1
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
2
|
Li J, Mohammed-Elsabagh M, Paczkowski F, Li Y. Circular Nucleic Acids: Discovery, Functions and Applications. Chembiochem 2020; 21:1547-1566. [PMID: 32176816 DOI: 10.1002/cbic.202000003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Freeman Paczkowski
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
3
|
Polysaccharide-enhanced ARGET ATRP signal amplification for ultrasensitive fluorescent detection of lung cancer CYFRA 21-1 DNA. Anal Bioanal Chem 2020; 412:2413-2421. [PMID: 32047944 DOI: 10.1007/s00216-020-02394-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022]
Abstract
An ultrasensitive fluorescence biosensor for detecting cytokeratin fragment antigen 21-1 (CYFRA 21-1) DNA of non-small cell lung carcinoma (NSCLC) is designed using polysaccharide and activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) signal amplification strategy. Thiolated peptide nucleic acid (PNA) is fixed on magnetic nanoparticles (MNPs) by a cross-linking agent and hybridized with CYFRA 21-1 DNA. Hyaluronic acid (HA) is linked to PNA/tDNA heteroduplexes in the form of carboxy-Zr4+-phosphate. Subsequently, multiple 2-bromo-2-methylpropionic acid (BMP) molecules are linked with HA to initiate ARGET ATRP reaction. Finally, a large number of fluorescein o-acrylate (FA) monomers are polymerized on the macro-initiators, and the fluorescence signal is significantly amplified. Under optimal conditions, this biosensor shows a significant linear correlation between the fluorescence intensity and logarithm of CYFRA 21-1 DNA concentration (0.1 fM to 0.1 nM), and the limit of detection is as low as 78 aM. Furthermore, the sensor has a good ability to detect CYFRA 21-1 DNA in serum samples and to recognize mismatched bases. It suggests that the strategy has broad application in early diagnosis by virtue of its high sensitivity and selectivity. Graphical abstract A novel and highly sensitive fluorescence biosensor for quantitatively detecting CYFRA 21-1 DNA via dual signal amplification of hyaluronic acid and ARGET ATRP reaction was developed. This proposed method has a low detection limit, wide detection range, high selectivity, and strong anti-interference.
Collapse
|
4
|
Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. Mikrochim Acta 2019; 186:344. [DOI: 10.1007/s00604-019-3476-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
|
5
|
Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron 2018; 120:8-14. [PMID: 30142479 DOI: 10.1016/j.bios.2018.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
In this work, a competitive and label-free electrochemical platform was performed for the ultrasensitive cytosensing of liver cancer cells based on DNA nanotetrahedron (NTH) structure and rolling circle amplification (RCA) directed DNAzyme strategy. The multifunctional nanoprobes were fabricated through a DNA primer probe, carboxyfluorescein (FAM) functionalized TLS11a aptamer and horseradish peroxidase (HRP) immobilized on the surfaces of the platinum nanoparticles (PtNPs). Then the NTH-based complementary DNA (cDNA) probe, complementary to the TLS11a aptamer, was attached on a disposable screen-printed gold electrode (SPGE) for increasing the reactivity and accessibility with the prepared nanoprobes. Due to the primer probe and the circular probe with G-quadruplex sequences for RCA, it can lead to the formation of numerous G-quadruplex/hemin DNAzyme, thus generating a remarkable electrochemical response. When the target cells were present, the nanoprobes were released from the SPGE due to the specific recognition of TLS11a aptamers for HepG2 cells, resulting in the electrochemical signal changes. The cytosensor was ultrasensitive for HepG2 tumor cell detection with a detection limit of 3 cell per mL. Furthermore, this strategy was also demonstrated to be applicable for cancer cell imaging. In summary, this electrochemical cytosensor holds great potential for circulating tumor cell detection in the early cancer diagnose.
Collapse
|
6
|
Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M. Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing. Pharmaceuticals (Basel) 2018; 11:E35. [PMID: 29690513 PMCID: PMC6027247 DOI: 10.3390/ph11020035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
Collapse
Affiliation(s)
- Lide Gu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Wanli Yan
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Le Liu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
| | - Shujun Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Xu Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
- Verschuren Centre for Sustainability in Energy & the Environment, Cape Breton University, Sydney, NS B1P 6L2, Canada.
| | - Mingsheng Lyu
- College of Marine Life and Fisheries, Huahai Institute of Technology, Lianyungang 222005, China.
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
7
|
Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: From basic principles to applications in electrochemical biosensors. Biosens Bioelectron 2018; 110:207-217. [PMID: 29625328 DOI: 10.1016/j.bios.2018.03.065] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
As a conventional amplification technique, polymerase chain reaction (PCR) has been widely applied to detect a variety of analytes with exponential amplification efficiency. However, the requirement of thermocycling procedures largely limits the application of PCR-based methods. Alternatively, several isothermal amplification techniques have been developed since the early 1990s. In particular, according to the reaction kinetics, isothermal exponential amplification techniques possess higher amplification efficiency and detection sensitivity. The isothermal exponential amplification techniques can be mainly divided into two categories: enzyme-based isothermal exponential amplification and enzyme-free isothermal exponential amplification. Considering the advantages of high sensitivity and selectivity, high signal-to-noise ratio, low cost and rapid response time, exponential amplification electrochemical biosensors have attracted considerable attention. In this review, we introduce the basic principles of isothermal exponential amplification techniques and summarize their applications in electrochemical biosensors during the past five years. We also highlighted the present challenges and further perspectives of isothermal exponential amplification-based electrochemical biosensors.
Collapse
Affiliation(s)
- Hongjie Qi
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, PR China
| | - Shuzhen Yue
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, PR China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, PR China.
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Weiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
8
|
Du YC, Zhu YJ, Li XY, Kong DM. Amplified detection of genome-containing biological targets using terminal deoxynucleotidyl transferase-assisted rolling circle amplification. Chem Commun (Camb) 2018; 54:682-685. [DOI: 10.1039/c7cc09337c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We proposed a terminal deoxynucleotidyl transferase (TdT)-assisted rolling circle amplification (RCA) strategy for the amplified detection of genome-containing biological targets.
Collapse
Affiliation(s)
- Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Yan-Jun Zhu
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| |
Collapse
|
9
|
Hu B, Guo J, Xu Y, Wei H, Zhao G, Guan Y. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology. Anal Bioanal Chem 2017; 409:4819-4825. [PMID: 28689323 DOI: 10.1007/s00216-017-0425-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/05/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
Rapid and accurate detection of microRNAs in biological systems is of great importance. Here, we report the development of a visual colorimetric assay which possesses the high amplification capabilities and high selectivity of the rolling circle amplification (RCA) method and the simplicity and convenience of gold nanoparticles used as a signal indicator. The designed padlock probe recognizes the target miRNA and is circularized, and then acts as the template to extend the target miRNA into a long single-stranded nucleotide chain of many tandem repeats of nucleotide sequences. Next, the RCA product is hybridized with oligonucleotides tagged onto gold nanoparticles. This interaction leads to the aggregation of gold nanoparticles, and the color of the system changes from wine red to dark blue according to the abundance of miRNA. A linear correlation between fluorescence and target oligonucleotide content was obtained in the range 0.3-300 pM, along with a detection limit of 0.13 pM (n = 7) and a RSD of 3.9% (30 pM, n = 9). The present approach provides a simple, rapid, and accurate visual colorimetric assay that allows sensitive biodetection and bioanalysis of DNA and RNA nucleotides of interest in biologically important samples. Graphical abstract The colorimetric assay system for analyzing target oligonucleotides.
Collapse
Affiliation(s)
- Bo Hu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Jing Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Wei
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
10
|
Zhang X, Chen B, He M, Wang H, Hu B. Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens Bioelectron 2016; 86:736-740. [PMID: 27476054 DOI: 10.1016/j.bios.2016.07.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Sensitive detection of circulating tumor cells (CTCs) is of great significance in the early detection of cancer and cancer metastasis. This work reported an efficient, specific, and sensitive immunoassay protocol for detection of tumor cells by using inductively coupled plasma mass spectrometry (ICP-MS) with gold nanoparticles (AuNPs) labeling and hybridization chain reaction (HCR) amplification. In the established approach, antibodies against epithelial cell adhesion molecule (anti-EpCAM) conjugated magnetic beads (MBs) were used for selective capture of tumor cells from peripheral blood, aptamer was applied for the recognition of captured tumor cells, and AuNPs labeled DNA concatamer was used as the signal probe for tumor cell labeling and ICP-MS detection. Due to the dual amplification effect of AuNPs and HCR, the limit of detection of this ICP-MS based method for HepG2 cells was as low as 15 cells, and the linear range was 40-8000 cells with the relative standard deviation for seven replicate detections of 200 HepG2 cells was 8.7%. Furthermore, the applicability of the method for the analysis of peripheral blood samples was demonstrated by the spiking tests. The established method was highly specific and sensitive for the detection of HepG2 cells, and has a good application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072 PR China.
| |
Collapse
|
11
|
|
12
|
|
13
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|
14
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
15
|
Mao Y, Liu M, Tram K, Gu J, Salena BJ, Jiang Y, Li Y. Optimal DNA templates for rolling circle amplification revealed by in vitro selection. Chemistry 2015; 21:8069-74. [PMID: 25877998 DOI: 10.1002/chem.201500994] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 01/21/2023]
Abstract
Rolling circle amplification (RCA) has been widely used as an isothermal DNA amplification technique for diagnostic and bioanalytical applications. Because RCA involves repeated copying of the same circular DNA template by a DNA polymerase thousands of times, we hypothesized there exist DNA sequences that can function as optimal templates and produce more DNA amplicons within an allocated time. Herein we describe an in vitro selection effort conducted to search from a random sequence DNA pool for such templates for phi29 DNA polymerase, a frequently used polymerase for RCA. Diverse DNA molecules were isolated and they were characterized by richness in adenosine (A) and cytidine (C) nucleotides. The top ranked sequences exhibit superior RCA efficiency and the use of these templates for RCA results in significantly improved detection sensitivity. AC-rich sequences are expected to find useful applications for setting up effective RCA assays for biological sensing.
Collapse
Affiliation(s)
- Yu Mao
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada).,The Ministry-Province Jointly Constructed Base for State Key Laboratory, Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055 (P. R. China).,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055 (P. R. China)
| | - Meng Liu
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Kha Tram
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Jimmy Gu
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada)
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Laboratory, Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055 (P. R. China).
| | - Yingfu Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1 (Canada).
| |
Collapse
|
16
|
|
17
|
Xie L, Cheng H, Qi H, Wang T, Zhao H, Huang G, Du Y. Nanostructural morphology master-regulated the cell capture efficiency of multivalent aptamers. RSC Adv 2015. [DOI: 10.1039/c5ra01919b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nanostructural features of stretched multivalent aptamers significantly improve the cell enrichment efficiency to about 16 fold higher than normal multivalent aptamers.
Collapse
Affiliation(s)
- Liping Xie
- College of Life and Health Science
- Northeastern University
- Shenyang 110819
- China
| | - Hao Cheng
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Hao Qi
- Key Laboratory of Systems Bioengineering
- Ministry of Education (Tianjin University)
- Tianjin
- China
- School of Chemical Engineering and Technology
| | - Tongzhou Wang
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Hui Zhao
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Guoliang Huang
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| | - Yanan Du
- Department of Biomedical Engineering
- School of Medicine
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
18
|
Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta 2015; 853:30-45. [DOI: 10.1016/j.aca.2014.09.037] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022]
|
19
|
Sheng Q, Cheng N, Bai W, Zheng J. Ultrasensitive electrochemical detection of breast cancer cells based on DNA-rolling-circle-amplification-directed enzyme-catalyzed polymerization. Chem Commun (Camb) 2014; 51:2114-7. [PMID: 25536491 DOI: 10.1039/c4cc08954e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An ultrasensitive cytosensor based on DNA-rolling-circle-amplification-directed enzyme-catalyzed polymerization is demonstrated. As a proof of concept, the cytosensor shows excellent sensitivity for MCF-7 cell detection with a lower detection limit of 12 cells per mL.
Collapse
Affiliation(s)
- Qinglin Sheng
- Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China.
| | | | | | | |
Collapse
|
20
|
Xu W, Deng R, Wang L, Li J. Multiresponsive Rolling Circle Amplification for DNA Logic Gates Mediated by Endonuclease. Anal Chem 2014; 86:7813-8. [DOI: 10.1021/ac501726s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Weidong Xu
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Ruijie Deng
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Lida Wang
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department
of Chemistry,
Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Chen H, Hou Y, Qi F, Zhang J, Koh K, Shen Z, Li G. Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance. Biosens Bioelectron 2014; 61:83-7. [PMID: 24858995 DOI: 10.1016/j.bios.2014.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a major regulator of angiogenesis. It has been identified as an ideal biomarker for staging of many kinds of cancers, so more specific and intense signal is desirable for VEGF biosensors so that the sensors may have more valuable clinical application. Herein, we report a highly sensitive and selective surface plasmon resonance (SPR) sensor for VEGF detection by using two DNA aptamers which target different VEGF domains used as the capture and detection probe, respectively. Moreover, by making use of carboxyl-coated polystyrene microspheres, 3'-NH2 immobilized aptamer and 3'-NH2 modified primer DNA are loaded through amidation onto the sensing layer for further rolling circle amplification (RCA) process to amplify the SPR signal. With the well-designed sensing platform, VEGF can be determined in a linear range from 100 pg mL(-1) to 1 μg mL(-1) with a detection limit of 100 pg mL(-1). Due to its high specificity and desirable sensitivity, this RCA assisted SPR method may be a useful tool for the assay of VEGF in the future. What is more, by replacing the sensing element, i.e., the aptamer of VEGF used in this work, more biosensors for sensitive detection of other biomarkers proteins can be fabricated based on the strategy proposed in this study.
Collapse
Affiliation(s)
- Hongxia Chen
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yafei Hou
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Fangjie Qi
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiangjiang Zhang
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Kwangnak Koh
- Department of Applied Nanoscience, Pusan National University, Miryang 627-706, Republic of Korea
| | - Zhongming Shen
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Genxi Li
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
22
|
Wang Y, Feng J, Tan Z, Wang H. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosens Bioelectron 2014; 60:218-23. [PMID: 24813910 DOI: 10.1016/j.bios.2014.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/04/2023]
Abstract
A highly sensitive and label-free electrochemical impedance spectroscopy (EIS) aptasensor for the detection of adenosine was fabricated by co-assembling thiolated aptamer, dithiothreitol (DTT) and 6-mercaptohexanol (MCH) on gold electrode surface, forming Au/aptamer-DTT/MCH. The interfacial electron transfer resistance (Ret) of the aptasensor using [Fe(CN)6](3-/4-) as the probe increased with adenosine concentration, and the change in Ret (∆Ret) against the logarithm of adenosine concentration was linear over the range from 0.05 pM to 17 pM with a detection limit of 0.02 pM. Compared to that of aptasensors fabricated with MCH or DTT alone as the backfiller, the detection limit was improved dramatically (LOD was 0.03 nM and 0.2 pM for Au/aptamer/MCH and Au/aptamer-DTT, respectively), which was attributed primarily to the coupling of the cyclic- and linear -configuration backfillers. The coupling showed remarkably higher resistance to nonspecific adsorption, leading to low background noise and high response signal. The aptasensor reported herein is applicable for the detection of other kinds of aptamer-binding chemicals and biomolecules.
Collapse
Affiliation(s)
- Yitan Wang
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Juanjuan Feng
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Zhian Tan
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Haiyan Wang
- Anhui Key Laboratory of Chemo-biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
23
|
Shahsavarian MA, Le Minoux D, Matti KM, Kaveri S, Lacroix-Desmazes S, Boquet D, Friboulet A, Avalle B, Padiolleau-Lefèvre S. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries. J Immunol Methods 2014; 407:26-34. [PMID: 24681277 DOI: 10.1016/j.jim.2014.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library.
Collapse
Affiliation(s)
- Melody A Shahsavarian
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Damien Le Minoux
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Kalyankumar M Matti
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Srini Kaveri
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMR S 872, Paris F-75006, France; Université Paris Descartes, UMR 872, Paris F-75006, France; INSERM, UMR 872, Paris F-75006, France; International Associated Laboratory IMPACT, Institut National de la Santé et de la Recherche Médicale-France and Indian Council of Medical Research-India, National Institute of Immunohaemotology, Mumbai, India
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMR S 872, Paris F-75006, France; Université Paris Descartes, UMR 872, Paris F-75006, France; INSERM, UMR 872, Paris F-75006, France; International Associated Laboratory IMPACT, Institut National de la Santé et de la Recherche Médicale-France and Indian Council of Medical Research-India, National Institute of Immunohaemotology, Mumbai, India
| | - Didier Boquet
- Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS), iBiTecS, SPI, Commissariat à l'Energie Atomique, 91191 Gif sur Yvette, France
| | - Alain Friboulet
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Bérangère Avalle
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France.
| |
Collapse
|
24
|
Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 2014; 43:3324-41. [DOI: 10.1039/c3cs60439j] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Zhou J, Xu M, Tang D, Gao Z, Tang J, Chen G. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based hybridization chain reaction. Chem Commun (Camb) 2013; 48:12207-9. [PMID: 23147220 DOI: 10.1039/c2cc36820j] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A label-free, non-enzyme immunosensing strategy is designed for ultrasensitive electronic detection of disease-related proteins (carcinoembryonic antigen as a model) by using gold nanoparticle-based bio-bar codes and an in situ amplified DNA-based hybridization chain reaction.
Collapse
Affiliation(s)
- Jun Zhou
- MOE Key Laboratory of Analysis and Detection of Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | | | | | | | | | | |
Collapse
|
26
|
Yao J, Flack K, Ding L, Zhong W. Tagging the rolling circle products with nanocrystal clusters for cascade signal increase in the detection of miRNA. Analyst 2013; 138:3121-5. [DOI: 10.1039/c3an00398a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Pei X, Xu Z, Zhang J, Liu Z, Tian J. Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 2013. [DOI: 10.1039/c3ra41665h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|