1
|
ATR-FTIR Biosensors for Antibody Detection and Analysis. Int J Mol Sci 2022; 23:ijms231911895. [PMID: 36233197 PMCID: PMC9570191 DOI: 10.3390/ijms231911895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Quality control of drug products is of paramount importance in the pharmaceutical world. It ensures product safety, efficiency, and consistency. In the case of complex biomolecules such as therapeutic proteins, small variations in bioprocess parameters can induce substantial variations in terms of structure, impacting the drug product quality. Conditions for obtaining highly reproducible grafting of 11-mercaptoundecanoic acid were determined. On that basis, we developed an easy-to-use, cost effective, and timesaving biosensor based on ATR-FTIR spectroscopy able to detect immunoglobulins during their production. A germanium crystal, used as an internal reflection element (IRE) for FTIR spectroscopy, was covalently coated with immunoglobulin-binding proteins. This thereby functionalized surface could bind only immunoglobulins present in complex media such as culture media or biopharmaceutical products. The potential subsequent analysis of their structure by ATR-FTIR spectroscopy makes this biosensor a powerful tool to monitor the production of biotherapeutics and assess important critical quality attributes (CQAs) such as high-order structure and aggregation level.
Collapse
|
2
|
Garvey S, Holmes JD, Kim YS, Long B. Vapor-Phase Passivation of Chlorine-Terminated Ge(100) Using Self-Assembled Monolayers of Hexanethiol. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29899-29907. [PMID: 32501666 DOI: 10.1021/acsami.0c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continued scaling of electronic devices shows the need to incorporate high mobility alternatives to silicon, the cornerstone of the semiconductor industry, into modern field effect transistor (FET) devices. Germanium is well-poised to serve as the channel material in FET devices as it boasts an electron and hole mobility more than twice and four times that of Si, respectively. However, its unstable native oxide makes its passivation a crucial step toward its potential integration into future FETs. The International Roadmap for Devices and Systems (IRDS) predicts continued aggressive scaling not only of the device size but also of the pitch in nanowire arrays. The development of a vapor-phase chemical passivation technique will be required to prevent the collapse of these structures that can occur because of the surface tension and capillary forces that are experienced when tight-pitched nanowire arrays are processed via liquid-phase chemistry. Reported here is a vapor-phase process using hexanethiol for the passivation of planar Ge(100) substrates. Results benchmarking it against its well-established liquid-phase equivalent are also presented. X-ray photoelectron spectroscopy was used to monitor the effectiveness of the developed vapor-phase protocol, where the presence of oxide was monitored at 0, 24, and 168 h. Water contact angle measurements compliment these results by demonstrating an increase in hydrophobicity of the passivated substrates. Atomic force microscopy monitored the surface topology before and after processing to ensure the process does not cause roughening of the surface, which is critical to demonstrate suitability for nanostructures. It is shown that the 200 min vapor-phase passivation procedure generates stable, passivated surfaces with less roughness than the liquid-phase counterpart.
Collapse
Affiliation(s)
- Shane Garvey
- School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Justin D Holmes
- School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland
| | - Y S Kim
- Lam Research Corp., Fremont, California 94538, United States
| | - Brenda Long
- School of Chemistry & AMBER Centre, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
3
|
Cheung KM, Stemer DM, Zhao C, Young TD, Belling JN, Andrews AM, Weiss PS. Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces. ACS MATERIALS LETTERS 2020; 2:76-83. [PMID: 32405626 PMCID: PMC7220117 DOI: 10.1021/acsmaterialslett.9b00438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemical lift-off lithography (CLL) is a subtractive soft-lithographic technique that uses polydimethylsiloxane (PDMS) stamps to pattern self-assembled monolayers of functional molecules for applications ranging from biomolecule patterning to transistor fabrication. A hallmark of CLL is preferential cleavage of Au-Au bonds, as opposed to bonds connecting the molecular layer to the substrate, i.e., Au-S bonds. Herein, we show that CLL can be used more broadly as a technique to pattern a variety of substrates composed of coinage metals (Pt, Pd, Ag, Cu), transition and reactive metals (Ni, Ti, Al), and a semiconductor (Ge) using straightforward alkanethiolate self-assembly chemistry. We demonstrate high-fidelity patterning in terms of precise features over large areas on all surfaces investigated. We use patterned monolayers as chemical resists for wet etching to generate metal microstructures. Substrate atoms, along with alkanethiolates, were removed as a result of lift-off, as previously observed for Au. We demonstrate the formation of PDMS-stamp-supported bimetallic monolayers by performing CLL on two different metal surfaces using the same PDMS stamp. By expanding the scope of the surfaces compatible with CLL, we advance and generalize CLL as a method to pattern a wide range of substrates, as well as to produce supported metal monolayers, both with broad applications in surface and materials science.
Collapse
Affiliation(s)
- Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dominik M. Stemer
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas D. Young
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jason N. Belling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Lau J, Trojniak AE, Maraugha MJ, VanZanten AJ, Osterbaan AJ, Serino AC, Ohnsorg ML, Cheung KM, Ashby DS, Weiss PS, Dunn BS, Anderson ME. Conformal Ultrathin Film Metal-Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:8977-8986. [PMID: 32536746 PMCID: PMC7291877 DOI: 10.1021/acs.chemmater.9b03141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Thin-film formation and transport properties of two copper-paddlewheel metal-organic framework (MOF) -based systems (MOF-14 and MOF-399) are investigated for their potential integration into electrochemical device architectures. Thin-film analogs of these two systems are fabricated by the sequential, alternating, solution-phase deposition of the inorganic and organic ligand precursors that result in conformal films via van der Merwe-like growth. Atomic force microscopy reveals smooth film morphologies with surface roughnesses determined by the underlying substrates and linear film growth of 1.4 and 2.2 nm per layer for the MOF-14 and MOF-399 systems, respectively. Electrochemical impedance spectroscopy is used to evaluate the electronic transport properties of the thin films, finding that the MOF-14 analog films demonstrate low electronic conductivity, while MOF-399 analog films are electronically insulating. The intrinsic porosities of these ultrathin MOF analog films are confirmed by cyclic voltammetry redox probe characterization using ferrocene. Larger peak currents are observed for MOF-399 analog films compared to MOF-14 analog films, which is consistent with the larger pores of MOF-399. The layer-by-layer deposition of these systems provides a promising route to incorporate MOFs as thin films with nanoscale thickness control and low surface roughness for electrochemical devices.
Collapse
Affiliation(s)
- Jonathan Lau
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ashley E. Trojniak
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Macy J. Maraugha
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Alyssa J. VanZanten
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | | | - Andrew C. Serino
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Monica L. Ohnsorg
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David S. Ashby
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bruce S. Dunn
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mary E. Anderson
- Department of Chemistry, Hope College, Holland, Michigan 49423, United States
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
5
|
Serino AC, Anderson ME, Saleh LMA, Dziedzic RM, Mills H, Heidenreich LK, Spokoyny AM, Weiss PS. Work Function Control of Germanium through Carborane-Carboxylic Acid Surface Passivation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34592-34596. [PMID: 28920673 DOI: 10.1021/acsami.7b10596] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Self-assembled monolayers (SAMs) of carborane isomers with different dipole moments passivate germanium to modulate surface work function while maintaining chemical environment and surface energy. To identify head groups capable of monolayer formation on germanium surfaces, we studied thiol-, hydroxyl-, and carboxyl-terminated carboranes. These films were successfully formed with carboxylic acid head groups instead of the archetypal thiol, suggesting that the carborane cluster significantly affects headgroup reactivity. Film characterization included X-ray and ultraviolet photoelectron spectroscopies as well as contact angle goniometry. Using these carboranes, the germanium surface work function was tailored over 0.4 eV without significant changes to wetting properties.
Collapse
Affiliation(s)
| | - Mary E Anderson
- Department of Chemistry and Biochemistry, Hope College , Holland, Michigan 49423, United States
| | | | | | | | | | | | | |
Collapse
|
6
|
Schartner J, Gavriljuk K, Nabers A, Weide P, Muhler M, Gerwert K, Kötting C. Immobilization of Proteins in their Physiological Active State at Functionalized Thiol Monolayers on ATR-Germanium Crystals. Chembiochem 2014; 15:2529-34. [DOI: 10.1002/cbic.201402478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 11/09/2022]
|
7
|
Claridge SA, Liao WS, Thomas JC, Zhao Y, Cao H, Cheunkar S, Serino AC, Andrews AM, Weiss PS. From the bottom up: dimensional control and characterization in molecular monolayers. Chem Soc Rev 2013; 42:2725-45. [PMID: 23258565 PMCID: PMC3596502 DOI: 10.1039/c2cs35365b] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Self-assembled monolayers are a unique class of nanostructured materials, with properties determined by their molecular lattice structures, as well as the interfaces with their substrates and environments. As with other nanostructured materials, defects and dimensionality play important roles in the physical, chemical, and biological properties of the monolayers. In this review, we discuss monolayer structures ranging from surfaces (two-dimensional) down to single molecules (zero-dimensional), with a focus on applications of each type of structure, and on techniques that enable characterization of monolayer physical properties down to the single-molecule scale.
Collapse
Affiliation(s)
- Shelley A. Claridge
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wei-Ssu Liao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John C. Thomas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuxi Zhao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huan Cao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sarawut Cheunkar
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andrew C. Serino
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science & Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Hohman JN, Kim M, Lawrence JA, McClanahan PD, Weiss PS. High-fidelity chemical patterning on oxide-free germanium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:164214. [PMID: 22466616 DOI: 10.1088/0953-8984/24/16/164214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Oxide-free germanium can be chemically patterned directly with self-assembled monolayers of n-alkanethiols via submerged microcontact printing. Native germanium dioxide is water soluble; immersion activates the germanium surface for self-assembly by stripping the oxide. Water additionally provides an effective diffusion barrier that prevents undesired ink transport. Patterns are stable with respect to molecular exchange by carboxyl-functionalized thiols.
Collapse
Affiliation(s)
- J Nathan Hohman
- California NanoSystems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
9
|
Santiago-Cordoba M, Topal Ö, Allara DL, Kalkan AK, Demirel MC. Stimuli responsive release of metalic nanoparticles on semiconductor substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5975-5980. [PMID: 22428723 DOI: 10.1021/la3002256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Optically active metal nanoparticles have been of recent and broad interest for applications to biomarker detection because of their ability to enable high sensitivity enhancements in various optical detection techniques. Here, we report stimuli responsive release of metallic nanoparticles on a semiconductor thin film array structure based on pH change. The metallic nanoparticles are obtained by a simple redox procedure on the semiconductor surface. This approach allows controlling nanoparticle surface coatings in situ for biomolecule conjugation, such as DNA probes on nanoparticles, and rapid stimuli responsive release of these nanoparticles upon pH change.
Collapse
Affiliation(s)
- Miguel Santiago-Cordoba
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
10
|
Lefèvre X, Segut O, Jégou P, Palacin S, Jousselme B. Towards organic film passivation of germanium wafers using diazonium salts: Mechanism and ambient stability. Chem Sci 2012. [DOI: 10.1039/c2sc01034h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Yang HJ, Tuan HY. High-yield, high-throughput synthesis of germanium nanowires by metal–organic chemical vapor deposition and their functionalization and applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14875c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|