1
|
Yin J, Su X, Yan S, Shen J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071255. [PMID: 37049348 PMCID: PMC10096623 DOI: 10.3390/nano13071255] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
The unscientific application of pesticides can easily cause a series of ecological environmental safety issues, which seriously restrict the sustainable development of modern agriculture. The great progress in nanotechnology has allowed the continuous development of plant protection strategies. The nanonization and delivery of pesticides offer many advantages, including their greater absorption and conduction by plants, improved efficacy, reduced dosage, delayed resistance, reduced residues, and protection from natural enemies and beneficial insects. In this review, we focus on the recent advances in multifunctional nanoparticles and nanopesticides. The definition of nanopesticides, the types of nanoparticles used in agriculture and their specific synergistic mechanisms are introduced, their safety is evaluated, and their future application prospects, about which the public is concerned, are examined.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- College of Plant Protection, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Shen X, Wang H, Zhao Y, Liang J, Lu B, Sun W, Lu K, Wang H, Yuan L. Recycling protein selective adsorption on fluorine-modified surface through fluorine-fluorine interaction. Colloids Surf B Biointerfaces 2022; 214:112486. [PMID: 35364454 DOI: 10.1016/j.colsurfb.2022.112486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
Abstract
Low surface energy materials with micro-nano structures have been widely developed to prevent non-specific adhesion of biomolecules. Herein we put forward a new approach based on the antifouling and self-assembly properties of fluorine components, to construct a non-specific protein resistance surface with selective protein adsorption property. Briefly, the antifouling surface (SN-F) was obtained by a simple one-step modification on silicon nanowire arrays (SiNWAs) with fluorine coupling agent 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane (FAS). And protein was fluorinated by conjugation with an amphiphilic fluoro-copolymer, produced from 2-methacrylamido glucopyranose (MAG) and trifluoroethyl methacrylate (TFEMA) via RAFT polymerization. The properties of the materials were characterized by 1H nuclear magnetic resonance (1H NMR), infrared spectroscopy (FTIR), water contact angle, and X-ray photoelectron spectroscopy (XPS) etc., and protein adsorption was investigated by protein content measurement, fluorescence detection, and electrophoresis. It was observed that the adsorption for native proteins on SN-F was at an extremely low level, while the adsorption for the fluoro-copolymer conjugated protein (PFG-BSA) was significantly increased. When the percentage of TFEMA in the fluoro-copolymer was as high as 52.0%, the fluorinated protein adsorbed on SN-F was more than 35 times of native proteins on the surface. Moreover, the platform could resist IgG adhesion in serum after the adsorption of fluorinated protein, and it could be recycled three times after 75% ethanol treatment. In conclusion, SN-F showed non-specific protein resistance through low surface energy and specific protein adsorption by fluorine-fluorine self-assembly. The fluorinated nanostructured platform has a great potential in controlling protein adsorption and release.
Collapse
Affiliation(s)
- Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hengxiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Yingxian Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jinwei Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Benben Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
3
|
Engineering nanoscale hierarchical morphologies and geometrical shapes for microbial inactivation in aqueous solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111844. [PMID: 33641886 DOI: 10.1016/j.msec.2020.111844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/29/2020] [Accepted: 12/27/2020] [Indexed: 01/09/2023]
Abstract
Here, we study the effect of hierarchical and one-dimensional (1D) metal oxide nanorods (H-NRs) such as γ-Al2O3, β-MnO2, and ZnO as microbial inhibitors on the antimicrobial efficiency in aqueous solution. These microbial inhibitors are fabricated in a diverse range of nanoscale hierarchical morphologies and geometrical shapes that have effective surface exposure, and well-defined 1D orientation. For instance, γ-Al2O3 H-NRs with 20 nm width and ˂0.5 μm length are grown dominantly in the [400] direction. The wurtzite structures of β-MnO2 H-NRs with 30 nm width and 0.5-1 μm length are preferentially oriented in the [100] direction. Longitudinal H-NRs with a width of 40 nm and length of 1 μm are controlled with ZnO wurtzite structure and grown in [0001] direction. The antimicrobial efficiency of H-NRs was evaluated through experimental assays using a set of microorganisms (Gram-positive Staphylococcus aureus, Bacillus thuriginesis, and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Minimal inhibitory and minimum bactericidal concentrations (MIC and MBC) were determined. These 1D H-NRs exhibited antibacterial activity against all the used strains. The active surface exposure sites of H-NRs play a key role in the strong interaction with the thiol units of vital bacterial enzymes, leading to microbial inactivation. Our finding indicates that the biological effect of the H-NR surface planes on microbial inhibition is decreased in the order of [400]-γ-Al2O3 > [100]-β-MnO2 > [0001]-ZnO geometrics. The lowest key values including MIC (1.146 and 0.250 μg/mL), MBC (1.146, 0.313 μg/mL), and MIC/MFC (0.375 and 0.375 μg/mL) are achieved for [400]-plane γ-Al2O3 surfaces when tested against Gram-positive and -negative bacteria, respectively. Among the three H-NRs, the smallest diameter size and length, the largest surface area, and the active exposure [400] direction of γ-Al2O3 H-NRs could provide the highest microbial inactivation.
Collapse
|
4
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
5
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
6
|
Poyatos‐Racionero E, Pérez‐Esteve É, Dolores Marcos M, Barat JM, Martínez‐Máñez R, Aznar E, Bernardos A. New Oleic Acid-Capped Mesoporous Silica Particles as Surfactant-Responsive Delivery Systems. ChemistryOpen 2019; 8:1052-1056. [PMID: 31463170 PMCID: PMC6709519 DOI: 10.1002/open.201900092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
A new delivery microdevice, based on hydrophobic oleic acid-capped mesoporous silica particles and able to payload release in the presence of surfactants, has been developed. The oleic acid functionalization confers to the system a high hydrophobic character, which avoids cargo release unless surfactant molecules are present. The performance of this oleic-acid capped microdevice in the presence of different surfactants is presented and its zero-release operation in the absence of surfactants is demonstrated.
Collapse
Affiliation(s)
- Elisa Poyatos‐Racionero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
| | - Édgar Pérez‐Esteve
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- Grupo de Investigación e Innovación Alimentaria (CUINA)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de ValènciaIIS La Fe de Valencia46026ValenciaSpain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| | - José M. Barat
- Grupo de Investigación e Innovación Alimentaria (CUINA)Universitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
- Departamento de Tecnología de AlimentosUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera s/n46022ValenciaSpain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de ValènciaIIS La Fe de Valencia46026ValenciaSpain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de ValènciaIIS La Fe de Valencia46026ValenciaSpain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamino de Vera s/n46022ValenciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)Spain
- Unidad Mixta UPV CIPF Invest Mecanismos EnfermedadUniversitat Politècnica de ValènciaCtr Invest Principe Felipe46100ValenciaSpain
| |
Collapse
|
7
|
Boobphahom S, Rattanawaleedirojn P, Boonyongmaneerat Y, Rengpipat S, Chailapakul O, Rodthongkum N. TiO2 sol/graphene modified 3D porous Ni foam: A novel platform for enzymatic electrochemical biosensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Ayoub HA, Khairy M, Elsaid S, Rashwan FA, Abdel-Hafez HF. Pesticidal Activity of Nanostructured Metal Oxides for Generation of Alternative Pesticide Formulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5491-5498. [PMID: 29757642 DOI: 10.1021/acs.jafc.8b01600] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, nanostructured metal oxides of essential soil nutrient elements (i.e., CuO and CaO) with definite shape and size were simply synthesized, and their pesticidal activities against cotton leafworm ( Spodoptera littoralis) were explored for the first time. These metal oxide nanostructures represented novel economic and ecofriendly nanopesticides for sustainable plant protection and might boost the nutrient content of soil. The results showed that CuO nanoparticles (NPs) and CaO NPs exhibited potential entomotoxic effects against S. littoralis. Interestingly, CuO NPs exhibited fast entomotoxic effect with LC50 = 232.75 mg/L after 3 days, while CaO NPs showed a slow entomotoxic effect with LC50 = 129.03 mg/L after 11 days of post-treatments. The difference in the pesticidal activity of the metal oxides is related to their physical characteristics and interfacial surfaces upon insect midgut and cuticle layer of insect body wall. Thus, nanoengineered metal oxides might be utilized to generate an alternative and cost-effective pesticide formulation in the near future.
Collapse
Affiliation(s)
- Haytham A Ayoub
- Chemistry Department, Faculty of Science , Sohag University , Sohag 82524 , Egypt
- Plant Protection Research Institute, A. R. C. , Dokki, Giza 12311 , Egypt
| | - Mohamed Khairy
- Chemistry Department, Faculty of Science , Sohag University , Sohag 82524 , Egypt
| | - Salaheldeen Elsaid
- Zoology Department, Faculty of Science , Sohag University , Sohag 82524 , Egypt
| | - Farouk A Rashwan
- Chemistry Department, Faculty of Science , Sohag University , Sohag 82524 , Egypt
| | | |
Collapse
|
9
|
Li X, Shenashen MA, Wang X, Ito A, Taniguchi A, EI-Safty SA. Mesoporous Caged-γ-AlOOH-Double-Stranded RNA Analog Complexes for Cancer Immunotherapy. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xia Li
- 1 Research Center for Functional Materials; National Institute for Materials Science; 1-2-1 Sengen Tuskuba Ibaraki 305-0047 Japan
| | - Mohamed A. Shenashen
- 1 Research Center for Functional Materials; National Institute for Materials Science; 1-2-1 Sengen Tuskuba Ibaraki 305-0047 Japan
| | - Xiupeng Wang
- Human Technology Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Atsuo Ito
- Human Technology Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Akiyoshi Taniguchi
- Cellular Functional Nanomaterials Group; Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Sherif A. EI-Safty
- 1 Research Center for Functional Materials; National Institute for Materials Science; 1-2-1 Sengen Tuskuba Ibaraki 305-0047 Japan
| |
Collapse
|
10
|
Shenashen M, Derbalah A, Hamza A, Mohamed A, El Safty S. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. PEST MANAGEMENT SCIENCE 2017; 73:1121-1126. [PMID: 27558672 DOI: 10.1002/ps.4420] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND The present work involved the synthesis and characterisation of mesoporous alumina sphere (MAS) nanoparticles to evaluate their biological activity against tomato root rot caused by Fusarium oxysporium, as compared with the recommended fungicide, tolclofos-methyl, under laboratory and greenhouse conditions. The effects of MAS nanoparticles on the growth of tomato plants were also evaluated and compared with those of tolclofos-methyl. RESULTS The physical characteristics and structural features of MAS nanoparticles, such as their large surface-area-to-volume ratio, active surface sites and open channel pores, caused high antifungal efficacy against F. oxysporium. MAS nanoparticles presented an antifungal potential similar to that of tolclofos-methyl and much greater than that of the control under both laboratory and greenhouse conditions. The highest growth parameters were recorded in tomato plants treated with MAS nanoparticles, followed by those treated with tolclofos-methyl. CONCLUSIONS Our study demonstrated the possible use of cylindrically cubic MAS nanoparticles as an effective alternative for the control of Fusarium root rot in tomato. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed Shenashen
- National Institute for Materials Science, Sengen, Tsukuba-shi, Ibaraki-ken, Japan
- Petrochemical Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomor Street El- Zohour Region, Nasr City, Cairo, 11727, Egypt
| | - Aly Derbalah
- National Institute for Materials Science, Sengen, Tsukuba-shi, Ibaraki-ken, Japan
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafr-El-Shiekh University, Egypt
| | - Amany Hamza
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafr-El-Shiekh University, Egypt
| | - Ahmed Mohamed
- Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Sherif El Safty
- National Institute for Materials Science, Sengen, Tsukuba-shi, Ibaraki-ken, Japan
- Graduate School for Advanced Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
11
|
Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood. Biosens Bioelectron 2015; 77:656-65. [PMID: 26496219 DOI: 10.1016/j.bios.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 11/21/2022]
Abstract
Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186 µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood).
Collapse
|
12
|
Aboelmagd A, El-Safty SA, Shenashen MA, Elshehy EA, Khairy M, Sakaic M, Yamaguchi H. Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing. Chem Asian J 2015; 10:2467-78. [PMID: 26178184 DOI: 10.1002/asia.201500565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/12/2023]
Abstract
Nanomembrane canister-like architectures were fabricated by using hexagonal mesocylinder-shaped aluminosilica nanotubes (MNTs)-porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm-long membrane channel enabled the creation of unique canister-like channel necks and cavities. The open-tubular canister architecture design provides controllable, reproducible, and one-step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO3(2-)) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low-level detection limit of 0.0093 μM. Real analytical data showed that approximately 96% of SeO3(2-) anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water.
Collapse
Affiliation(s)
- Ahmed Aboelmagd
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan). , .,Graduate School for Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan). ,
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Emad A Elshehy
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Mohamed Khairy
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| | - Masaru Sakaic
- Centre for Research in Isotopes & Environmental Dynamics, Tsukuba University, 265-38 Shin Makita, Tsukuba-shi, Ibaraki, 305-0076, Japan
| | - Hitoshi Yamaguchi
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan)
| |
Collapse
|
13
|
Derbalah A, El-Safty SA, Shenashen MA, Khairy M. Hierarchical Nanohexagon Ceramic Sheet Layers as Platform Adsorbents for Hydrophilic and Hydrophobic Insecticides from Agricultural Wastewater. Chempluschem 2015; 80:1769-1778. [DOI: 10.1002/cplu.201500244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Aly Derbalah
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
- Pesticides Chemistry and Toxicology Department; Faculty of Agriculture; Kafr El-Sheikh University; Egypt
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
- Graduate School for Advanced Science and Engineering; Waseda University; 3-4-1 Okubo Shinjuku-ku Tokyo 169-8555 Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
| | - Mohamed Khairy
- National Institute for Materials Science (NIMS); 1-2-1 Sengen Tsukubashi Ibaraki-ken 305-0047 Japan
- Chemistry Department; Sohag University; Egypt
| |
Collapse
|
14
|
Derbalah A, El-Safty SA, Shenashen MA, Abdel Ghany NA. Mesoporous Alumina Nanoparticles as Host Tunnel-like Pores for Removal and Recovery of Insecticides from Environmental Samples. Chempluschem 2015; 80:1119-1126. [DOI: 10.1002/cplu.201500098] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/07/2022]
|
15
|
Shenashen MA, El-Safty SA, Elshehy EA, Khairy M. Hexagonal-Prism-Shaped Optical Sensor/Captor for the Optical Recognition and Sequestration of PdIIIons from Urban Mines. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402756] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
|
17
|
Shenashen MA, El-Safty SA, Elshehy EA. Monolithic scaffolds for highly selective ion sensing/removal of Co(ii), Cu(ii), and Cd(ii) ions in water. Analyst 2014; 139:6393-405. [DOI: 10.1039/c4an00980k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Khairy M, El-Safty SA, Shenashen MA, Elshehy E. Simultaneous Detection and Removal of Cadmium Ions from Different Environmental Matrices. ACTA ACUST UNITED AC 2014. [DOI: 10.3370/lca.10.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Md. Khairy
- National Institute for Materials Science(NIMS)
| | - Sherif A. El-Safty
- National Institute for Materials Science(NIMS)
- Graduate School for Advanced Science and Engineering, Waseda University
| | | | - E. Elshehy
- National Institute for Materials Science(NIMS)
| |
Collapse
|
19
|
Khairy M, El-Safty SA. Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles. Colloids Surf B Biointerfaces 2013; 111:460-8. [DOI: 10.1016/j.colsurfb.2013.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
|
20
|
Khairy M, El-Safty SA, Shenashen MA, Elshehy EA. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood. NANOSCALE 2013; 5:7920-7927. [PMID: 23851402 DOI: 10.1039/c3nr02403b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The highly toxic properties, bioavailability, and adverse effects of Pb(2+) species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb(2+) concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb(2+) ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb(2+) ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.
Collapse
Affiliation(s)
- Mohamed Khairy
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | | | | | | |
Collapse
|
21
|
El‐Safty SA, Abdellatef S, Ismael M, Shahat A. Optical nanosphere sensor based on shell-by-shell fabrication for removal of toxic metals from human blood. Adv Healthc Mater 2013; 2:854-62. [PMID: 23307510 DOI: 10.1002/adhm.201200326] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/26/2012] [Indexed: 11/10/2022]
Abstract
Because toxic heavy metals tend to bioaccumulate, they represent a substantial human health hazard. Various methods are used to identify and quantify toxic metals in biological tissues and environment fluids, but a simple, rapid, and inexpensive system has yet to be developed. To reduce the necessity for instrument-dependent analysis, we developed a single, pH-dependent, nanosphere (NS) sensor for naked-eye detection and removal of toxic metal ions from drinking water and physiological systems (i.e., blood). The design platform for the optical NS sensor is composed of double mesoporous core-shell silica NSs fabricated by one-pot, template-guided synthesis with anionic surfactant. The dense shell-by-shell NS construction generated a unique hierarchical NS sensor with a hollow cage interior to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, longevity, selectivity, and signal stability. Here, we examined the application of the NS sensor for the removal of toxic metals (e.g., lead ions from a physiological system, such as human blood). The findings show that this sensor design has potential for the rapid screening of blood lead levels so that the effects of lead toxicity can be avoided.
Collapse
Affiliation(s)
- S. A. El‐Safty
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
- Graduate School for Advanced Science and Engineering, Waseda University, 3‐4‐1, Okubo, Shinjuku‐ku, Tokyo 169‐8555, Japan
| | - S. Abdellatef
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
| | - M. Ismael
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
| | - A. Shahat
- National Institute for Materials Science (NIMS), 1‐2‐1 Sengen, Tsukuba, Ibaraki 305‐0047, Japan
| |
Collapse
|
22
|
Fried DI, Brieler FJ, Fröba M. Designing Inorganic Porous Materials for Enzyme Adsorption and Applications in Biocatalysis. ChemCatChem 2013. [DOI: 10.1002/cctc.201200640] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
El-Safty SA, Shenashen MA, Ismail AA. A multi-pH-dependent, single optical mesosensor/captor design for toxic metals. Chem Commun (Camb) 2013; 48:9652-4. [PMID: 22908121 DOI: 10.1039/c2cc34788a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of low-cost, simple nanodesigns with sensing/capture functionality has been called into question by the toxicity and non-degradability of toxic metals, as well as the persistent threat they pose to human lives. In this study, a single, pH-dependent, mesocaptor/sensor was developed for the optical and selective removal of toxic ions from drinking water and physiological systems such as blood.
Collapse
Affiliation(s)
- Sherif A El-Safty
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba-shi, Ibaraki-ken 305-0047, Japan.
| | | | | |
Collapse
|
24
|
El-Safty SA, Shenashen MA, Khairy M. Optical detection/collection of toxic Cd(II) ions using cubic Ia3d aluminosilica mesocage sensors. Talanta 2012; 98:69-78. [DOI: 10.1016/j.talanta.2012.06.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
25
|
Khairy M, El-Safty SA, Ismael M. Mesoporous nanomagnet supercaptors for selective heme-proteins from human cells. Chem Commun (Camb) 2012; 48:10832-4. [DOI: 10.1039/c2cc35638d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|