot to constitute a chiral structure. Each rectangular slot structure has characteristics that enable the SCPMs to easily achieve a high circular polarization extinction ratio and strong circular polarization transmittance difference. Both the circular polarization extinction ratio and circular polarization transmittance difference of the SCPMs reach over 1000 and 0.28 at a wavelength of 532 nm, respectively. In addition, the SCPMs is fabricated via the thermally evaporated deposition technique and focused ion beam system. This compact structure coupled with a simple process and excellent properties enhances its applicability for the control and detection of polarization, especially during integration with linear polarizers, to achieve the fabrication of a division-of-focal-plane full-Stokes polarimeter.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Ningbo Research Institute of Dalian University of Technology, Ningbo 315000, China
- Correspondence:
| | - Zhichao Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Yuanyi Fan
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Hao Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Ningbo Research Institute of Dalian University of Technology, Ningbo 315000, China
| |
Collapse
|
14
|
Bagree G, De Silva O, Liyanage PD, Ramarathinam SH, Sharma SK, Bansal V, Ramanathan R. α-synuclein as a potential biomarker for developing diagnostic tools against neurodegenerative disorders. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
16
|
Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta 2022; 1231:340386. [DOI: 10.1016/j.aca.2022.340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
|
17
|
Branzi L, Purcell-Milton F, Cressoni C, Back M, Cattaruzza E, Speghini A, Gun'ko YK, Benedetti A. Chiral non-stoichiometric ternary silver indium sulfide quantum dots: investigation on the chirality transfer by cysteine. NANOSCALE 2022; 14:12174-12182. [PMID: 35968905 DOI: 10.1039/d2nr03330e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral semiconductor quantum dots have recently received broad attention due to their promising application in several fields such as sensing and photonics. The extensive work in the last few years was focused on the observation of the chiroptical properties in binary Cd based systems. Herein, we report on the first evidence of ligand-induced chirality in silver indium sulfide semiconductor quantum dots. Ternary disulfide quantum dots are of great interest due to their remarkable optical properties and low toxicity. Non-stoichiometric silver indium sulfide quantum dots were produced via a room temperature coprecipitation in water, in the presence of cysteine as a capping agent. The obtained nanocrystals show a notable photoluminescence quantum yield of 0.24 in water dispersions. Several critical aspects of the nanocrystal growth and chemico-physical characterization, and the optimisation of the surface passivation by the chiral ligand in order to optimize the nanoparticle chirality are thoroughly investigated. Optical spectroscopy methods such as circular dichroism and luminescence as well as nuclear magnetic resonance techniques are exploited to analyze the coordination processes leading to the formation of the ligand-nanocrystal chiral interface. This study highlights the dynamic nature of the interaction between the nanocrystal surface and the chiral ligand and clarifies some fundamental aspects for the transfer and optimization of the chiroptical properties.
Collapse
Affiliation(s)
- Lorenzo Branzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Finn Purcell-Milton
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
- School of Chemical & Pharmaceutical Sciences, Technological University Dublin, Grangegorman, Dublin 2, Ireland
| | - Chiara Cressoni
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy.
| | - Michele Back
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Elti Cattaruzza
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy.
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Alvise Benedetti
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| |
Collapse
|
18
|
Theoretical study of nimetazepam, a real-life chiral molecule without an asymmetric carbon atom. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Döring A, Ushakova E, Rogach AL. Chiral carbon dots: synthesis, optical properties, and emerging applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:75. [PMID: 35351850 PMCID: PMC8964749 DOI: 10.1038/s41377-022-00764-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 05/05/2023]
Abstract
Carbon dots are luminescent carbonaceous nanoparticles that can be endowed with chiral properties, making them particularly interesting for biomedical applications due to their low cytotoxicity and facile synthesis. In recent years, synthetic efforts leading to chiral carbon dots with other attractive optical properties such as two-photon absorption and circularly polarized light emission have flourished. We start this review by introducing examples of molecular chirality and its origins and providing a summary of chiroptical spectroscopy used for its characterization. Then approaches used to induce chirality in nanomaterials are reviewed. In the main part of this review we focus on chiral carbon dots, introducing their fabrication techniques such as bottom-up and top-down chemical syntheses, their morphology, and optical/chiroptical properties. We then consider emerging applications of chiral carbon dots in sensing, bioimaging, and catalysis, and conclude this review with a summary and future challenges.
Collapse
Affiliation(s)
- Aaron Döring
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Elena Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| |
Collapse
|
20
|
Spreyer F, Mun J, Kim H, Kim RM, Nam KT, Rho J, Zentgraf T. Second Harmonic Optical Circular Dichroism of Plasmonic Chiral Helicoid-III Nanoparticles. ACS PHOTONICS 2022; 9:784-792. [PMID: 35330905 PMCID: PMC8932316 DOI: 10.1021/acsphotonics.1c00882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/14/2023]
Abstract
While plasmonic particles can provide optical resonances in a wide spectral range from the lower visible up to the near-infrared, often, symmetry effects are utilized to obtain particular optical responses. By breaking certain spatial symmetries, chiral structures arise and provide robust chiroptical responses to these plasmonic resonances. Here, we observe strong chiroptical responses in the linear and nonlinear optical regime for chiral L-handed helicoid-III nanoparticles and quantify them by means of an asymmetric factor, the so-called g-factor. We calculate the linear optical g-factors for two distinct chiroptical resonances to -0.12 and -0.43 and the nonlinear optical g-factors to -1.45 and -1.63. The results demonstrate that the chirality of the helicoid-III nanoparticles is strongly enhanced in the nonlinear regime.
Collapse
Affiliation(s)
- Florian Spreyer
- Department
of Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Jungho Mun
- Department
of Mechanical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeohn Kim
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Junsuk Rho
- Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department
of Mechanical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST
Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Thomas Zentgraf
- Department
of Physics, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
21
|
Gong Y, Cao Z, Zhang Z, Liu R, Zhang F, Wei J, Yang Z. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions. Angew Chem Int Ed Engl 2022; 61:e202117406. [PMID: 34981650 DOI: 10.1002/anie.202117406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/05/2022]
Abstract
Nanoscale curvature-dependent interactions are of paramount importance in biological systems. Here, we report that nanoscale curvature plays an important role in regulating the chirality of self-assembled nanocomposites from chiral organic molecules and achiral nanoparticles. Specifically, we show that the supramolecular chirality of the nanocomposites markedly depends on the nanoparticle curvature, where small-sized nanoparticles of high curvature and large-sized nanoparticles of low curvature lead to nanocomposites with opposite chirality. Quantitative kinetic experiments and molecular dynamics simulations reveal that nanoparticle curvature plays a key role in promoting the pre-nucleation oligomerization of chiral molecules, which consequently regulates the supramolecular chirality of the nanocomposites. We anticipate that this study will aid in rational design of an artificial cooperative system giving rise to emergent assembling phenomena that can be surprisingly rich and often cannot be understood by studying the conventional noncooperative systems.
Collapse
Affiliation(s)
- Yanjun Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zongze Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Rongjuan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Fenghua Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
22
|
Both S, Schäferling M, Sterl F, Muljarov EA, Giessen H, Weiss T. Nanophotonic Chiral Sensing: How Does It Actually Work? ACS NANO 2022; 16:2822-2832. [PMID: 35080371 DOI: 10.1021/acsnano.1c09796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanophotonic chiral sensing has recently attracted a lot of attention. The idea is to exploit the strong light-matter interaction in nanophotonic resonators to determine the concentration of chiral molecules at ultralow thresholds, which is highly attractive for numerous applications in life science and chemistry. However, a thorough understanding of the underlying interactions is still missing. The theoretical description relies on either simple approximations or on purely numerical approaches. We close this gap and present a general theory of chiral light-matter interactions in arbitrary resonators. Our theory describes the chiral interaction as a perturbation of the resonator modes, also known as resonant states or quasi-normal modes. We observe two dominant contributions: A chirality-induced resonance shift and changes in the modes' excitation and emission efficiencies. Our theory brings deep insights for tailoring and enhancing chiral light-matter interactions. Furthermore, it allows us to predict spectra much more efficiently in comparison to conventional approaches. This is particularly true, as chiral interactions are inherently weak and therefore perturbation theory fits extremely well for this problem.
Collapse
Affiliation(s)
- Steffen Both
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Martin Schäferling
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Florian Sterl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Egor A Muljarov
- Cardiff University, School of Physics and Astronomy, The Parade, CF24 3AA, Cardiff, United Kingdom
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Thomas Weiss
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institute of Physics, University of Graz, and NAWI Graz, Universitätsplatz 5, 8010 Graz, Austria
| |
Collapse
|
23
|
Gong Y, Cao Z, Zhang Z, Liu R, Zhang F, Wei J, Yang Z. Chirality Inversion in Self‐Assembled Nanocomposites Directed by Curvature‐Mediated Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanjun Gong
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zongze Zhang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Rongjuan Liu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Fenghua Zhang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| |
Collapse
|
24
|
Qu DH, Xu H, Zhang Q, Gan JA, Wang Z, Chen M, Shan Y, Chen S, Tong F. Hysteresis Nanoarchitectonics with Chiral Gel Fibers and Achiral Gold Nanospheres for Reversible Chiral Inversion. Chem Asian J 2022; 17:e202101354. [PMID: 35007397 DOI: 10.1002/asia.202101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/08/2022] [Indexed: 11/07/2022]
Abstract
Intelligent control over the handedness of circular dichroism (CD) is of special significance in self-organized biological and artificial systems. Herein, we report a chiral organic molecule (R1) containing a disulfide unit self-assembles into M-type helical fibers gels, which undergoes chirality inversion by incorporating gold nanospheres due to the formation of Au-S bonds between R1 and gold nanospheres. Upon heating at 80oC, the aggregation of gold nanospheres results in a disappearance of the Au-S bond, allowing the reversible switching back to M-type helical fibers. The original chirality of M-type fibers could also be retained by adding anisotropic gold nanorods. A series of characterization methods, involving CD, Raman, Infrared spectroscopy, electric microscopy, and small-angle X-ray scattering (SAXS) measurements were used to investigate the mechanism of chiral evolutions. Our results provide a facile way of fabricating hysteresis nanoarchitectonics to achieve dynamic supramolecular chirality using inorganic metallic nanoparticles.
Collapse
Affiliation(s)
- Da-Hui Qu
- Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA
| | - Hui Xu
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Qi Zhang
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA
| | - Jia-An Gan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Zhuo Wang
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Meng Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Yahan Shan
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Shaoyu Chen
- East China University of Science and Technology, school of chemistry and molecular engineering, CHINA
| | - Fei Tong
- East China University of Science and Technology, School of Chemistry and Molecular Engineering, 200237, Shanghai, CHINA
| |
Collapse
|
25
|
Rodríguez-Álvarez J, García-Martín A, Fraile Rodríguez A, Batlle X, Labarta A. Tunable circular dichroism through absorption in coupled optical modes of twisted triskelia nanostructures. Sci Rep 2022; 12:26. [PMID: 34996969 PMCID: PMC8742006 DOI: 10.1038/s41598-021-03908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
We present a system consisting of two stacked chiral plasmonic nanoelements, so-called triskelia, that exhibits a high degree of circular dichroism. The optical modes arising from the interactions between the two elements are the main responsible for the dichroic signal. Their excitation in the absorption cross section is favored when the circular polarization of the light is opposite to the helicity of the system, so that an intense near-field distribution with 3D character is excited between the two triskelia, which in turn causes the dichroic response. Therefore, the stacking, in itself, provides a simple way to tune both the value of the circular dichroism, up to 60%, and its spectral distribution in the visible and near infrared range. We show how these interaction-driven modes can be controlled by finely tuning the distance and the relative twist angle between the triskelia, yielding maximum values of the dichroism at 20° and 100° for left- and right-handed circularly polarized light, respectively. Despite the three-fold symmetry of the elements, these two situations are not completely equivalent since the interplay between the handedness of the stack and the chirality of each single element breaks the symmetry between clockwise and anticlockwise rotation angles around 0°. This reveals the occurrence of clear helicity-dependent resonances. The proposed structure can be thus finely tuned to tailor the dichroic signal for applications at will, such as highly efficient helicity-sensitive surface spectroscopies or single-photon polarization detectors, among others.
Collapse
Affiliation(s)
- Javier Rodríguez-Álvarez
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain. .,Institut de Nanociència i Nanotecnologia (IN2UB), 08028, Barcelona, Spain.
| | - Antonio García-Martín
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC, CEI UAM + CSIC, Isaac Newton 8, 28760, Tres Cantos, Madrid, Spain
| | - Arantxa Fraile Rodríguez
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), 08028, Barcelona, Spain
| | - Xavier Batlle
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), 08028, Barcelona, Spain
| | - Amílcar Labarta
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), 08028, Barcelona, Spain
| |
Collapse
|
26
|
Behera P, May MA, Gómez-Ortiz F, Susarla S, Das S, Nelson CT, Caretta L, Hsu SL, McCarter MR, Savitzky BH, Barnard ES, Raja A, Hong Z, García-Fernandez P, Lovesey SW, van der Laan G, Ercius P, Ophus C, Martin LW, Junquera J, Raschke MB, Ramesh R. Electric field control of chirality. SCIENCE ADVANCES 2022; 8:eabj8030. [PMID: 34985953 PMCID: PMC8730600 DOI: 10.1126/sciadv.abj8030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Polar textures have attracted substantial attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second-harmonic generation–based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of nonchiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field-controllable order parameter.
Collapse
Affiliation(s)
- Piush Behera
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Molly A. May
- Department of Physics, Department of Chemistry and JILA, University of Colorado, Boulder, CO 80309, USA
| | - Fernando Gómez-Ortiz
- Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, 39005 Santander, Spain
| | - Sandhya Susarla
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sujit Das
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher T. Nelson
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shang-Lin Hsu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Margaret R. McCarter
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin H. Savitzky
- National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward S. Barnard
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Archana Raja
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Pablo García-Fernandez
- Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, 39005 Santander, Spain
| | - Stephen W. Lovesey
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Gerrit van der Laan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Peter Ercius
- National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lane W. Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Junquera
- Departmento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, 39005 Santander, Spain
- Corresponding author. (R.R.); (J.J.)
| | - Markus B. Raschke
- Department of Physics, Department of Chemistry and JILA, University of Colorado, Boulder, CO 80309, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author. (R.R.); (J.J.)
| |
Collapse
|
27
|
Besteiro LV, Movsesyan A, Ávalos-Ovando O, Lee S, Cortés E, Correa-Duarte MA, Wang ZM, Govorov AO. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. NANO LETTERS 2021; 21:10315-10324. [PMID: 34860527 PMCID: PMC8704195 DOI: 10.1021/acs.nanolett.1c03503] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Indexed: 05/05/2023]
Abstract
Plasmonic nanocrystals and their assemblies are excellent tools to create functional systems, including systems with strong chiral optical responses. Here we study the possibility of growing chiral plasmonic nanocrystals from strictly nonchiral seeds of different types by using circularly polarized light as the chirality-inducing mechanism. We present a novel theoretical methodology that simulates realistic nonlinear and inhomogeneous photogrowth processes in plasmonic nanocrystals, mediated by the excitation of hot carriers that can drive surface chemistry. We show the strongly anisotropic and chiral growth of oriented nanocrystals with lowered symmetry, with the striking feature that such chiral growth can appear even for nanocrystals with subwavelength sizes. Furthermore, we show that the chiral growth of nanocrystals in solution is fundamentally challenging. This work explores new ways of growing monolithic chiral plasmonic nanostructures and can be useful for the development of plasmonic photocatalysis and fabrication technologies.
Collapse
Affiliation(s)
- Lucas V. Besteiro
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Centre
Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec J3X 1S2, Canada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
| | - Artur Movsesyan
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Oscar Ávalos-Ovando
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| | - Seunghoon Lee
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | | | - Zhiming M. Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Alexander O. Govorov
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
- Department
of Physics and Astronomy and the Nanoscale & Quantum Phenomena
Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
28
|
Uralcan B, Longo TJ, Anisimov MA, Stillinger FH, Debenedetti PG. Interconversion-controlled liquid-liquid phase separation in a molecular chiral model. J Chem Phys 2021; 155:204502. [PMID: 34852466 DOI: 10.1063/5.0071988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid-liquid phase separation of fluids exhibiting interconversion between alternative states has been proposed as an underlying mechanism for fluid polyamorphism and may be of relevance to the protein function and intracellular organization. However, molecular-level insight into the interplay between competing forces that can drive or restrict phase separation in interconverting fluids remains elusive. Here, we utilize an off-lattice model of enantiomers with tunable chiral interconversion and interaction properties to elucidate the physics underlying the stabilization and tunability of phase separation in fluids with interconverting states. We show that introducing an imbalance in the intermolecular forces between two enantiomers results in nonequilibrium, arrested phase separation into microdomains. We also find that in the equilibrium case, when all interaction forces are conservative, the growth of the phase domain is restricted only by the system size. In this case, we observe phase amplification, in which one of the two alternative phases grows at the expense of the other. These findings provide novel insights on how the interplay between dynamics and thermodynamics defines the equilibrium and steady-state morphologies of phase transitions in fluids with interconverting molecular or supramolecular states.
Collapse
Affiliation(s)
- Betul Uralcan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas J Longo
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Mikhail A Anisimov
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
29
|
Perera T, Mallawaarachchi S, Premaratne M. Chiral Plasmonic Ellipsoids: An Extended Mie-Gans Model. J Phys Chem Lett 2021; 12:11214-11219. [PMID: 34761942 DOI: 10.1021/acs.jpclett.1c03144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mie-Gans theory optically characterizes ellipsoidal and by extension generally elongated nonchiral metal nanoparticles (MNPs) and is ubiquitous in verifying experimental results and predicting particle behavior. Recently, elongated chiral MNPs have garnered enthusiasm, but a theory to characterize their chiroptical behavior is lacking in the literature. In this Letter, we present an ab initio model for chiral ellipsoidal MNPs to address this shortcoming and demonstrate that it reduces to the general Mie-Gans model under nonchiral conditions, produces results that concur with state-of-the-art numerical simulations, and can accurately replicate recent experimental measurements. Furthermore, to gain physical insights, we analyze factors such as background medium permittivity and particle size that drive the chiroptical activity using two types of plasmonic chiral MNPs. We also demonstrate the utility of our model in metamaterial design. Generic features of our model can be extended to characterize similar elongated chiral MNPs, fueling many other variants of the current model.
Collapse
Affiliation(s)
- Tharaka Perera
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sudaraka Mallawaarachchi
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
31
|
Ávalos-Ovando O, Besteiro LV, Movsesyan A, Markovich G, Liedl T, Martens K, Wang Z, Correa-Duarte MA, Govorov AO. Chiral Photomelting of DNA-Nanocrystal Assemblies Utilizing Plasmonic Photoheating. NANO LETTERS 2021; 21:7298-7308. [PMID: 34428053 DOI: 10.1021/acs.nanolett.1c02479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chiral plasmonic nanostructures exhibit anomalously strong chiroptical signals and offer the possibility to realize asymmetric photophysical and photochemical processes controlled by circularly polarized light. Here, we use a chiral DNA-assembled nanorod pair as a model system for chiral plasmonic photomelting. We show that both the enantiomeric excess and consequent circular dichroism can be controlled with chiral light. The nonlinear chiroptical response of our plasmonic system results from the chiral photothermal effect leading to selective melting of the DNA linker strands. Our study describes both the single-complex and collective heating regimes, which should be treated with different models. The chiral asymmetry factors of the calculated photothermal and photomelting effects exceed the values typical for the chiral molecular photochemistry at least 10-fold. Our proposed mechanism can be used to develop chiral photoresponsive systems controllable with circularly polarized light.
Collapse
Affiliation(s)
- Oscar Ávalos-Ovando
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | | | - Artur Movsesyan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Gil Markovich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801 Israel
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Kevin Martens
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
32
|
Liu J, Shadpour S, Prévôt ME, Chirgwin M, Nemati A, Hegmann E, Lemieux RP, Hegmann T. Molecular Conformation of Bent-Core Molecules Affected by Chiral Side Chains Dictates Polymorphism and Chirality in Organic Nano- and Microfilaments. ACS NANO 2021; 15:7249-7270. [PMID: 33734664 DOI: 10.1021/acsnano.1c00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The coupling between molecular conformation and chirality is a cornerstone in the construction of supramolecular helical structures of small molecules across various length scales. Inspired by biological systems, conformational preselection and control in artificial helical molecules, polymers, and aggregates has guided various applications in optics, photonics, and chiral sorting among others, which are frequently based on an inherent chirality amplification through processes such as templating and self-assembly. The so-called B4 nano- or microfilament phase formed by some bent-shaped molecules is an exemplary case for such chirality amplification across length scales, best illustrated by the formation of distinct nano- or microscopic chiral morphologies controlled by molecular conformation. Introduction of one or more chiral centers in the aliphatic side chains led to the discovery of homochiral helical nanofilament, helical microfilament, and heliconical-layered nanocylinder morphologies. Herein, we demonstrate how a priori calculations of the molecular conformation affected by chiral side chains are used to design bent-shaped molecules that self-assemble into chiral nano- and microfilament as well as nanocylinder conglomerates despite the homochiral nature of the molecules. Furthermore, relocation of the chiral center leads to formation of helical as well as flat nanoribbons. Self-consistent data sets from polarized optical as well as scanning and transmission electron microscopy, thin-film and solution circular dichroism spectropolarimetry, and synchrotron-based X-ray diffraction experiments support the progressive and predictable change in morphology controlled by structural changes in the chiral side chains. The formation of these morphologies is discussed in light of the diminishing effects of molecular chirality as the chain length increases or as the chiral center is moved away from the core-chain juncture. The type of phase (B1-columnar or B4) and morphology of the nano- or microfilaments generated can further be controlled by sample treatment conditions such as by the cooling rate from the isotropic melt or by the presence of an organic solvent in the ensuing colloidal dispersions. We show that these nanoscale morphologies can then organize into a wealth of two- and three-dimensional shapes and structures ranging from flower blossoms to fiber mats formed by intersecting flat nanoribbons.
Collapse
Affiliation(s)
- Jiao Liu
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Sasan Shadpour
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Michael Chirgwin
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Ahlam Nemati
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
| | - Elda Hegmann
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Robert P Lemieux
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Torsten Hegmann
- Materials Science Graduate Program, Kent State University, Kent (Ohio) 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent (Ohio) 44242-0001, United States
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| |
Collapse
|
33
|
Mokashi-Punekar S, Brooks SC, Hogan CD, Rosi NL. Leveraging Peptide Sequence Modification to Promote Assembly of Chiral Helical Gold Nanoparticle Superstructures. Biochemistry 2021; 60:1044-1049. [PMID: 32510207 DOI: 10.1021/acs.biochem.0c00361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide conjugate molecules comprising a gold-binding peptide (e.g., AYSSGAPPMPPF) attached to an aliphatic tail have proven to be powerful agents for directing the synthesis and assembly of gold nanoparticle superstructures, in particular chiral helices having interesting plasmonic chiroptical properties. The composition and structure of these molecular agents can be tailored to carefully tune the structure and properties of gold nanoparticle single and double helices. To date, modifications to the β-sheet region (AYSSGA) of the peptide sequence have not been exploited to control the metrics and assembly of such superstructures. We report here that systematic peptide sequence variation in a series of gold-binding peptide conjugate molecules can be leveraged not only to affect the assembly of peptide conjugates but also to control the synthesis, assembly, and optical properties of gold nanoparticle superstructures. Depending upon the hydrophobicity of a single-amino acid variant, the conjugates yield either dispersed gold nanoparticles or helical superstructures. These results provide evidence that subtle changes to peptide sequence, via single-amino acid variation in the β-sheet region, can be leveraged to program structural control in chiral gold nanoparticle superstructures.
Collapse
Affiliation(s)
- Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Camera D Hogan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
34
|
Wen Y, He MQ, Yu YL, Wang JH. Biomolecule-mediated chiral nanostructures: a review of chiral mechanism and application. Adv Colloid Interface Sci 2021; 289:102376. [PMID: 33561566 DOI: 10.1016/j.cis.2021.102376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
The chirality of biomolecules is vital importance in biosensing and biomedicine. However, most biomolecules only have a chiral response in the ultraviolet region, and the corresponding chiral signal is weak. In recent years, inorganic nanomaterials can adjust chiral light signals to the visible and near-infrared regions and enhance optical signals due to their high polarizability and adjustable morphology-dependent optical properties. Nonetheless, inorganic nanomaterials usually lack specificity to identify targets, and have strong toxicity when applied in organisms. The combination of chiral biomolecules and inorganic nanomaterials offers a way to solve these problems. Because chiral biomolecules, such as DNA, amino acids, and peptides, have programmability, specific recognition, excellent biocompatibility, and strong binding force to inorganic nanomaterials. Biomolecule-mediated chiral nanostructures show specific recognition of targets, extremely low biological toxicity and adjustable optical activity by regulating, assembling and inducing inorganic nanomaterials. Therefore, biomolecule-mediated chiral nanostructures have received widespread attention, including chiral biosensing, enantiomers recognition and separation, biological diagnosis and treatment, chiral catalysis, and circular polarization of chiral metamaterials. This review mainly introduces the three chiral mechanisms of biomolecule-mediated chiral nanostructures, lists some important applications at present, and discusses the development prospects of biomolecule-mediated chiral nanostructures.
Collapse
|
35
|
Li X, Liu X, Liu X. Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chem Soc Rev 2021; 50:2074-2101. [PMID: 33325927 DOI: 10.1039/d0cs00436g] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of colloidal nanoparticles has made it possible to bridge the nanoscopic and macroscopic worlds and to make complex nanostructures. The nanoparticle-mediated assembly enables many potential applications, from biodetection and nanomedicine to optoelectronic devices. Properties of assembled materials are determined not only by the nature of nanoparticle building blocks, but also by spatial positions of nanoparticles within the assemblies. A deep understanding of nanoscale interactions between nanoparticles is a prerequisite to controlling nanoparticle arrangement during assembly. In this review, we present an overview of interparticle interactions governing their assembly in a liquid phase. Considerable attention is devoted to examples that illustrate nanoparticle assembly into ordered superstructures using different types of building blocks, including plasmonic nanoparticles, magnetic nanoparticles, lanthanide-doped nanophosphors, and quantum dots. We also cover the physicochemical properties of nanoparticle ensembles, especially those arising from particle coupling effects. We further discuss future research directions and challenges in controlling self-assembly at a level of precision that is most crucial to technology development.
Collapse
Affiliation(s)
- Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), 8. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. and Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China and The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| |
Collapse
|
36
|
Abstract
Currently, peptide-nanoparticle (NP) conjugates have been demonstrated to be efficient and powerful tools for the treatment and the diagnosis of various diseases as well as in the bioimaging application. Several bioconjugation strategies have been adopted to formulate the peptide-NP conjugates. In this review, we discuss the exciting applications of peptide-gold (Au) NP conjugates in the area of drug delivery, targeting, cancer therapy, brain diseases, vaccines, immune modulation, biosensor, colorimetric detection of heavy metals, and bio-labeling in vitro and in vivo models. Within this framework, various approaches such as radiotherapy, photothermal therapy, photodynamic therapy and chemo-photothermal therapy have been demonstrated for the treatment of several diseases. Moreover, we highlight how the morphology, size, density of peptide and the protein corona influence the biological activity, biodistribution and biological fate of peptide-AuNP conjugates. In the end, we discuss the future outlook and the challenges being faced in the clinical translation of the peptide-AuNP conjugates. Overall, this review emphasizes that the peptide-AuNP conjugates might be used as potential theranostic agents for the treatment of life-threatening diseases in an economical fashion in the future.
Collapse
Affiliation(s)
- Akhilesh Rai
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Jing Z, Li Q, Bai Y, Li Y, Zhang Z. Circular dichroism of spatially complementary chiral nanostructures. NANOTECHNOLOGY 2020; 31:445302. [PMID: 32702677 DOI: 10.1088/1361-6528/aba8be] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circular dichroism (CD) is widely used in biology, medicine, and physics. Three-dimensional (3D) chiral structures have been extensively studied because of their ability to produce significant CD effects. Previously reported 3D chiral structures are limited due to the complexity of fabrication processes and CD mechanisms. Here, spatially complementary chiral nanostructure (SCCN) arrays, which comprise bottom silver films with zigzag-shaped nanoslit and top complementary silver zigzag-shaped nanowires, are theoretically and experimentally shown to provide the CD effect. SCCN arrays are prepared experimentally by combining electron beam lithography (EBL) with normal electron beam deposition (NEBD) method and by utilizing EBL and NEBD only once. Numerical results demonstrate that localized surface plasmon excited on top complementary silver zigzag-shaped nanowires and surface plasmon polariton excited on bottom silver films with zigzag-shaped nanoslit result in the CD effect of SCCN arrays. In addition, the CD effect can be tuned by changing the width of the top complementary silver zigzag-shaped nanowires. Such type of chiral nanostructures has easy tunability, simple fabrication, and a better understanding of chiral optical response, which provides a new design for spatially chiral optoelectronic devices.
Collapse
Affiliation(s)
- Zhimin Jing
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Chen Z, Lu X. Self-assembly of plasmonic chiral superstructures with intense chiroptical activity. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abbb3d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Fu K, Jin X, Zhou M, Ma K, Duan P, Yu ZQ. Amplifying the excited state chirality through self-assembly and subsequent enhancement via plasmonic silver nanowires. NANOSCALE 2020; 12:19760-19767. [PMID: 32966503 DOI: 10.1039/d0nr04510a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of circularly polarized luminescent materials with a large luminescence dissymmetry factor (glum) is continuing to be a big challenge. Here, we present a general approach for amplifying circular polarization of circularly polarized luminescence (CPL) through intergrating molecular self-assembly and surface plasmon resonance (SPR). Molecular self-assembly could amplify the CPL performance. Subsequently, the composites built of nanoassemblies and achiral silver nanowires (AgNWs) show intense CPL activity with an amplified glum value. By applying an external magnetic field, the CPL activity of the nanoassemblies/AgNWs composites has been significantly enhanced, confirming a plasmon-enhanced circular polarization. Our design strategy based on SPR-enhanced circular polarization of the chiral emissive systems suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of novel CPL active nanomaterials.
Collapse
Affiliation(s)
- Kuo Fu
- College of Chemistry and Environmental Engineering, Low dimensional Materials, Genome Initiative Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China. and CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Minghao Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Kai Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Low dimensional Materials, Genome Initiative Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China.
| |
Collapse
|
40
|
Lee E, Ukekawa T, Ikeda M, Ju H, Kuwahara S, Habata Y. Chiral Argentivorous Molecules Having Biphenyl Groups as Side-arms: Drastic Enhancements in CD Intensities. CHEM LETT 2020. [DOI: 10.1246/cl.200434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eunji Lee
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Tomoko Ukekawa
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Mari Ikeda
- Education Centre, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
| | - Huiyeong Ju
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shunsuke Kuwahara
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
- Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yoichi Habata
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
- Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
41
|
Mokashi-Punekar S, Zhou Y, Brooks SC, Rosi NL. Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905975. [PMID: 31815327 DOI: 10.1002/adma.201905975] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/12/2019] [Indexed: 05/27/2023]
Abstract
Chiral nanoparticle (NP) superstructures, in which discrete NPs are assembled into chiral architectures, represent an exciting and growing class of nanomaterials. Their enantiospecific properties make them promising candidates for a variety of potential applications. Helical NP superstructures are a rapidly expanding subclass of chiral nanomaterials in which NPs are arranged in three dimensions about a screw axis. Their intrinsic asymmetry gives rise to a variety of interesting properties, including plasmonic chiroptical activity in the visible spectrum, and they hold immense promise as chiroptical sensors and as components of optical metamaterials. Herein, a concise history of the foundational conceptual advances that helped define the field of chiral nanomaterials is provided, and some of the major achievements in the development of helical nanomaterials are highlighted. Next, the key methodologies employed to construct these materials are discussed, and specific merits that are offered by each assembly methodology are identified, as well as their potential disadvantages. Finally, some specific examples of the emerging applications of these materials are discussed and some areas of future development and research focus are proposed.
Collapse
Affiliation(s)
| | - Yicheng Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sydney C Brooks
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
42
|
Kong XT, Besteiro LV, Wang Z, Govorov AO. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1801790. [PMID: 30260543 DOI: 10.1002/adma.201801790] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Indexed: 05/22/2023]
Abstract
Nature is chiral, thus chirality is a key concept required to understand a multitude of systems in physics, chemistry, and biology. The field of optics offers valuable tools to probe the chirality of nanosystems, including the measurement of circular dichroism, the differential interaction strength between matter and circularly polarized light with opposite helicity. Simultaneously, the use of plasmonic systems with giant light-interaction cross-sections opens new paths to investigate and manipulate systems on the nanoscale. Consequently, the interest in chiral plasmonic and hybrid systems has continually grown in recent years, due to their potential applications in biosensing, polarization-encoded optical communication, polarization-selective chemical reactions, and materials with polarization-dependent light-matter interaction. Experimentally, chiral properties of nanostructures can be either created artificially using modern fabrication techniques involving inorganic materials, or borrowed from nature using bioassembly or biomolecular templating. Herein, the recent progress in the field of plasmonic chirality is summarized, with a focus on both the theoretical background and the experimental advances in the study of chirality in various systems, including molecular-plasmonic assemblies, chiral plasmonic nanostructures, chiral assemblies of interacting plasmonic nanoparticles, and chiral metal metasurfaces and metamaterials. The growth prospects of this field are also discussed.
Collapse
Affiliation(s)
- Xiang-Tian Kong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Lucas V Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
43
|
Li Y, Wang X, Miao J, Li J, Zhu X, Chen R, Tang Z, Pan R, He T, Cheng J. Chiral Transition Metal Oxides: Synthesis, Chiral Origins, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905585. [PMID: 32743887 DOI: 10.1002/adma.201905585] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/17/2020] [Indexed: 05/27/2023]
Abstract
Transition metal oxides (TMOs) consist of a series of solid materials, exhibiting a wide variety of structures with tunability and versatile physicochemical properties. Such a statement is undeniably true for chiral TMOs since the introduction of chirality brings in not only active optical activities but also geometrical anisotropy due to the symmetry-breaking effect. Although progressive investigations have been made for accurately controlled synthesis and relevant explanations on the chirality origin of such materials, the overall field of chiral TMOs is still in its infancy with adequate space for interdisciplinary communications and development. Herein, therefore, recent advances in both experimental phenomena and theoretical calculations in this area are reviewed, to elucidate the underlying chiral origin with respect to their fabrications process, triggering new insights for further evolution of this field.
Collapse
Affiliation(s)
- Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiongbin Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Jun Miao
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Jiagen Li
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, 518172, China
| | - Xi Zhu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, 518172, China
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zikang Tang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, 999078, China
| | - Ruikun Pan
- School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
44
|
Stroyuk OL, Kuchmy SY. Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: a Review. THEOR EXP CHEM+ 2020. [DOI: 10.1007/s11237-020-09648-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Li G, Fei X, Liu H, Gao J, Nie J, Wang Y, Tian Z, He C, Wang JL, Ji C, Oron D, Yang G. Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids. ACS NANO 2020; 14:4196-4205. [PMID: 32298573 PMCID: PMC7467813 DOI: 10.1021/acsnano.9b09101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/16/2020] [Indexed: 05/21/2023]
Abstract
Ligand-induced chirality in semiconducting nanocrystals has been the subject of extensive study in the past few years and shows potential applications in optics and biology. Yet, the origin of the chiroptical effect in semiconductor nanoparticles is still not fully understood. Here, we examine the effect of the interaction with amino acids on both the fluorescence and the optical activity of chiral semiconductor quantum dots (QDs). A significant fluorescence enhancement is observed for l/d-Cys-CdTe QDs upon interaction with all the tested amino acids, indicating suppression of nonradiative pathways as well as the passivation of surface trap sites brought via the interaction of the amino group with the CdTe QDs' surface. Heterochiral amino acids are shown to weaken the circular dichroism (CD) signal, which may be attributed to a different binding configuration of cysteine molecules on the QDs' surface. Furthermore, a red shift of both CD and fluorescence signals in l/d-Cys-CdTe QDs is only observed upon adding cysteine, while other tested amino acids do not exhibit such an effect. We speculate that the thiol group induces orbital hybridization of the highest occupied molecular orbital (HOMOs) of cysteine and the valence band of CdTe QDs, leading to the decrease of the energy band gap and a concomitant red shift of CD and fluorescence spectra. This is further verified by density functional theory calculations. Both the experimental and theoretical findings indicate that the addition of ligands that do not "directly" interact with the valence band (VB) of the QD (noncysteine moieties) changes the QD photophysical properties, as it probably modifies the way cysteine is bound to the surface. Hence, we conclude that it is not only the chemistry of the amino acid ligand that affects both CD and PL but also the exact geometry of binding that modifies these properties. Understanding the relationship between the QD's surface and chiral amino acid thus provides an additional perspective on the fundamental origin of induced chiroptical effects in semiconductor nanoparticles, potentially enabling us to optimize the design of chiral semiconductor QDs for chiroptic applications.
Collapse
Affiliation(s)
- Guangmin Li
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
- E-mail: ;
| | - Xuening Fei
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
- E-mail:
| | - Hongfei Liu
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jing Gao
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiayang Nie
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanbo Wang
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhaodong Tian
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Caicai He
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiang-Long Wang
- Hebei
Key Lab of Optic-Electronic Information and Materials, College of
Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Chao Ji
- Key
Laboratory of Catalysis, Center Tech Tianjin
Chemical Research and Design Institute Co., Ltd., Tianjin 300131, China
| | - Dan Oron
- Department
of Physics of Complex Systems, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Gaoling Yang
- Department
of Physics of Complex Systems, Weizmann
Institute of Science, Rehovot 76100, Israel
- E-mail:
| |
Collapse
|
46
|
Bigdeli A, Ghasemi F, Fahimi-Kashani N, Abbasi-Moayed S, Orouji A, Jafar-Nezhad Ivrigh Z, Shahdost-Fard F, Hormozi-Nezhad MR. Optical nanoprobes for chiral discrimination. Analyst 2020; 145:6416-6434. [DOI: 10.1039/d0an01211d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chiral recognition can be achieved by exploiting chiral properties of nanoparticles within various colorimetric and luminescent sensing systems.
Collapse
Affiliation(s)
- Arafeh Bigdeli
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | - Forough Ghasemi
- Department of Nanotechnology
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- Agricultural Research
- Education
- and Extension Organization (AREEO)
| | | | | | - Afsaneh Orouji
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
| | | | | | - M. Reza Hormozi-Nezhad
- Chemistry Department
- Sharif University of Technology
- Tehran
- Iran
- Institute for Nanoscience and Nanotechnology
| |
Collapse
|
47
|
Slocik JM, Dennis PB, Govorov AO, Bedford NM, Ren Y, Naik RR. Chiral Restructuring of Peptide Enantiomers on Gold Nanomaterials. ACS Biomater Sci Eng 2019; 6:2612-2620. [PMID: 33463283 DOI: 10.1021/acsbiomaterials.9b00933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of biomolecules has been invaluable at generating and controlling optical chirality in nanomaterials; however, the structure and properties of the chiral biotemplate are not well understood due to the complexity of peptide-nanoparticle interactions. In this study, we show that the complex interactions between d-peptides and gold nanomaterials led to a chiral restructuring of peptides as demonstrated by circular dichroism and proteolytic cleavage of d-peptides via gold-mediated inversion of peptide chirality. The gold nanoparticles synthesized using d-peptide produce a highly ordered atomic surface and restructured peptide bonds for enzyme cleavage. Differences in gold nanoparticle catalyzed reduction of 4-nitrophenol were observed on the basis of the chiral peptide used in nanoparticle synthesis. Notably, the proteolytic cleavage of d-peptides on gold provides an opportunity for designing nanoparticle based therapeutics to treat peptide venoms, access new chemistries, or modulate the catalytic activity of nanomaterials.
Collapse
Affiliation(s)
- Joseph M Slocik
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Patrick B Dennis
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Nicholas M Bedford
- School of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Ren
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433-7750, United States
| |
Collapse
|
48
|
Mokashi-Punekar S, Walsh TR, Rosi NL. Tuning the Structure and Chiroptical Properties of Gold Nanoparticle Single Helices via Peptide Sequence Variation. J Am Chem Soc 2019; 141:15710-15716. [DOI: 10.1021/jacs.9b08798] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Tiffany R. Walsh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | | |
Collapse
|
49
|
Optical Helicity and Optical Chirality in Free Space and in the Presence of Matter. Symmetry (Basel) 2019. [DOI: 10.3390/sym11091113] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The inherently weak nature of chiral light–matter interactions can be enhanced by orders of magnitude utilizing artificially-engineered nanophotonic structures. These structures enable high spatial concentration of electromagnetic fields with controlled helicity and chirality. However, the effective design and optimization of nanostructures requires defining physical observables which quantify the degree of electromagnetic helicity and chirality. In this perspective, we discuss optical helicity, optical chirality, and their related conservation laws, describing situations in which each provides the most meaningful physical information in free space and in the context of chiral light–matter interactions. First, an instructive comparison is drawn to the concepts of momentum, force, and energy in classical mechanics. In free space, optical helicity closely parallels momentum, whereas optical chirality parallels force. In the presence of macroscopic matter, the optical helicity finds its optimal physical application in the case of lossless, dual-symmetric media, while, in contrast, the optical chirality provides physically observable information in the presence of lossy, dispersive media. Finally, based on numerical simulations of a gold and silicon nanosphere, we discuss how metallic and dielectric nanostructures can generate chiral electromagnetic fields upon interaction with chiral light, offering guidelines for the rational design of nanostructure-enhanced electromagnetic chirality.
Collapse
|
50
|
Utembe W. Chirality, a neglected physico-chemical property of nanomaterials? A mini-review on the occurrence and importance of chirality on their toxicity. Toxicol Lett 2019; 311:58-65. [DOI: 10.1016/j.toxlet.2019.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|