1
|
Mai DD, To TL, Bui TH, Nguyen TKL, Luong TKP, Nguyen TL. Size-dependent As(V) adsorption of reduced graphene oxide/magnetite nanocomposites. ANAL SCI 2024:10.1007/s44211-024-00657-w. [PMID: 39242487 DOI: 10.1007/s44211-024-00657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Arsenic (As(V)) contamination in aqueous resources poses a significant environmental, and public health risk due to its high toxicity. To address this challenge, we synthesized and characterized novel reduced graphene oxide/magnetite (rGO/Fe3O4) nanocomposites, which are efficient adsorbents for removing As(V). Using a co-precipitation method, we obtained three distinct sizes of rGO/Fe3O4 nanocomposites by controlling the salt concentration (Fe2+: Fe3+) ratios. Analysis of the adsorption ability of the samples shows that the adsorption efficiency can reach up to 98.10% within 90 min, and the adsorption capacity value reaches 20.55 mg/g. Furthermore, these test data are ably consistent with both the pseudo-second-order model and the Langmuir model, based on which the adsorption mechanism has been proposed. These results show that the rGO/Fe3O4 nanocomposites that we synthesized are a potential adsorbent for the removal of heavy metals from water.
Collapse
Affiliation(s)
- Duc Dung Mai
- School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Thanh Loan To
- School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Thi Hang Bui
- School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi, Vietnam
| | - Thi Kim Lien Nguyen
- School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi, Vietnam
| | | | - Thi Lan Nguyen
- School of Materials Science and Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi, Vietnam.
| |
Collapse
|
2
|
Zhang W, Zhang Y, Lu Z, Nian B, Yang S, Hu Y. Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118975. [PMID: 37716172 DOI: 10.1016/j.jenvman.2023.118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shipin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
3
|
Kolya H, Kang CW. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers (Basel) 2023; 15:3421. [PMID: 37631480 PMCID: PMC10458676 DOI: 10.3390/polym15163421] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This review article focuses on the potential of biopolymer-based nanocomposites incorporating nanoparticles, graphene oxide (GO), carbon nanotubes (CNTs), and nanoclays in adsorption and membrane filtration processes for water treatment. The aim is to explore the effectiveness of these innovative materials in addressing water scarcity and contamination issues. The review highlights the exceptional adsorption capacities and improved membrane performance offered by chitosan, GO, and CNTs, which make them effective in removing heavy metals, organic pollutants, and emerging contaminants from water. It also emphasizes the high surface area and ion exchange capacity of nanoclays, enabling the removal of heavy metals, organic contaminants, and dyes. Integrating magnetic (Fe2O4) adsorbents and membrane filtration technologies is highlighted to enhance adsorption and separation efficiency. The limitations and challenges associated are also discussed. The review concludes by emphasizing the importance of collaboration with industry stakeholders in advancing biopolymer-based nanocomposites for sustainable and comprehensive water treatment solutions.
Collapse
Affiliation(s)
- Haradhan Kolya
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Chun-Won Kang
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Hatshan MR, Saquib Q, Siddiqui MA, Faisal M, Ahmad J, Al-Khedhairy AA, Shaik MR, Khan M, Wahab R, Matteis VD, Adil SF. Effectiveness of Nonfunctionalized Graphene Oxide Nanolayers as Nanomedicine against Colon, Cervical, and Breast Cancer Cells. Int J Mol Sci 2023; 24:9141. [PMID: 37298090 PMCID: PMC10252622 DOI: 10.3390/ijms24119141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Recent studies in nanomedicine have intensively explored the prospective applications of surface-tailored graphene oxide (GO) as anticancer entity. However, the efficacy of nonfunctionalized graphene oxide nanolayers (GRO-NLs) as an anticancer agent is less explored. In this study, we report the synthesis of GRO-NLs and their in vitro anticancer potential in breast (MCF-7), colon (HT-29), and cervical (HeLa) cancer cells. GRO-NLs-treated HT-29, HeLa, and MCF-7 cells showed cytotoxicity in the MTT and NRU assays via defects in mitochondrial functions and lysosomal activity. HT-29, HeLa, and MCF-7 cells treated with GRO-NLs exhibited substantial elevations in ROS, disturbances of the mitochondrial membrane potential, an influx of Ca2+, and apoptosis. The qPCR quantification showed the upregulation of caspase 3, caspase 9, bax, and SOD1 genes in GRO-NLs-treated cells. Western blotting showed the depletion of P21, P53, and CDC25C proteins in the above cancer cell lines after GRO-NLs treatment, indicating its function as a mutagen to induce mutation in the P53 gene, thereby affecting P53 protein and downstream effectors P21 and CDC25C. In addition, there may be a mechanism other than P53 mutation that controls P53 dysfunction. We conclude that nonfunctionalized GRO-NLs exhibit prospective biomedical application as a putative anticancer entity against colon, cervical, and breast cancers.
Collapse
Affiliation(s)
- Mohammad Rafe Hatshan
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.H.); (M.R.S.); (M.K.); (S.F.A.)
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (A.A.A.-K.); (R.W.)
| | - Maqsood A. Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (A.A.A.-K.); (R.W.)
| | - Mohammad Faisal
- Botany and Microbiology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (A.A.A.-K.); (R.W.)
| | - Abdulaziz A. Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (A.A.A.-K.); (R.W.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.H.); (M.R.S.); (M.K.); (S.F.A.)
| | - Mujeeb Khan
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.H.); (M.R.S.); (M.K.); (S.F.A.)
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (A.A.A.-K.); (R.W.)
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | - Syed Farooq Adil
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.R.H.); (M.R.S.); (M.K.); (S.F.A.)
| |
Collapse
|
5
|
Dissanayake NSL, Pathirana MA, Wanasekara ND, Mahltig B, Nandasiri GK. Removal of Methylene Blue and Congo Red Using a Chitosan-Graphene Oxide-Electrosprayed Functionalized Polymeric Nanofiber Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1350. [PMID: 37110933 PMCID: PMC10144769 DOI: 10.3390/nano13081350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Untreated textile effluent may contain toxic organic pollutants that can have negative impacts on the ecosystem. Among the harmful chemicals present in dyeing wastewater, there are two frequently used organic dyes: methylene blue (cationic) and congo red (anionic). The current study presents investigations on a novel two-tier nanocomposite membrane, i.e., a top layer formed of electrosprayed chitosan-graphene oxide and a bottom layer consisting of an ethylene diamine functionalized polyacrylonitrile electrospun nanofiber for the simultaneous removal of the congo red and methylene blue dyes. The fabricated nanocomposite was characterized using FT-IR spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and Drop Shape Analyzer. Isotherm modeling was used to determine the efficiency of dye adsorption for the electrosprayed nanocomposite membrane and the confirmed maximum adsorptive capacities of 182.5 mg/g for congo red and 219.3 mg/g for methylene blue, which fits with the Langmuir isotherm model, suggesting uniform single-layer adsorption. It was also discovered that the adsorbent preferred an acidic pH level for the removal of congo red and a basic pH level for the removal of methylene blue. The gained results can be a first step for the development of new wastewater cleaning techniques.
Collapse
Affiliation(s)
- Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Maadri A. Pathirana
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein-University of Applied Sciences, 41065 Mönchengladbach, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka; (N.S.L.D.)
| |
Collapse
|
6
|
Mardiroosi A, Mahjoub AR, Khavar AHC, Boukherroub R, Sillanpää M, Kaur P. Effects of functionalized magnetic graphene oxide on the visible-light-induced photocatalytic activity of perovskite-type MTiO3 (M= Zn and Mn) for the degradation of Rhodamine B. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
Pathirana MA, Dissanayake NSL, Wanasekara ND, Mahltig B, Nandasiri GK. Chitosan-Graphene Oxide Dip-Coated Polyacrylonitrile-Ethylenediamine Electrospun Nanofiber Membrane for Removal of the Dye Stuffs Methylene Blue and Congo Red. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:498. [PMID: 36770459 PMCID: PMC9920196 DOI: 10.3390/nano13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 05/14/2023]
Abstract
Textile wastewater accommodates many toxic organic contaminants that could potentially threaten the ecosystem if left untreated. Methylene blue is a toxic, non-biodegradable, cationic dye that is reportedly observed in significant amounts in the textile effluent stream as it is widely used to dye silk and cotton fabrics. Congo red is a carcinogenic anionic dye commonly used in the textile industry. This study reports an investigation of methylene blue and Congo red removal using a chitosan-graphene oxide dip-coated electrospun nanofiber membrane. The fabricated nanocomposite was characterized using Scanning Electron Microscopy (SEM), FT-IR Spectroscopy, Raman Spectroscopy, UV-vis Spectroscopy, Drop Shape Analyzer, and X-ray Diffraction. The isotherm modeling confirmed a maximum adsorptive capacity of 201 mg/g for methylene blue and 152 mg/g for Congo red, which were well fitted with a Langmuir isotherm model indicating homogenous monolayer adsorption.
Collapse
Affiliation(s)
- Maadri A. Pathirana
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nethmi S. L. Dissanayake
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Nandula D. Wanasekara
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Boris Mahltig
- Faculty of Textile and Clothing Technology, Hochschule Niederrhein—University of Applied Sciences, 47707 Krefeld, Germany
| | - Gayani K. Nandasiri
- Department of Textile and Apparel Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| |
Collapse
|
8
|
Khan M, Das S, Roy A, Roy S. Reusable Sugar-Based Gelator for Marine Oil-Spill Recovery and Waste Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:899-908. [PMID: 36606755 DOI: 10.1021/acs.langmuir.2c03204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, the gelation ability of a series of novel pyridine-based glucose tailored gelators (DPHAEN, DPHABN, and DPHAHN) with a flexible alkyl chain has been examined in binary solvent mixtures using a number of techniques, for example, UV spectroscopy, FT-IR spectroscopy, NMR spectroscopy, rheology measurement, SEM, XRD, and computational study. Proposed herein is an environment-friendly method to realize toxic dye separation and oil/water separation. It has been found that gels in a selective binary solvent mixture are efficient reusable absorbers of toxic dye molecules. A new gravitational force-driven, simple one-step, toxic dye removal and oil-water separation method is presented for sustainable filtration of waste water and simultaneous collection of oil. The gel column also showed high stability and reusability over repeated use and can be easily scaled for efficient clean-up of a large number of toxic dyes and oil spills present in water. Studies also exposed that the gel column can simultaneously separate dye molecules and mineral oils from water. This simple, green, and efficient method overcomes a nontrivial hurdle for environmentally safe separation of toxic dyes as well as oil/water mixtures and offers insights into the design of advanced materials for practical oil/water separation.
Collapse
Affiliation(s)
- Meheboob Khan
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| | - Siddhartha Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| | - Aparna Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| | - Sumita Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Paschim Medinipur721 102, India
| |
Collapse
|
9
|
Functionalized MIL-53 and its derivatives modified Bi2WO6 as effective piezocatalysts and membranes for adsorption and decomposition of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Copolymer-type magnetic graphene oxide with dual-function for adsorption of variety of dyes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Poornima S, Manikandan S, Karthik V, Balachandar R, Subbaiya R, Saravanan M, Lan Chi NT, Pugazhendhi A. Emerging nanotechnology based advanced techniques for wastewater treatment. CHEMOSPHERE 2022; 303:135050. [PMID: 35623429 DOI: 10.1016/j.chemosphere.2022.135050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The increasing trend of industrialization leads to tremendous release of industrial effluents. Waste water treatment is one of the important sectors to focus in order to overcome the most threatening issue of waste disposal and to ensure sustainability. Sustainable and energy efficient treatment methods are the attractive technologies for their current implementation of waste management. Even though the existing technologies are effective, unsustainability makes them unfit for their extended applications. Conventional and advanced technologies have been extensively implemented for the treatment of wide spectrum of effluents. Hybrid technologies including chemical and biological methods also emerging as promising technologies but secondary sludge generation is still unaddressed. Even though effectiveness of biochar varies over type of contaminants, cost-effectiveness and eco-friendly nature extended their applications in waste management. Nanotechnology and membrane technology are the promising and emerging areas of interest due to their widespread applications in waste water treatment. Carbon nano structures, nano filters, graphene, nano magnets modified with activated carbon are the potential candidates for the treatment. The present review demonstrates the emerging treatment technologies with special focus to nano based waste water treatment methods.
Collapse
Affiliation(s)
- Shanmugam Poornima
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, 637 215, Namakkal District, Tamil Nadu, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Vivekanandhan Karthik
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode, 637 215, Namakkal District, Tamil Nadu, India
| | - Ramalingam Balachandar
- Department of Biotechnology, Prathyusha Engineering College, Aranvoyalkuppam, Poonamallee - Tiruvallur Road, Tiruvallur, 602 025, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box: 21692, Kitwe, Zambia
| | - Muthupandian Saravanan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600007, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Yu L, Keffer DJ, Hsieh CT, Scroggins JR, Chen H, Dai S, Harper DP. Lignin-Derived Magnetic Activated Carbons for Effective Methylene Blue Removal. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Yu
- Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - David J. Keffer
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 32003, Taiwan
| | - Jakob R. Scroggins
- Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Hao Chen
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sheng Dai
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David P. Harper
- Center for Renewable Carbon, Institute of Agriculture, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
13
|
Tran HV, Le TD. Graphene Oxide‐Based Adsorbents for Organic Dyes Removal from Contaminated Water: A Review. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hoang Vinh Tran
- Hanoi University of Science and Technology Inorganic Chemistry 1st Dai Co Viet Road 100000 Hanoi VIET NAM
| | - Thu D. Le
- Hanoi University of Science and Technology School of Chemical Engineering VIET NAM
| |
Collapse
|
14
|
Korolev VV, Ramazanova AG, Efimova KV, Guseinov SS. Effect of Graphene Flakes on the Physical and Chemical Properties of Magnetite Magnetic Fluids. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bilal M, Iqbal HM, Adil SF, Shaik MR, Abdelgawad A, Hatshan MR, Khan M. Surface-coated magnetic nanostructured materials for robust bio-catalysis and biomedical applications-A review. J Adv Res 2022; 38:157-177. [PMID: 35572403 PMCID: PMC9091734 DOI: 10.1016/j.jare.2021.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Enzymes based bio-catalysis has wide range of applications in various chemical and biological processes. Thus, the process of enzymes immobilization on suitable support to obtain highly active and stable bio-catalysts has great potential in industrial applications. Particularly, surface-modified magnetic nanomaterials have garnered a special interest as versatile platforms for biomolecules/enzyme immobilization. AIM OF REVIEW This review spotlights recent progress in the immobilization of various enzymes onto surface-coated multifunctional magnetic nanostructured materials and their derived nano-constructs for multiple applications. Conclusive remarks, technical challenges, and insightful opinions on this field of research which are helpful to expand the application prospects of these materials are also given with suitable examples. KEY SCIENTIFIC CONCEPTS OF REVIEW Nanostructured materials, including surface-coated magnetic nanoparticles have recently gained immense significance as suitable support materials for enzyme immobilization, due to their large surface area, unique functionalities, and high chemical and mechanical stability. Besides, magnetic nanoparticles are less expensive and offers great potential in industrial applications due to their easy recovery and separation form their enzyme conjugates with an external magnetic field. Magnetic nanoparticles based biocatalytic systems offer a wide-working temperature, pH range, increased storage and thermal stabilities. So far, several studies have documented the application of a variety of surface modification and functionalization techniques to circumvent the aggregation and oxidation of magnetic nanoparticles. Surface engineering of magnetic nanoparticles (MNPs) helps to improve the dispersion stability, enhance mechanical and physicochemical properties, upgrade the surface activity and also increases enzyme immobilization capabilities and biocompatibility of the materials. However, several challenges still need to be addressed, such as controlled synthesis of MNPs and clinical aspects of these materials require consistent research from multidisciplinary scientists to realize its practical applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Corresponding authors.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| | - Abdelatty Abdelgawad
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
- Corresponding authors.
| |
Collapse
|
16
|
Facile Fabrication of Magnetic Poly(Vinyl Alcohol)/Activated Carbon Composite Gel for Adsorptive Removal of Dyes. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6020055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated carbon (AC) has been widely utilized for the adsorption of pollutants from water. However, it is difficult to recycle the AC after adsorption. In this paper, we report a facile one-pot approach to fabricate magnetic poly(vinyl alcohol)/AC composite gel (mPVA/AC CG) by dropwise addition of an aqueous mixture of PVA, AC and iron ions into the ammonia solution. The obtained mPVA/AC CG after freeze-drying shows porous microstructure and favorable magnetic properties. The utilization of mPVA/AC CG for adsorptive removal of methylene blue (MB) and methyl orange (MO) dyes from water was investigated. The mPVA/AC CG not only exhibited good adsorption performance for both MB and MO dyes but also could be readily recycled using a magnet after adsorption. The adsorption process was well described by the pseudo-second-order kinetic model and the Langmuir isotherm model. Considering the simple fabrication process, good adsorption performance and favorable magnetic separation capability, this work provides a viable strategy for combining the features of AC and magnetic gel for fabrication of applicable magnetic adsorbent.
Collapse
|
17
|
A novel labeled and label-free dual electrochemical detection of endotoxin based on aptamer-conjugated magnetic reduced graphene oxide-gold nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Le TTH, Ngo TT, Nguyen THH, Pham TD, Vu TXH, Tran QV. Green Nanoarchitectonics Using Cleistocalyx Operculatus Leaf Extract in the Preparation of Multifunctional Graphene Oxide/Fe3O4/Ag Nanomaterials for Water Decontamination and Disinfection. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Matiyani M, Rana A, Pal M, Rana S, Melkani AB, Sahoo NG. Polymer grafted magnetic graphene oxide as a potential nanocarrier for pH-responsive delivery of sparingly soluble quercetin against breast cancer cells. RSC Adv 2022; 12:2574-2588. [PMID: 35425302 PMCID: PMC8979073 DOI: 10.1039/d1ra05382e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
In this work, polymer grafted magnetic graphene oxide (GO-PVP-Fe3O4) was successfully synthesized for efficient delivery of anticancer drug. Firstly, GO was functionalized with the hydrophilic and biocompatible polymer polyvinylpyrrolidone (PVP) and then grafted with magnetic nanoparticles (Fe3O4) through an easy and effective chemical co-precipitation method. Quercetin (QSR) as an anticancer drug was loaded onto the surface of GO-PVP-Fe3O4 via non-covalent interactions. The drug loading capacity was as high as 1.69 mg mg-1 and the synthesized magnetic nanocarrier shows pH-responsive controlled release of QSR. The cellular cytotoxicity of the synthesized nanocarrier with and without drugs was investigated in human breast cancer MDA MB 231 cells and their effects compared on non-tumorigenic epithelial HEK 293T cells. These results reveal that the drug loaded GO-PVP-Fe3O4 nanohybrid was found to be more toxic than the free drug towards MDA MB 231 cells and exhibits biocompatibility towards HEK 293T cells. Overall, a smart drug delivery system including polymer grafted magnetic graphene oxide as a pH-responsive potential nanocarrier could be beneficial for targeted drug delivery, controlled by an external magnetic field as an advancement in chemotherapy against cancer.
Collapse
Affiliation(s)
- Monika Matiyani
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D. S. B. Campus, Kumaun University Nainital-263001 Uttarakhand India
| | - Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D. S. B. Campus, Kumaun University Nainital-263001 Uttarakhand India
| | - Mintu Pal
- Department of Pharmacology, AIIMS Bathinda Punjab India
| | - Sravendra Rana
- University of Petroleum & Energy Studies (UPES), School of Engineering, Department of Chemistry, Energy Acres Bidholi Dehradun 248007 India
| | - Anand B Melkani
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D. S. B. Campus, Kumaun University Nainital-263001 Uttarakhand India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D. S. B. Campus, Kumaun University Nainital-263001 Uttarakhand India
| |
Collapse
|
20
|
Sarojini G, Babu SV, Rajamohan N, Rajasimman M, Pugazhendhi A. Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue - Characterization, parametric and kinetic studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118376. [PMID: 34656675 DOI: 10.1016/j.envpol.2021.118376] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The potential ability of synthesized PPy-Fe3O4-SW nano-composite to remove Methylene Blue (MB) from synthetic textile dye solution was investigated under batch conditions. Through parametric studies, the influence of process parameters namely solution pH, on the effective performance of nano-composite was studied. PPy - Fe3O4- SW nano-composite removed 99.14% of MB at the optimized conditions of pH-10, temperature - 25 °C, initial MB concentration - 50 mg/L, nano-composite dosage - 20 mg and contact time - 20 min. PPy - Fe3O4- SW nano-composite has a maximum sorption capacity of 666.66 mg/g. The kinetics and isotherm study revealed that the chromium adsorption obeys pseudo second order (PSO) model (R2 = 0.9941) and Freundlich isotherm (R2 = 0.9910) respectively. The PSO kinetic constant (K2) was found to be 0.000442 (g/mg) min. The thermodynamic feasibility was confirmed through negative values of standard free energy at all tested conditions. The characteristics of adsorption study were analyzed and the results of FTIR, SEM and EDS confirmed the uptake of MB by PPy-Fe3O4-SW nano-composite.
Collapse
Affiliation(s)
- G Sarojini
- Department of Petrochemical Engineering, SVS College of Engineering, Coimbatore, India
| | - S Venkatesh Babu
- Department of Petroleum Engineering, JCT College of Engineering & Technology, Coimbatore, India
| | - N Rajamohan
- Faculty of Engineering, Sohar University, Sohar, P C:311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Luo S, Kan X. A nanozyme-catalysis-based ratiometric electrochemical sensor for general detection of Cd 2+. Analyst 2022; 147:5437-5444. [DOI: 10.1039/d2an01480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AuPt–rGO showed good peroxidase-like activity for the oxidation of OPD to DAP (a novel internal reference) and achieved sensitive and reliable detection of Cd2+ based on a ratiometric strategy.
Collapse
Affiliation(s)
- Shan Luo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| |
Collapse
|
22
|
Tran HV, Thi Kim Do O, Nguyen ND, Huynh CD. Synthesis of amorphous carbon functionalized Fe 3O 4 nanoparticles as a smart nanosorbent for organic dyes removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj01246d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of process for synthesis of carbon coated Fe3O4 (CCF) nanocomposites and their application as nanosorbents with recoverability and regenerability for the sorption of organic dyes.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Oanh Thi Kim Do
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Nghia Duc Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Chinh Dang Huynh
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| |
Collapse
|
23
|
Tishbi P, Moasayebi M, Salehi Z, Fatemi S, Faegh E. Synthesizing magnetic graphene oxide nanomaterial (
GO‐Fe
3
O
4
) and kinetic modeling of methylene blue adsorption from water. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pedram Tishbi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Mehdi Moasayebi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Zeinab Salehi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Shohreh Fatemi
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Ehsan Faegh
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| |
Collapse
|
24
|
Facile Construction of Magnetic Ionic Liquid Supported Silica for Aerobic Oxidative Desulfurization in Fuel. Catalysts 2021. [DOI: 10.3390/catal11121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the rapid growth in fuel demand, deep desulfurization of fuel oil is vitally necessary for the sake of health and environmental protection. In this work, a kind of magnetic ionic liquid supported silica is prepared by a facile ball milling method, and applied in the aerobic oxidative desulfurization of organosulfurs in fuel. The experimental results indicated that ball milling procedure can increase the specific surface area of samples, which is beneficial to oxidative desulfurization process. Under the optimal reaction conditions, the prepared materials can have an entire removal of aromatic sulfur compounds as well as a good recycling ability. Moreover, the introduction of Fe3O4 did not decline the desulfurization performance, but help the catalyst to be easily separated after reaction.
Collapse
|
25
|
Water Treatment from MB Using Zn-Ag MWCNT Synthesized by Double Arc Discharge. MATERIALS 2021; 14:ma14237205. [PMID: 34885360 PMCID: PMC8658634 DOI: 10.3390/ma14237205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022]
Abstract
A new type of nano-adsorbent zinc-silver nanoparticles ornamented by multi-walled carbon nanotubes (Zn-Ag MWCNT) was efficiently synthesized by double arc discharge using a newly designed rotating cylinder electrode. Zn-Ag MWCNT was characterized by different instrumental methods to get information about the sample shape, size, and crystallinity. Without irradiation, Zn-Ag MWCNT indicated significant potential for elimination against methylene blue (MB) which is dissolved in deionized water. When the adsorbent concentration was 0.1 g/L at normal 8 pH, the Zn-Ag MWCNTs were efficient in removing 97% of the MB from 40 mg/L that was dissolved in water for 10 min. The dye removal activity of (Zn-Ag) decorated MWCNTs was attributed to the influence of silver and zinc nanoparticles on the MWCNTs. Finally, this approach was both cost-effective and efficient.
Collapse
|
26
|
Hua Y, Wang C, Wang S, Xiao J. Poly(catechol) modified Fe 3O 4 magnetic nanocomposites with continuous high Fenton activity for organic degradation at neutral pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62690-62702. [PMID: 34215976 DOI: 10.1007/s11356-021-15088-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have been widely used as a recyclable catalyst in Fenton reaction for organic degradation. However, the pristine MNPs suffer from the drawbacks of iron leaching in acidic conditions as well as the decreasing catalytic activity of organic degradation at a pH higher than 3.0. To solve the problems, Fe3O4 MNPs were modified by poly(catechol) (Fe3O4/PCC MNPs) using a facile chemical co-precipitation method. The poly(catechol) modification improved both the dispersity and the surface negative charges of Fe3O4/PCC MNPs, which are beneficial to the catalytic activity of MNPs for organic degradation. Moreover, the poly(catechol) modification enhanced the efficiency of Fe(II) regeneration during Fenton reaction due to the acceleration of Fe(III) reduction by the phenolic/quinonoid redox pair. As a result, the Fenton reaction with Fe3O4/PCC MNPs could efficiently degrade organic molecules, exampled by methylene blue (MB), in an expanded pH range between 3.0 and 10.0. In addition, Fe3O4/PCC MNPs could be reused up to 8 cycles for the MB degradation with negligible iron leaching of lower than 1.5 mg L-1. This study demonstrated Fe3O4/PCC MNPs are a promising heterogeneous Fenton catalysts for organic degradation.
Collapse
Affiliation(s)
- Yani Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chuan Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| | - Sha Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Juan Xiao
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Charkhandaz T, Dorosti N, Farhadi S, Kubicki M. Synthesis of phosphoric triamide nanostructures, characterization, X-ray crystallography, and preparation of P 2O 5-RGO nanocomposites by solvothermal method. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tayebeh Charkhandaz
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Niloufar Dorosti
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Saeed Farhadi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
28
|
Fabrication of flexible graphene oxide paper-like adsorbent doped with magnetite nanoparticles for removal of dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Liu Y, Zhou Q, Wu Y, Li S, Sun Y, Sheng X, Zhan Y, Zhao J, Guo J, Zhou B. Sensitive detection of 2,4,6-trinitrotoluene utilizing fluorescent sensor from carbon dots and reusable magnetic core-shell nanomaterial. Talanta 2021; 233:122498. [PMID: 34215116 DOI: 10.1016/j.talanta.2021.122498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/23/2023]
Abstract
Carbon dots have been a promising nano-carbon material with many advantages, and attracted many more attentions. This study designed a new chemosensor integrating the strong fluorescent property of carbon dots and the magnetism of amino-functionalized magnetic core-shell nanomaterial, Fe@SiO2-NH2 for determination of 2,4,6-trinitrotoluene (TNT). In this system, fluorescent carbon dots interacted with amino groups on the surface of amino-functionalized magnetic core-shell nanomaterial leading to fluorescence quenching of carbon dots, appearance of TNT competitively replaced of carbon dots on the surface of the magnetic material through forming a Meisenheimer complex. This sensor exhibits excellent selectivity and sensitivity for TNT, and which provided a good dynamic linear range for TNT from 10 to 2000 ng mL-1. The experiments demonstrate a low detection limit of 2.15 ng mL-1. The intra-day precisions for 25, 100 and 500 ng mL-1 were 4.6, 2.3 and 0.5% (RSD, n = 6), inter-day precisions for 25, 100 and 500 ng mL-1 were 4.2, 2.5 and 0.9% (RSD, n = 6), respectively. The developed sensor was validated with river water, dust, and soil samples, and the achieved spiked recoveries were immensely satisfied from 98.1% to 102.0%. The Fe@SiO2-NH2 possessed excellent reusability. This sensor exhibits that it is simple, sensitive and selective, and will be a vital analytical tool for TNT in many fields.
Collapse
Affiliation(s)
- Yongli Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China; Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yali Zhan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
30
|
Rahmani H, Rahmani A, Rahmani S, Farokhnejad R, Yousefi M, Rahmani K. Synthesis and characterization of alginate superparamagnetic nanoparticles deposited on Fe3O4 and investigation its application in adsorption of tetracycline in aqueous solutions. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03701-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
31
|
Xu Y, Wang G, Zhu L, Shen L, Zhang Z, Ren T, Zeng Z, Chen T, Xue Q. Multifunctional superhydrophobic adsorbents by mixed-dimensional particles assembly for polymorphic and highly efficient oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124374. [PMID: 33243637 DOI: 10.1016/j.jhazmat.2020.124374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Supra-wetting materials, especially superhydrophobic absorption materials, as an emerging advanced oil-water separation material have attracted extensive concern in the treatment of oil spillage and industrial oily wastewater. However, it is still a challenge to fabricate robust and multifunctional superhydrophobic materials for the multitasking oil-water separation and fast clean-up of the viscous crude oil by an environment-friendly and scalable method. Herein, a solid-solid phase ball-milling strategy without chemical reagent-free modification was proposed to construct heterogeneous superhydrophobic composites by using waste soot as the solid-phase superhydrophobic modifier. A series of covalent bond restricted soot-graphene (S-GN) or soot-Fe3O4 (S-Fe3O4) composite materials with a peculiar micro-nano structure are prepared. Through "glue+superhydrophobic particles" method, the prepared soot-based composite particles are facilely loaded on the porous skeleton of the sponge to obtain multifunctional superhydrophobic adsorbents. The reported superhydrophobic adsorbents exhibited robust chemical and mechanical stability, convenient magnetic collection, the high oil absorption capacity of 60-142 g g-1, durable recyclability (>250 cycles), efficient separation efficiency (>99.5%) and outstanding self-heated performance, which enable them to be competent for oil-water separation in multitasking and complex environment (floating oils, continuous oil collection, oil-in-water emulsion, and viscous oil-spills).
Collapse
Affiliation(s)
- Yong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Gang Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Lijing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Luli Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Zhepeng Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Tianhui Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Qunji Xue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
32
|
Synthesis of Manganese Ferrite/Graphene Oxide Magnetic Nanocomposite for Pollutants Removal from Water. Processes (Basel) 2021. [DOI: 10.3390/pr9040589] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
These days, environmental pollution, notably water pollution, has increasingly caused severe human health problems. The major water pollutants are heavy metals. MnFe2O4/GO nanocomposite was prepared in the current work via in situ method and tested to remove lead ion Pb2+ and neutral red (NR) dye from water. The prepared nanocomposite was characterized using different techniques, including X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectra, and vibrating sample magnetometer. The prepared nanocomposite showed high adsorption capacity toward Pb2+ and NR dye removal according to Langmuir fitting indicating the monolayer homogeneous adsorption of pollutants over the adsorbent surface and can be separated easily with an external magnet. The effect of different factors, including contact time, pH, initial concentration, and adsorbent dose on the adsorption, were also studied. The increased concentration of pollutants led to increased adsorption capacity from 63 to 625 mg/g for Pb2+ ions and from 20 to 90 mg/g for NR dye. The increased adsorbent dose led to increased removal efficiency from 39% to 98.8% and from 63% to 94% for Pb2+ and NR dye, respectively. The optimum pH for the adsorption of both pollutants was found to be 6.0. The reusability of MnFe2O4/GO nanocomposite was studied for up to five cycles. The nanocomposite can keep its efficiency even after the studied cycles. So, the prepared magnetic nanocomposite is a promising material for water treatment.
Collapse
|
33
|
Jiang L, Wen Y, Zhu Z, Liu X, Shao W. A Double cross-linked strategy to construct graphene aerogels with highly efficient methylene blue adsorption performance. CHEMOSPHERE 2021; 265:129169. [PMID: 33310315 DOI: 10.1016/j.chemosphere.2020.129169] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A novel lysine and EDA double cross-linked graphene aerogel (LEGA) was constructed. The prepared LEGA was utilized as a methylene blue (MB) adsorbent in the wastewater treatment. It exhibits a three-dimensional interconnected porous structure benefiting dye adsorption. Its compression property is highly enhanced with the addition of lysine. Adsorption isotherm and kinetics of MB onto LEGA were discussed. Their results show that MB adsorption onto LEGA was fitted to follow Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. LEGA has an excellent adsorption capacity towards MB as high as 332.23 mg/g and its MB adsorption process is proved to be an exothermic process. The mechanism for MB adsorption onto LEGA was proposed as the ion exchange, electrostatic interaction, π-π stacking interaction and hydrogen bonding. Thus, LEGA is confirmed to be a sustainable and green MB adsorbent with highly removal efficiency in the treatment of wastewater.
Collapse
Affiliation(s)
- Lei Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yanyi Wen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Zhongjie Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, Department of Biotechnology of TCM, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
34
|
Li T, Liang J, Zhou L. Fabricating Fe 3O 4-schwertmannite as a Z-scheme photocatalyst with excellent photocatalysis-Fenton reaction and recyclability. J Environ Sci (China) 2020; 98:186-195. [PMID: 33097151 DOI: 10.1016/j.jes.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Here we reported an effective method to solve the rate-limiting steps, such as the reduction of Fe3+ to Fe2+ and an invalid decomposition of H2O2 in a conventional Fenton-like reaction. A magnetic heterogeneous photocatalyst, Fe3O4-schwertmannite (Fe3O4-sch) was successfully developed by adding Fe3O4 in the formation process of schwertmannite. Fe3O4-sch shows excellent electrons transfer ability and high utilization efficiency of H2O2 (98.5%). The catalytic activity of Fe3O4-sch was studied through the degradation of phenol in the heterogeneous photo-Fenton process. Phenol degradation at a wide pH (3 - 9) was up to 98% within 6 min under visible light illumination with the Fe3O4-sch as heterogeneous Fenton catalyst, which was higher than that using pure schwertmannite or Fe3O4. The excellent photocatalytic performance of Fe3O4-sch is ascribed to the effective recycling between Fe3+ and Fe2+ by the photo-generated electron, and also profit from the formation of the "Z-Scheme" system. According to the relevant data, photocatalytic mechanism of Fe3O4-sch for degrading phenol was proposed. This study not only provides an efficient way of enhancing heterogeneous Fenton reaction, but also gives potential application for iron oxyhydroxysulfate mineral.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Kaur P, Singh R, Kaur V. Dual role of silatranized Schiff base as a fluorimetric probe and a linker to functionalize graphene oxide for the selective detection and adsorption of zinc ions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Yek SMG, Azarifar D, Nasrollahzadeh M, Bagherzadeh M, Shokouhimehr M. Heterogenized Cu(II) complex of 5-aminotetrazole immobilized on graphene oxide nanosheets as an efficient catalyst for treating environmental contaminants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Tang T, Goossens K, Lu SJ, Meng D, Bielawski CW. Agar-reduced graphene oxide selectively adsorbs organic dyes and strengthens double-network hydrogels. RSC Adv 2020; 10:29287-29295. [PMID: 35521125 PMCID: PMC9055959 DOI: 10.1039/d0ra05735e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
A straightforward and environmentally friendly method for synthesizing agar-reduced graphene oxide (ArGO) was devised. The topological features and emergent physical properties displayed by the novel carbon material were controlled by varying its water content. Dehydrated films of ArGO were found to be stable in water due to the π–π stacking interactions that formed between the aromatic components of its constituent sheets. In contrast, porous variants of ArGO afforded hydrogels that exhibited high swelling capacities. The intrinsic mechanical strength, elasticity and chemical stability of the hydrogels were further enhanced through adaption into double-network analogues. Such hydrogels, which were prepared using a facile and efficient one-pot methodology, exhibited a high fracture stress upon compression, and retained their shape in basic aqueous environments. These features can be expected to enable water purification and tissue engineering applications, among others. Agar-reduced graphene oxide was conveniently synthesized from readily available precursors and found to selectively adsorb cationic organic dyes as well as to enhance the mechanical properties exhibited by various types of double-network hydrogels.![]()
Collapse
Affiliation(s)
- Tang Tang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea
| | - Karel Goossens
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea
| | - Sherilyn J Lu
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dongli Meng
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) Ulsan 44919 Republic of Korea .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea.,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
38
|
Du Z, Qiu Y, Niu T, Wang W, Ye X, Wang J, Zhang WL, Choi HJ, Zeng H. Bio-Inspired Passion Fruit-like Fe 3O 4@C Nanospheres Enabling High-Stability Magnetorheological Performances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7706-7714. [PMID: 32517475 DOI: 10.1021/acs.langmuir.0c00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetorheological (MR) fluids have been successfully utilized in versatile fields but are still limited by their relatively inferior long-term dispersion stability. Herein, bio-inspired passion fruit-like Fe3O4@C nanospheres were fabricated via a simple hydrothermal and calcination approach to tackle the settling challenge. The unique structures provide sufficient active interfaces for the penetration of carrier mediums, leading to preferable wettability between particles and medium oils. Compared with the bare Fe3O4 nanoparticle suspension, the resulting Fe3O4@C nanosphere-based MR fluid exhibits desirable stability and relatively low field-off viscosity even at a high particle concentration up to 35 vol %.
Collapse
Affiliation(s)
- Zhiwei Du
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Qiu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianchao Niu
- Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenchao Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xudan Ye
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiong Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wen Ling Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
39
|
Amani M, Shakeri A. Synthesis and Characterization of Water-Based Epoxy-Acrylate/Graphene Oxide Decorated with Fe3O4 Nanoparticles Coatings and Its Enhanced Anticorrosion Properties. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1773500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehdi Amani
- Department of Chemistry, Alborz Campus, University of Tehran, Tehran, Iran
| | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S, Hashemi SH. Picomolar-level detection of mercury within non-biological/biological aqueous media using ultra-sensitive polyaniline-Fe 3O 4-silver diethyldithiocarbamate nanostructure. Anal Bioanal Chem 2020; 412:5353-5365. [PMID: 32504108 DOI: 10.1007/s00216-020-02750-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023]
Abstract
Mercury as the 3rd most toxic, non-biodegradable, and carcinogenic pollutant can adversely affect the ecosystem and health of living species through its bioaccumulation within the nature that can affect the top consumer in the food chain; therefore, it is vital to sense/remove Hg2+ within/from aqueous media using practical approaches. To address this matter, we modified the glassy carbon electrode (GCE) with ultra-sensitive, interconnected, sulfurized, and porous nanostructure consisted of polyaniline-Fe3O4-silver diethyldithiocarbamate (PANi-F-S) to enhance the sensitivity, selectivity, and limit of detection (LOD) of the sensor. Obtained results showed that at optimum conditions (i.e., pH value of 7, deposition potential of - 0.8 V, and accumulation time of 120 s), for Hg2+ concentration ranging from 0.4 to 60 nM, the modified electrode showing linear relative coefficient of 0.9983, LOD of 0.051 nM, LOQ of 0.14 nM, and sensitivity of 1618.86 μA μM-1 cm-2 highlights superior sensitivity of the developed platform until picomolar level. Additionally, the modified electrode showed ideal repeatability, stability, reproducibility, and selectivity (by considering Zn2+, Cd2+ Pb2+, Cu2+, Ni2+, and Co2+ as metal interferences) and recovered more than 99% of the Hg2+ ions within non-biological (mineral, tap, and industrial waters) and biological (blood plasma sample) fluids. Graphical abstract.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore. .,Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran.
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 10607, Taiwan
| | - Sonia Bahrani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Seyyed Hamid Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| |
Collapse
|
41
|
Adil SF, Assal ME, Shaik MR, Kuniyil M, Hashmi A, Khan M, Khan A, Tahir MN, Al‐Warthan A, Siddiqui MRH. Efficient aerial oxidation of different types of alcohols using ZnO nanoparticle–MnCO
3
‐graphene oxide composites. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Syed Farooq Adil
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohamed E. Assal
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Azhar Hashmi
- SABIC Technology and Innovation Riyadh Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Muhammad Nawaz Tahir
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran 31261 Kingdom of Saudi Arabia
| | - Abdulrahman Al‐Warthan
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Mohammed Rafiq H. Siddiqui
- Chemistry Department, College of Science King Saud University P.O. 2455 Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Yoo J, Kim HS, Park SY, Kwon S, Lee J, Koo J, Seo YS. Instantaneous integration of magnetite nanoparticles on graphene oxide assisted by ultrasound for efficient heavy metal ion retrieval. ULTRASONICS SONOCHEMISTRY 2020; 64:104962. [PMID: 32006933 DOI: 10.1016/j.ultsonch.2020.104962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/12/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
We fabricated a magnetite nanoparticle-graphene oxide (GO) hybrid via a non-chemical and one-step process assisted by ultrasound in an aqueous solution where the nanoparticle attached to the hydrophobic region on graphite oxide (multi-layered GO) which, at the same time, was exfoliated. Unlike chemical methods such as precipitation, oxygen-containing functional groups on GO have not been consumed or reduced during the hybridization, leading that this hybrid exhibited good water solubility and high adsorption capacity for heavy metal ions such as Pb(II) and Au(III). After the adsorption, the hybrid was instantly collected using a magnet. This method can be useful for hybridizing various nanoparticles with GO.
Collapse
Affiliation(s)
- Jeseung Yoo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Hyo-Sun Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Yul Park
- Department of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Suyong Kwon
- Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Joohyun Lee
- Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jaseung Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong Polymer Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
43
|
Development of In-Situ Poled Nanofiber Based Flexible Piezoelectric Nanogenerators for Self-Powered Motion Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Energy harvesting technologies have found significant importance over the past decades due to the increasing demand of energy and self-powered design of electronic and implantable devices. Herein, we demonstrate the design and application of in situ poled highly flexible piezoelectric poly vinylidene fluoride (PVDF) graphene oxide (GO) hybrid nanofibers in aligned mode for multifaceted applications from locomotion sensors to self-powered motion monitoring. Here we exploited the simplest and most versatile method, called electrospinning, to fabricate the in situ poled nanofibers by transforming non-polar α-phase of PVDF to polar β- phase structures for enhanced piezoelectricity under high bias voltage. The flexible piezoelectric device fabricated using the aligned mode generates an improved output voltage of 2.1 V at a uniform force of 12 N. The effective piezoelectric transduction exhibited by the proposed system was tested for its multiple efficacies as a locomotion detector, bio-e-skin, smart chairs and so on.
Collapse
|
44
|
Nano-hybrid based on polypyrrole/chitosan/grapheneoxide magnetite decoration for dual function in water remediation and its application to form fashionable colored product. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
|
46
|
Li Z, Li W, Liao L, Li J, Wu T, Ran L, Zhao T, Chen B. Preparation and properties of polybutylene‐terephthalate/graphene oxide in situ flame‐retardant material. J Appl Polym Sci 2020. [DOI: 10.1002/app.49214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhengqiu Li
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Wen Li
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Li Liao
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Jianbin Li
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Ting Wu
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Longchang Ran
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Tianbao Zhao
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| | - Baoshu Chen
- School of Materials Science and Engineering, Xi‐Hua University Chengdu, Sichuan China
| |
Collapse
|
47
|
Ciğeroğlu Z, Haşimoğlu A, Özdemir OK. Synthesis, characterization and an application of graphene oxide nanopowder: methylene blue adsorption and comparison between experimental data and literature data. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1710526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zeynep Ciğeroğlu
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Aydın Haşimoğlu
- Nanotechnology Research Center, Gebze Institute of Technology, Kocaeli, Turkey
| | - Oğuz Kaan Özdemir
- Department of Metallurgy and Material Science Engineering, Chemical-Mettalurgy Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
48
|
Hegde S, Kumar A, Hegde G. Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1353.ch016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Supriya Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke)/Luonnonvarakeskus (Luke), Joensuu Unit, Yliopistokatu 6 80100, JOENSUU, Finland
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| |
Collapse
|
49
|
Pourrahim S, Salem A, Salem S, Tavangar R. Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113454. [PMID: 31679878 DOI: 10.1016/j.envpol.2019.113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
The solid waste of ductile iron industry, which contains at least 88.0% magnesium oxide, is one of the toxic materials, leading to land contamination. On the other hand, the removal of reactive dyes from wastewaters is difficult required effective adsorbent like nano-porous MgO. The novelty of present investigation is based on nano-porous magnesium oxide production by precipitation from the solid waste to treat the wastewaters contaminated by reactive dye which is abundantly used in the textile industry. In order to improve the adsorptive properties of extracted MgO powder, the combinations of surfactants, containing cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyoxyethylene octyl phenyl ether (TX100) were applied based on the mixture design algorithm in the precipitation. The effects of processing factors such as surfactant composition, powder calcination temperature, surfactant dose and pH were evaluated on the removal efficiency. The results revolved that the combination of SDS and TX100, 1:1, plays an effective role in the production of particles with the appropriate average pore size, 16 nm. The adsorbent prepared in the optimum condition indicated a significant affinity for the removal of reactive dye which shows relatively pH-independent efficiency in the range of 3-9. The applied producer for fabrication of adsorbent eventually overcomes the pH-dependent problem for the toxic dye uptake, leading to produce the adsorbent with maximal adsorption capacity of 1000 mg g-1.
Collapse
Affiliation(s)
- Solmaz Pourrahim
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Amin Salem
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran; Center of Excellence for Color Science and Technology, Tehran, Iran.
| | - Shiva Salem
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Reza Tavangar
- Faculty of Material Science Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
50
|
Hao Y, Wang Z, Gou J, Dong S. Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide nanocomposite. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|