1
|
Zhang YP, Bu JW, Shu RX, Liu SL. Advances in rapid point-of-care virus testing. Analyst 2024; 149:2507-2525. [PMID: 38630498 DOI: 10.1039/d4an00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Outbreaks of viral diseases seriously jeopardize people's health and cause huge economic losses. At the same time, virology provides a new perspective for biology, molecular biology and cancer research, and it is important to study the discovered viruses with potential applications. Therefore, the development of immediate and rapid viral detection methods for the prevention and treatment of viral diseases as well as the study of viruses has attracted extensive attention from scientists. With the continuous progress of science and technology, especially in the field of bioanalysis, a series of new detection techniques have been applied to the on-site rapid detection of viruses, which has become a powerful approach for human beings to fight against viruses. In this paper, the latest research progress of rapid point-of-care detection of viral nucleic acids, antigens and antibodies is presented. In addition, the advantages and disadvantages of these technologies are discussed from the perspective of practical application requirements. Finally, the problems and challenges faced by rapid viral detection methods and their development prospects are discussed.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- Technical Center, Shanghai Tobacco Group Co., Ltd, Shanghai 201315, P. R. China.
| | - Jin-Wei Bu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| | - Ru-Xin Shu
- Technical Center, Shanghai Tobacco Group Co., Ltd, Shanghai 201315, P. R. China.
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
2
|
Ren B, Wang Y, Chen H, Diao L, Wang J, Zhang S, Zhang Y, Zhang M, Yin R, Wang Y. A Portable Nucleic Acid Sensor Based on PCR for Simple, Rapid, and Sensitive Testing of Botrytis cinerea in Ginseng. PLANT DISEASE 2023; 107:3362-3369. [PMID: 37202217 DOI: 10.1094/pdis-08-22-1839-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Botrytis cinerea is a ubiquitous pathogen that can infect at least 200 dicotyledonous plant species including many agriculturally and economically important crops. In Ginseng, the fungus may cause ginseng gray mold disease, causing great economic losses in the ginseng industry. Therefore, the early detection of B. cinerea in the process of ginseng production is necessary for the disease prevention and control of the pathogen's spread. In this study, a polymerase chain reaction-nucleic acid sensor (PCR-NAS) rapid detection technique was established, and it can be used for field detection of B. cinerea through antipollution design and portable integration. The present study showed that the sensitivity of PCR-NAS technology is 10 times higher than that of traditional PCR-electrophoresis, and there is no need for expensive detection equipment or professional technicians. The detection results of nucleic acid sensors can be read by the naked eye in under 3 min. Meanwhile, the technique has high specificity for the detection of B. cinerea. The testing of 50 field samples showed that the detection results of PCR-NAS were consistent with those of the real-time quantitative PCR (qPCR) method. The PCR-NAS technique established in this study can be used as a novel nucleic acid field detection technique, and it has a potential application in the field detection of B. cinerea to achieve early warning of the pathogen infection.
Collapse
Affiliation(s)
- Bairu Ren
- College of Life Science, Jilin Agricultural University, Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Huijie Chen
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
| | - Jiaxin Wang
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
- Jilin Agricultural University, Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Changchun 130118, China
| | - Shuoyuan Zhang
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
| | - Yongzhe Zhang
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Rui Yin
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin, China
| | - Yanfang Wang
- College of Life Science, Jilin Agricultural University, Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
- Jilin Agricultural University, Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Changchun 130118, China
| |
Collapse
|
3
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
4
|
Borri C, Centi S, Chioccioli S, Bogani P, Micheletti F, Gai M, Grandi P, Laschi S, Tona F, Barucci A, Zoppetti N, Pini R, Ratto F. Paper-based genetic assays with bioconjugated gold nanorods and an automated readout pipeline. Sci Rep 2022; 12:6223. [PMID: 35418671 PMCID: PMC9007582 DOI: 10.1038/s41598-022-10227-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Paper-based biosensors featuring immunoconjugated gold nanoparticles have gained extraordinary momentum in recent times as the platform of choice in key cases of field applications, including the so-called rapid antigen tests for SARS-CoV-2. Here, we propose a revision of this format, one that may leverage on the most recent advances in materials science and data processing. In particular, we target an amplifiable DNA rather than a protein analyte, and we replace gold nanospheres with anisotropic nanorods, which are intrinsically brighter by a factor of ~ 10, and multiplexable. By comparison with a gold-standard method for dot-blot readout with digoxigenin, we show that gold nanorods entail much faster and easier processing, at the cost of a higher limit of detection (from below 1 to 10 ppm in the case of plasmid DNA containing a target transgene, in our current setup). In addition, we test a complete workflow to acquire and process photographs of dot-blot membranes with custom-made hardware and regression tools, as a strategy to gain more analytical sensitivity and potential for quantification. A leave-one-out approach for training and validation with as few as 36 sample instances already improves the limit of detection reached by the naked eye by a factor around 2. Taken together, we conjecture that the synergistic combination of new materials and innovative tools for data processing may bring the analytical sensitivity of paper-based biosensors to approach the level of lab-grade molecular tests.
Collapse
Affiliation(s)
- Claudia Borri
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| | - Sonia Centi
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy.
| | - Sofia Chioccioli
- Dipartimento di Biologia, Università degli Studi di Firenze, 50019, Sesto Fiorentino, FI, Italy
| | - Patrizia Bogani
- Dipartimento di Biologia, Università degli Studi di Firenze, 50019, Sesto Fiorentino, FI, Italy
| | - Filippo Micheletti
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Gai
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| | - Paolo Grandi
- Laboratori Victoria S.R.L, 51100, Pistoia, Italy
| | - Serena Laschi
- Ecobioservices & Researches S.R.L, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Tona
- Ecobioservices & Researches S.R.L, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Barucci
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| | - Nicola Zoppetti
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| | - Roberto Pini
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| | - Fulvio Ratto
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
5
|
Oussou-Azo FA, Futagami T, Vestergaard MCM. Immuno-Dipstick for Colletotrichum gloeosporioides Detection: Towards On-Farm Application. BIOSENSORS 2022; 12:49. [PMID: 35200310 PMCID: PMC8869205 DOI: 10.3390/bios12020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Early and quick detection of pathogens are crucial for managing the spread of infections in the biomedical, biosafety, food, and agricultural fields. While molecular diagnostics can offer the specificity and reliability in acute infectious diseases, detection of pathogens is often slowed down by the current benchtop molecular diagnoses, which are time consuming, labor intensive, and lack the mobility for application at the point-of-need. In this work, we developed a complete on-farm use detection protocol for the plant-devastating anthracnose agent: Colletotrichum gloeosporioides. Our methods combined a simplified DNA extraction on paper that is compatible with loop-mediated isothermal amplification (LAMP), coupled with paper-based immunoassay lateral flow sensing. Our results offer simple, quick, easy, and a minimally instrumented toolkit for Colletotrichum gloeosporioides detection. This scalable and adaptable platform is a valuable alternative to traditional sensing systems towards on-the-go pathogen detection in food and agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Fifame Auriane Oussou-Azo
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mun’delanji Catherine M. Vestergaard
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (F.A.O.-A.); (T.F.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
6
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
7
|
Ren W, Ahmad S, Irudayaraj J. 16S rRNA Monitoring Point-of-Care Magnetic Focus Lateral Flow Sensor. ACS OMEGA 2021; 6:11095-11102. [PMID: 34056264 PMCID: PMC8153928 DOI: 10.1021/acsomega.1c01307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
The detection and profiling of pathogenic bacteria is critical for human health, environmental, and food safety monitoring. Herein, we propose a highly sensitive colorimetric strategy for naked eye screening of 16S ribosomal RNA (16S rRNA) from pathogenic agents relevant to infections, human health, and food safety monitoring with a magnetic focus lateral flow sensor (mLFS) platform. The method developed was demonstrated in model 16S rRNA sequences of the pathogen Escherichia coli O157:H7 to detect as low as 1 fM of targets, exhibiting a sensitivity improved by ∼5 × 105 times compared to the conventional GNP-based colorimetric lateral flow assay used for oligonucleotide testing. Based on the grayscale values, semi-quantitation of up to 1 pM of target sequences was possible in ∼45 min. The methodology could detect the target 16S rRNA from as low as 32 pg/mL of total RNA extracted from pathogens. Specificity was demonstrated with total RNA extracted from E. coli K-12 MG1655, Bacillus subtilis (B. subtilis), and Pseudomonas aeruginosa (P. aeruginosa). No signal was observed from as high as 320 pg/mL of total RNA from the nontarget bacteria. The recognition of target 16S rRNA from 32 pg/mL of total RNA in complex matrices was also demonstrated. The proposed mLFS method was then extended to monitoring B. subtilis and P. aeruginosa. Our approach highlights the possibility of extending this concept to screen specific nucleic acid sequences for the monitoring of infectious pathogens or microbiome implicated in a range of diseases including cancer.
Collapse
Affiliation(s)
- Wen Ren
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois (CCIL), University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Rentschler S, Kaiser L, Deigner HP. Emerging Options for the Diagnosis of Bacterial Infections and the Characterization of Antimicrobial Resistance. Int J Mol Sci 2021; 22:E456. [PMID: 33466437 PMCID: PMC7796476 DOI: 10.3390/ijms22010456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Precise and rapid identification and characterization of pathogens and antimicrobial resistance patterns are critical for the adequate treatment of infections, which represent an increasing problem in intensive care medicine. The current situation remains far from satisfactory in terms of turnaround times and overall efficacy. Application of an ineffective antimicrobial agent or the unnecessary use of broad-spectrum antibiotics worsens the patient prognosis and further accelerates the generation of resistant mutants. Here, we provide an overview that includes an evaluation and comparison of existing tools used to diagnose bacterial infections, together with a consideration of the underlying molecular principles and technologies. Special emphasis is placed on emerging developments that may lead to significant improvements in point of care detection and diagnosis of multi-resistant pathogens, and new directions that may be used to guide antibiotic therapy.
Collapse
Affiliation(s)
- Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany; (S.R.); (L.K.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany; (S.R.); (L.K.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 VS-Schwenningen, Germany; (S.R.); (L.K.)
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Abstract
Micro and nanoparticles are not only understood as components of materials but as small functional units too. Particles can be designed for the primary transduction of physical and chemical signals and, therefore, become a valuable component in sensing systems. Due to their small size, they are particularly interesting for sensing in microfluidic systems, in microarray arrangements and in miniaturized biotechnological systems and microreactors, in general. Here, an overview of the recent development in the preparation of micro and nanoparticles for sensing purposes in microfluidics and application of particles in various microfluidic devices is presented. The concept of sensor particles is particularly useful for combining a direct contact between cells, biomolecules and media with a contactless optical readout. In addition to the construction and synthesis of micro and nanoparticles with transducer functions, examples of chemical and biological applications are reported.
Collapse
|
10
|
Yin R, Sun Y, Wang K, Feng N, Zhang H, Xiao M. Development of a PCR-based lateral flow strip assay for the simple, rapid, and accurate detection of pork in meat and meat products. Food Chem 2020; 318:126541. [PMID: 32151928 DOI: 10.1016/j.foodchem.2020.126541] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/01/2019] [Accepted: 03/01/2020] [Indexed: 01/05/2023]
Abstract
In recent years, adulteration of meat and meat products has become a major food safety issue. PCR and real-time PCR technologies are mainstream methods used to identify animal-derived components. However, these technologies rely highly on costly equipment and professional technicians; they are therefore difficult to use in resource-limited settings. In this study, a novel, highly sensitive molecular assay, Pig-PCR-Strip (Pig specific polymerase chain reaction-Lateral flow strip), was developed for rapid detection of pig and swine-derived components. The assay is based on PCR amplification, hybridization of the PCR product to the probe, followed by detection using a strip format. Using this format, the PCR product can be detected by the naked eye within 3 min, and provides a basis for the migration of species-specific detection to a point-of-care (POC) microfluidic format. The Pig-PCR-Strip can detect pork components at a concentration of 0.01% in adulterated meat, and the limit of detection is up to 10 fg of target DNA. The assay was specific to pork and did not cross-react with other non-target species. It also can be used for commercial samples and complex food samples. It is a promising new tool for detection of pig-derived meat and can be rapidly modified for identifying other species. It could be widely used for solving problems related to meat quality assurance, species authentication, and traceability.
Collapse
Affiliation(s)
- Rui Yin
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China.
| | - Yajuan Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Nana Feng
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China
| | - Huijuan Zhang
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China
| | - Mingya Xiao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China
| |
Collapse
|
11
|
Lee NY. A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Mikrochim Acta 2018; 185:285. [PMID: 29736588 DOI: 10.1007/s00604-018-2791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Since the advent of microfabrication technology and soft lithography, the lab-on-a-chip concept has emerged as a state-of-the-art miniaturized tool for conducting the multiple functions associated with micro total analyses of nucleic acids, in series, in a seamless manner with a miniscule volume of sample. The enhanced surface-to-volume ratio inside a microchannel enables fast reactions owing to increased heat dissipation, allowing rapid amplification. For this reason, PCR has been one of the first applications to be miniaturized in a portable format. However, the nature of the basic working principle for microscale PCR, such as the complicated temperature controls and use of a thermal cycler, has hindered its total integration with other components into a micro total analyses systems (μTAS). This review (with 179 references) surveys the diverse forms of PCR microdevices constructed on the basis of different working principles and evaluates their performances. The first two main sections cover the state-of-the-art in chamber-type PCR microdevices and in continuous-flow PCR microdevices. Methods are then discussed that lead to microdevices with upstream sample purification and downstream detection schemes, with a particular focus on rapid on-site detection of foodborne pathogens. Next, the potential for miniaturizing and automating heaters and pumps is examined. The review concludes with sections on aspects of complete functional integration in conjunction with nanomaterial based sensing, a discussion on future prospects, and with conclusions. Graphical abstract In recent years, thermocycler-based PCR systems have been miniaturized to palm-sized, disposable polymer platforms. In addition, operational accessories such as heaters and mechanical pumps have been simplified to realize semi-automatted stand-alone portable biomedical diagnostic microdevices that are directly applicable in the field. This review summarizes the progress made and the current state of this field.
Collapse
Affiliation(s)
- Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
12
|
Chim W, Sedighi A, Brown CL, Pantophlet R, Li PC. Effect of buffer composition on PNA–RNA hybridization studied in the microfluidic microarray chip. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report that peptide nucleic acid sequences (PNAs) have been used as the probe species for detection of RNA and that a microfluidic microarray (MMA) chip is used as the platform for detection of hybridizations between immobilized PNA probes and RNA targets. The RNA targets used are derived from influenza A sequences. This paper discusses the optimization of two probe technologies used for RNA detection and investigates how the composition of the probe buffer and the content of the hybridization solution can influence the overall results. Our data show that the PNA probe is a better choice than the DNA probe when there is low salt in the probe buffer composition. Furthermore, we show that the absence of salt (NaCl) in the hybridization buffer does not hinder the detection of RNA sequences. The results provide evidence that PNA probes are superior to DNA probes in term of sensitivity and adaptability, as PNA immobilization and PNA–RNA hybridization are less affected by salt content in the reaction buffers unlike DNA probes.
Collapse
Affiliation(s)
- Wilson Chim
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Abootaleb Sedighi
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Christopher L. Brown
- School of Natural Sciences and Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland, Australia
| | - Ralph Pantophlet
- Faculty of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Paul C.H. Li
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
13
|
Zeng H, Zhang D, Zhai X, Wang S, Liu Q. Enhancing the immunofluorescent sensitivity for detection of Acidovorax citrulli using fluorescein isothiocyanate labeled antigen and antibody. Anal Bioanal Chem 2017; 410:71-77. [DOI: 10.1007/s00216-017-0690-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
|
14
|
Fraser S, Shih JY, Ware M, O'Connor E, Cameron MJ, Schwickart M, Zhao X, Regnstrom K. Current Trends in Ligand Binding Real-Time Measurement Technologies. AAPS JOURNAL 2017; 19:682-691. [PMID: 28321830 DOI: 10.1208/s12248-017-0067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023]
Abstract
Numerous advances in ligand binding assay (LBA) real-time measurement technologies have been made within the last several years, ranging from the development of novel platforms to drive technology expansion to the adaptation of existing platforms to optimize performance and throughput. In this review, we have chosen to focus on technologies that provide increased value to two distinct segments of the LBA community. First, experimentally, by measuring real-time binding events, these technologies provide data that can be used to interrogate receptor/ligand binding interactions. While overall the platforms are not new, they have made significant advances in throughput, multiplexing, and/or sensitivity. Second, clinically, these point-of-care (POC) technologies provide instantaneous information which facilitates rapid treatment decisions.
Collapse
Affiliation(s)
| | - Judy Y Shih
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California, 91320, USA
| | - Mark Ware
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, Pennsylvania, 19477, USA
| | - Edward O'Connor
- AegisBioconsult, 78 Marbern Dr., Suffield, Connecticut, 06078, USA
| | - Mark J Cameron
- Lumigen, 22900 8 Mile Road, Southfield, Michigan, 48033, USA
| | - Martin Schwickart
- MedImmune, 319 N. Bernardo Ave, Mountain View, California, 94043, USA
| | - Xuemei Zhao
- Merck Research Laboratories, Rahway, New Jersey, 07065, USA
| | - Karin Regnstrom
- Boehringer Ingelheim, 6701 Kaiser Drive, Fremont, California, 94555, USA
| |
Collapse
|
15
|
Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci Rep 2016; 6:37732. [PMID: 27886248 PMCID: PMC5123575 DOI: 10.1038/srep37732] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Sensitive, specific, rapid, inexpensive and easy-to-use nucleic acid tests for use at the point-of-need are critical for the emerging field of personalised medicine for which companion diagnostics are essential, as well as for application in low resource settings. Here we report on the development of a point-of-care nucleic acid lateral flow test for the direct detection of isothermally amplified DNA. The recombinase polymerase amplification method is modified slightly to use tailed primers, resulting in an amplicon with a duplex flanked by two single stranded DNA tails. This tailed amplicon facilitates detection via hybridisation to a surface immobilised oligonucleotide capture probe and a gold nanoparticle labelled reporter probe. A detection limit of 1 × 10-11 M (190 amol), equivalent to 8.67 × 105 copies of DNA was achieved, with the entire assay, both amplification and detection, being completed in less than 15 minutes at a constant temperature of 37 °C. The use of the tailed primers obviates the need for hapten labelling and consequent use of capture and reporter antibodies, whilst also avoiding the need for any post-amplification processing for the generation of single stranded DNA, thus presenting an assay that can facilely find application at the point of need.
Collapse
|
16
|
He JL, Wang DS, Fan SK. Opto-Microfluidic Immunosensors: From Colorimetric to Plasmonic. MICROMACHINES 2016; 7:E29. [PMID: 30407402 PMCID: PMC6189923 DOI: 10.3390/mi7020029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
Optical detection has long been the most popular technique in immunosensing. Recent developments in the synthesis of luminescent probes and the fabrication of novel nanostructures enable more sensitive and efficient optical detection, which can be miniaturized and integrated with microfluidics to realize compact lab-on-a-chip immunosensors. These immunosensors are portable, economical and automated, but their sensitivity is not compromised. This review focuses on the incorporation and implementation of optical detection and microfluidics in immunosensors; it introduces the working principles of each optical detection technique and how it can be exploited in immunosensing. The recent progress in various opto-microfluidic immunosensor designs is described. Instead of being comprehensive to include all opto-microfluidic platforms, the report centers on the designs that are promising for point-of-care immunosensing diagnostics, in which ease of use, stability and cost-effective fabrication are emphasized.
Collapse
Affiliation(s)
- Jie-Long He
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Da-Shin Wang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shih-Kang Fan
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
17
|
Zhang LX, Jiang L, Willett DR, Kenneth Marcus R. Parallel, open-channel lateral flow (immuno) assay substrate based on capillary-channeled polymer films. Analyst 2016; 141:807-14. [DOI: 10.1039/c5an01953b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented here is a novel implementation of polypropylene capillary-channeled polymer (C-CP) films, functionalized for bioaffinity separations and implemented as a platform for lateral flow (immuno) assays.
Collapse
Affiliation(s)
| | - Liuwei Jiang
- Department of Chemistry
- Clemson University
- Clemson
- USA
| | | | | |
Collapse
|
18
|
Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection. SENSORS 2015; 15:27954-68. [PMID: 26556354 PMCID: PMC4701263 DOI: 10.3390/s151127954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/24/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022]
Abstract
We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics.
Collapse
|
19
|
Sun J, Xianyu Y, Jiang X. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem Soc Rev 2015; 43:6239-53. [PMID: 24882068 DOI: 10.1039/c4cs00125g] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the goals of point-of-care (POC) is a chip-based, miniaturized, portable, self-containing system that allows the assay of proteins, nucleic acids, and cells in complex samples. The integration of nanomaterials and microfluidics can help achieve this goal. This tutorial review outlines the mechanism of assaying biomarkers by gold nanoparticles (AuNPs), and the implementation of AuNPs for microfluidic POC devices. In line with this, we discuss some recent advances in AuNP-coupled microfluidic sensors with enhanced performance. Portable and automated instruments for device operation and signal readout are also included for practical applications of these AuNP-combined microfluidic chips.
Collapse
Affiliation(s)
- Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, P. R. China.
| | | | | |
Collapse
|
20
|
Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics. BIOSENSORS-BASEL 2015; 5:577-601. [PMID: 26287254 PMCID: PMC4600173 DOI: 10.3390/bios5030577] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/02/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
The inability to diagnose numerous diseases rapidly is a significant cause of the disparity of deaths resulting from both communicable and non-communicable diseases in the developing world in comparison to the developed world. Existing diagnostic instrumentation usually requires sophisticated infrastructure, stable electrical power, expensive reagents, long assay times, and highly trained personnel which is not often available in limited resource settings. This review will critically survey and analyse the current lateral flow-based point-of-care (POC) technologies, which have made a major impact on diagnostic testing in developing countries over the last 50 years. The future of POC technologies including the applications of microfluidics, which allows miniaturisation and integration of complex functions that facilitate their usage in limited resource settings, is discussed The advantages offered by such systems, including low cost, ruggedness and the capacity to generate accurate and reliable results rapidly, are well suited to the clinical and social settings of the developing world.
Collapse
|
21
|
Verma MS, Rogowski JL, Jones L, Gu FX. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv 2015; 33:666-80. [PMID: 25792228 DOI: 10.1016/j.biotechadv.2015.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/08/2015] [Accepted: 03/02/2015] [Indexed: 11/15/2022]
Abstract
Rapid detection of pathogens is crucial to minimize adverse health impacts of nosocomial, foodborne, and waterborne diseases. Gold nanoparticles are extremely successful at detecting pathogens due to their ability to provide a simple and rapid color change when their environment is altered. Here, we review general strategies of implementing gold nanoparticles in colorimetric biosensors. First, we highlight how gold nanoparticles have improved conventional genomic analysis methods by lowering detection limits while reducing assay times. Then, we focus on emerging point-of-care technologies that aim at pathogen detection using simpler assays. These advances will facilitate the implementation of gold nanoparticle-based biosensors in diverse environments throughout the world and help prevent the spread of infectious diseases.
Collapse
Affiliation(s)
- Mohit S Verma
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Jacob L Rogowski
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Lyndon Jones
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada; Center for Contact Lens Research, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Frank X Gu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
22
|
Nimse SB, Song K, Sonawane MD, Sayyed DR, Kim T. Immobilization techniques for microarray: challenges and applications. SENSORS 2014; 14:22208-29. [PMID: 25429408 PMCID: PMC4299010 DOI: 10.3390/s141222208] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023]
Abstract
The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials) on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.
Collapse
Affiliation(s)
- Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Keumsoo Song
- Biometrix Technology, Inc. 202 BioVenture Plaza, Chuncheon 200-161, Korea.
| | - Mukesh Digambar Sonawane
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Danishmalik Rafiq Sayyed
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
23
|
Hu C, Yue W, Yang M. Nanoparticle-based signal generation and amplification in microfluidic devices for bioanalysis. Analyst 2014; 138:6709-20. [PMID: 24067742 DOI: 10.1039/c3an01321a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Signal generation and amplification based on nanomaterials and microfluidic techniques have both attracted considerable attention separately due to the demands for ultrasensitive and high-throughput detection of biomolecules. This article reviews the latest development of signal amplification strategies based on nanoparticles for bioanalysis and their integration and applications in microfluidic systems. The applications of nanoparticles in bioanalysis were categorized based on the different approaches of signal amplification, and the microfluidic techniques were summarized based on cell analysis and biomolecule detection with a focus on the integration of nanoparticle-based amplification in microfluidic devices for ultrasensitive bioanalysis. The advantages and limitations of the combination of nanoparticles-based amplification with microfluidic techniques were evaluated, and the possible developments for future research were discussed.
Collapse
Affiliation(s)
- Chong Hu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
24
|
Li Y, Hong M, Qiu B, Lin Z, Chen Y, Cai Z, Chen G. Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosens Bioelectron 2014; 54:358-64. [DOI: 10.1016/j.bios.2013.10.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 01/08/2023]
|
25
|
Saadin K, White IM. Breast cancer stem cell enrichment and isolation by mammosphere culture and its potential diagnostic applications. Expert Rev Mol Diagn 2013; 13:49-60. [PMID: 23256703 DOI: 10.1586/erm.12.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Emerging knowledge about cancer stem cells (CSCs) is raising attention about the need to provide a more precise and complete diagnosis including the molecular profile of a patient's CSCs. As opposed to simply treating the bulk of the tumor, a more complete diagnosis can lead to treatment regimens designed to eradicate CSCs from a patient. In this review the authors detail the application of the mammosphere assay in the study of breast CSCs. The authors then describe the potential transition of the mammosphere assay from the research laboratory to the clinic by leveraging microsystems technology, which enables the integration of multiple functions into a single automated device. To conclude the review, the authors project that future clinical devices will be capable of isolating circulating metastatic cells from patient blood, enriching the dangerous CSCs, and providing a molecular profile of the CSCs, thus arming physicians with the information to select a treatment program that combats CSCs.
Collapse
Affiliation(s)
- Katayoon Saadin
- Chemical Physics Program, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
26
|
Liu CC, Yeung CY, Chen PH, Yeh MK, Hou SY. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem 2013; 141:2526-32. [PMID: 23870991 DOI: 10.1016/j.foodchem.2013.05.089] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/05/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
Abstract
An ultrasensitive, simple, and fast lateral flow immunoassay for Salmonella detection using gold nanoparticles conjugated with a DNA probe, which is complementary to the 16S ribosomal RNA and DNA of Salmonella, has been developed. The detection limit is 5 fmol for the synthetic single-stranded DNA. For the Salmonella cultured samples, the nucleic acids from 10(7) bacteria were rapidly detected in 30 min. After silver enhancement, the detection limit was as low as 10(4) cells which is lower than 10(5) bacteria cells, the human infective dose of food-borne Salmonella. Furthermore, the probes used in this study are specific to Salmonella compared to several other Enterobacteriaceae. This approach would be a useful tool for microbial detection regarding food safety or clinical diagnosis. It is also suitable for large-scale screening in developing countries because it is low-cost, sensitive, specific and convenient.
Collapse
Affiliation(s)
- Cheng-Che Liu
- Graduate Institute of Engineering Technology Doctoral, National Taipei University of Technology, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
27
|
Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 2013; 85:451-72. [PMID: 23140554 PMCID: PMC3546124 DOI: 10.1021/ac3031543] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adam T. Melvin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra J. Dickinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Philip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pavak K. Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
28
|
Almassian DR, Cockrell LM, Nelson WM. Portable nucleic acid thermocyclers. Chem Soc Rev 2013; 42:8769-98. [DOI: 10.1039/c3cs60144g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Li Y, Hong M, Qiu B, Lin Z, Cai Z, Chen Y, Chen G. A highly sensitive chemiluminescent metalloimmunoassay for H1N1 influenza virus detection based on a silver nanoparticle label. Chem Commun (Camb) 2013; 49:10563-5. [DOI: 10.1039/c3cc45329d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Rastogi SK, Gibson CM, Branen JR, Aston DE, Branen AL, Hrdlicka PJ. DNA detection on lateral flow test strips: enhanced signal sensitivity using LNA-conjugated gold nanoparticles. Chem Commun (Camb) 2012; 48:7714-6. [PMID: 22745937 DOI: 10.1039/c2cc33430e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A lateral flow test strip assay, enabling sensitive detection of DNA specific to the foodborne pathogen E. coli O157:H7, is described. The use of LNA-conjugated gold nanoparticle probes, along with signal amplification protocols, results in minimum detectable concentrations of ~0.4 nM.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Biosensors and Nanotechnology Applications Laboratory, University of Idaho, Coeur d'Alene, ID 83814-2277, USA.
| | | | | | | | | | | |
Collapse
|