1
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
2
|
He S, Yang Y, Xu Z, Ling H, Wang Y, Wan L, Huang N, Ye Q, Liu Y. Development of Enzyme-Free DNA Amplifier Based on Chain Reaction Principle. Acta Biomater 2022; 149:213-219. [PMID: 35811071 DOI: 10.1016/j.actbio.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/01/2022]
Abstract
Enzyme-free DNA amplifiers can amplify the signal of nucleic acid molecules. They can be applied to DNA molecular operation and nucleic acid detection. The reaction speed is the core index to evaluate DNA amplifiers. In this study, we designed a DNA amplifier based on an enzyme-free chain reaction. This DNA amplifier can release one more signal molecule in each round of reaction and trigger the next round, which significantly improved reaction speed. Moreover, because the amplifier used a stable DNA structure, the reaction can occur at room temperature. To integrate the amplifier into other DNA molecular operations, we performed the amplification reaction in a microfluidic chip module. The results showed that the amplifier can realize real-time signal feedback at a proper input molecule concentration and reach the endpoint in 40 s, even at a low relative concentration. To apply the amplifier for nucleic acid detection, we also used a conventional fluorescent polymerase chain reaction instrument for the reaction. The results showed that the amplifier specifically detected trace DNA single-stranded molecules. To solve the leakage problem of existing amplifiers, we designed a DNA molecule as the chain reaction's inhibitor, which was crucial in controlling the reaction speed and preventing leakage. STATEMENT OF SIGNIFICANCE: Traditional amplifier strategies of enzyme-free DNA amplifiers relied on a constant number of cycling molecules to catalyze the amplifier molecules' changing structure and release fluorescent signals, which lead low reaction speed. Based on an enzyme-free chain reaction, we designed a DNA amplifier which can release one more cycling molecule in each loop and trigger the next loop and significantly improve reaction speed in this study. Our analysis on microfluidic chip module and PCR instrument verifies high sensitivity and selectivity. And this strategy of DNA amplifier realizes the control of reaction and prevents leakage. We believe that this automated amplification strategy could have great applications in vivo signal detection, imaging, and signal molecule translation.
Collapse
Affiliation(s)
- Songlin He
- School of Medicine, Nankai University, Tianjin 300071, China; Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yongkang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ziheng Xu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hongkun Ling
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Li Wan
- School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Eye Institute, Nankai University, Tianjin 300071, China
| | - Ningning Huang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China; Nankai University Eye Institute, Nankai University, Tianjin 300071, China.
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Eye Institute, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Wang J, Zhu L, Li T, Li X, Huang K, Xu W. Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Ali MM, Silva R, White D, Mohammadi S, Li Y, Capretta A, Brennan JD. A Lateral Flow Test for
Staphylococcus aureus
in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Ryan Silva
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Dawn White
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Saeed Mohammadi
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Alfredo Capretta
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
6
|
Tang Z, Zhao W, Deng Y, Sun Y, Qiu C, Wu B, Bao J, Chen Z, Yu L. Universal point-of-care detection of proteins based on proximity hybridization-mediated isothermal exponential amplification. Analyst 2022; 147:1709-1715. [DOI: 10.1039/d1an02245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lateral flow biosensor has been fabricated for protein detection based on a protein-to-DNA signal transducer, isothermal exponential amplification and catalytic hairpin assembly with high sensitivity and specificity.
Collapse
Affiliation(s)
- Zibin Tang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wenyong Zhao
- Faculty of Forensic Medicine, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Yuling Deng
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuanzhong Sun
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Cailing Qiu
- Department of Medical Laboratory, Dalang Hospital of Dongguan, Dongguan 523770, China
| | - Binhua Wu
- Marine Biomedical Research Institute of Guangdong Medical University, Zhanjiang, 524023, China
| | - Juan Bao
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhangquan Chen
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Luxin Yu
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
7
|
Ali MM, Silva R, White D, Mohammadi S, Li Y, Capretta A, Brennan JD. A Lateral Flow Test for Staphylococcus aureus in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angew Chem Int Ed Engl 2021; 61:e202112346. [PMID: 34816559 DOI: 10.1002/anie.202112346] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Detection of pathogenic bacteria in complex biological matrices remains a major challenge. Herein, we report the selection and optimization of a new DNAzyme for Staphylococcus aureus (SA) and the use of the DNAzyme to develop a simple lateral flow device (LFD) for detection of SA in nasal mucus. The DNAzyme was generated by in vitro selection using a crude extra/intracellular mixture derived from SA, which could be used directly for simple solution or paper-based fluorescence assays for SA. The DNAzyme was further modified to produce a DNA cleavage fragment that acted as a bridging element to bind DNA-modified gold nanoparticles to the test line of a LFD, producing a simple colorimetric dipstick test. The LFD was evaluated with nasal mucus samples spiked with SA, and demonstrated that SA detection was possible in minutes with minimal sample processing.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Ryan Silva
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Dawn White
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Saeed Mohammadi
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
8
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
10
|
Wang T, Chen L, Chikkanna A, Chen S, Brusius I, Sbuh N, Veedu RN. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics 2021; 11:5174-5196. [PMID: 33859741 PMCID: PMC8039946 DOI: 10.7150/thno.56471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lateral flow assay (LFA) has made a paradigm shift in the in vitro diagnosis field due to its rapid turnaround time, ease of operation and exceptional affordability. Currently used LFAs predominantly use antibodies. However, the high inter-batch variations, error margin and storage requirements of the conventional antibody-based LFAs significantly impede its applications. The recent progress in aptamer technology provides an opportunity to combine the potential of aptamer and LFA towards building a promising platform for highly efficient point-of-care device development. Over the past decades, different forms of aptamer-based LFAs have been introduced for broad applications ranging from disease diagnosis, agricultural industry to environmental sciences, especially for the detection of antibody-inaccessible small molecules such as toxins and heavy metals. But commercial aptamer-based LFAs are still not used widely compared with antibodies. In this work, by analysing the key issues of aptamer-based LFA design, including immobilization strategies, signalling methods, and target capturing approaches, we provide a comprehensive overview about aptamer-based LFA design strategies to facilitate researchers to develop optimised aptamer-based LFAs.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Lanmei Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Guangdong Key Laboratory for Research and Development of Nature Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Arpitha Chikkanna
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Isabell Brusius
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| |
Collapse
|
11
|
Chen L, Zhang Q, Liu W, Xiao H, Liu X, Fan L, Wang Y, Li H, Cao C. A facile thermometer-like electrophoresis titration biosensor for alternative miRNA assay via moving reaction boundary chip. Biosens Bioelectron 2021; 171:112676. [DOI: 10.1016/j.bios.2020.112676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023]
|
12
|
Yang Y, Li W, Liu J. Review of recent progress on DNA-based biosensors for Pb 2+ detection. Anal Chim Acta 2020; 1147:124-143. [PMID: 33485571 DOI: 10.1016/j.aca.2020.12.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
Lead (Pb) is a highly toxic heavy metal of great environmental and health concerns, and interestingly Pb2+ has played important roles in nucleic acids chemistry. Since 2000, using DNA for selective detection of Pb2+ has become a rapidly growing topic in the analytical community. Pb2+ can serve as the most active cofactor for RNA-cleaving DNAzymes including the GR5, 17E and 8-17 DNAzymes. Recently, Pb2+ was found to promote a porphyrin metalation DNAzyme named T30695. In addition, Pb2+ can tightly bind to various G-quadruplex sequences inducing their unique folding and binding to other molecules such as dyes and hemin. The peroxidase-like activity of G-quadruplex/hemin complexes was also used for Pb2+ sensing. In this article, these Pb2+ recognition mechanisms are reviewed from fundamental chemistry to the design of fluorescent, colorimetric, and electrochemical biosensors. In addition, various signal amplification mechanisms such as rolling circle amplification, hairpin hybridization chain reaction and nuclease-assisted methods are coupled to these sensing methods to drive up sensitivity. We mainly cover recent examples published since 2015. In the end, some practical aspects of these sensors and future research opportunities are discussed.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Food and Biological Sciences, College of Agriculture, Yanbian University, Yanji, 133002, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Weixuan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; Water Institute, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
13
|
Gulati S, Singh P, Diwan A, Mongia A, Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med Chem 2020; 11:1252-1266. [PMID: 34095839 PMCID: PMC8126886 DOI: 10.1039/d0md00298d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Functionalized gold nanoparticles are recognized as promising vehicles in the diagnosis and treatment of human immunodeficiency virus (HIV) owing to their excellent biocompatibility with biomolecules (like DNA or RNA), their potential for multivalency and their unique optical and structural properties. In this context, this review article focuses on the diverse detection abilities and delivery and uptake methodologies of HIV by targeting genes and proteins using gold nanoparticles on the basis of different shapes and sizes in order to promote its effective expression. In addition, recent trends in gold nanoparticle mediated HIV detection, delivery and uptake and treatment are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
14
|
A label-free liquid crystal droplet-based sensor used to detect lead ions using single-stranded DNAzyme. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Liu R, McConnell EM, Li J, Li Y. Advances in functional nucleic acid based paper sensors. J Mater Chem B 2020; 8:3213-3230. [DOI: 10.1039/c9tb02584g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article provides an extensive review of paper-based sensors that utilize functional nucleic acids, particularly DNA aptamers and DNAzymes, as recognition elements.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Erin M. McConnell
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
16
|
Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019; 187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives. Graphical abstractRecent development and breakthrough points of lateral flow biosensors.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenqian Wang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China
| | - Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China. .,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
17
|
Niu X, Liu Y, Wang F, Luo D. Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme. OPTICS EXPRESS 2019; 27:30421-30428. [PMID: 31684289 DOI: 10.1364/oe.27.030421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/29/2019] [Indexed: 05/22/2023]
Abstract
Lead ions (Pb2+) are one of the major environmental pollutants that are dangerous for human health, thus the detection methods of Pb2+ become very important as well. However, most reported techniques suffer from drawbacks such as long time, expensive equipment and complicated testing process, which prevent the use of real-time application. Herein, we demonstrate a novel liquid crystal optical sensor for detection of Pb2+ based on DNAzyme and its combined strand. The ordered and disordered configuration of liquid crystals, induced by complementary DNA strand and catalytically cleaved DNA in presence of lead ion separately, leads to dark and bright optical image under POM. The proposed naked-eye optical sensor possesses an extremely broad detection range of Pb2+ from 50 nM to 500 µM, with a low detection limit about 36.8 nM. The sensor also demonstrates high selectivity of Pb2+ from many other metal ions. The proposal LC sensor is highly sensitive and selective for Pb2+ detection, which provides a novel platform for other heavy metal, DNAs or antigen in biological and chemical fields by modifying sensing molecules.
Collapse
|
18
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
19
|
Lu W, Lin C, Yang J, Wang X, Yao B, Wang M. A DNAzyme assay coupled with effective magnetic separation and rolling circle amplification for detection of lead cations with a smartphone camera. Anal Bioanal Chem 2019; 411:5383-5391. [DOI: 10.1007/s00216-019-01879-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
|
20
|
Si J, Li J, Zhang L, Zhang W, Yao J, Li T, Wang W, Zhu W, Allain JP, Fu Y, Li C. A signal amplification system on a lateral flow immunoassay detecting for hepatitis e-antigen in human blood samples. J Med Virol 2019; 91:1301-1306. [PMID: 30851129 DOI: 10.1002/jmv.25452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Hepatitis B e-antigen (HBeAg) is the secretory form of the nucleocapsid of the hepatitis B virus (HBV), which is a marker of viral replication. In this study, a novel signal amplification system (SAS) based on the lateral flow immunoassay (LFIA) was used for rapid detection of HBeAg in blood samples from patients or blood donors. In this assay, the detection antibody was conjugated with gold nanoparticles (GNPs), and the capture antibody was labeled with biotin. The presence of targeting antigen HBeAg in blood sample would act as a bridge with biotinylated captured antibody and GNP-conjugated detection antibody to form the dendritic nanoparticle complex. The dendritic complexes in the sample solution were migrated and immobilized on the testing line of strip coated with antibiotin antibodies. Signal intensity was massively amplified by the SAS, which was positively correlated with the concentration of targeting antigen in the blood sample and was assessed by eyes or strip scanner. The SAS worked only when targeting antigens were present in the sample. By using this SAS-LFIA, we were able to detect a very low concentration of HBeAg (9 ng/mL), which was 27-fold sensitive than that by conventional LFIA (cLFIA). A number of 420 blood samples were detested by this novel SAS-LFIA, the results were in accordance with those of enzyme-linked immunosorbent assay (ELISA) completely, while the cLFIA missed an HBeAg-positive sample. In conclusion, the novel SAS has high specificity and sensitivity, which can be used to replace the conventional rapid test and ELISA in clinical diagnosis.
Collapse
Affiliation(s)
- Jinhong Si
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinfeng Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Shenzhen Key Laboratory of Molecular Epidemiology, Center for Disease Control and Prevention (CDC), Shenzhen, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Weiyun Zhang
- Laboratory Department, Military General Hospital of Guangzhou, Guangzhou, China
| | - Jinxiu Yao
- Laboratory Department, Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Weihang Zhu
- Department of Blood Donation Screening, Shenzhen Blood Center, Shenzhen, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Emeritus Professor, University of Cambridge, Cambridge, UK
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Insitutue of Clinical Transfusion, Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Li Q, Zhou D, Pan J, Liu Z, Chen J. An ultrasensitive and simple fluorescence biosensor for detection of the Kras wild type by using the three-way DNA junction-driven catalyzed hairpin assembly strategy. Analyst 2019; 144:3088-3093. [DOI: 10.1039/c9an00195f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A label-free platform for simple detection of the Kras gene was proposed by using the three-way DNA junction-driven catalyzed hairpin assembly strategy.
Collapse
Affiliation(s)
- Qiong Li
- College of Bioscience and Biotechnology
- Hunan Agricultural University
- Changsha 410128
- China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management
| | - Danhua Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental and Science &Technology
- Guangzhou 510650
- China
| | - Jiafeng Pan
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental and Science &Technology
- Guangzhou 510650
- China
| | - Zhi Liu
- College of Bioscience and Biotechnology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental and Science &Technology
- Guangzhou 510650
- China
| |
Collapse
|
22
|
Pan J, Li Q, Zhou D, Chen J. Label-free and highly sensitive fluorescence detection of lead(ii) based on DNAzyme and exonuclease III-assisted cascade signal amplification. NEW J CHEM 2019. [DOI: 10.1039/c8nj06522e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Pb2+ biosensor has been constructed based on Exo III-assisted cascade signal amplification using 2-amino-5,6,7-trimethyl-1,8-naphthyridine as the signal indicator.
Collapse
Affiliation(s)
- Jiafeng Pan
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
| | - Qiong Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
- College of Bioscience and Biotechnology
| | - Danhua Zhou
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
- College of Natural Resources and Environment
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management
- Guangdong Institute of Eco-Environmental Science & Technology
- Guangzhou 510650
- China
| |
Collapse
|
23
|
Zhao S, Wang S, Zhang S, Liu J, Dong Y. State of the art: Lateral flow assay (LFA) biosensor for on-site rapid detection. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Wang HB, Ma LH, Fang BY, Zhao YD, Hu XB. Graphene oxide-assisted Au nanoparticle strip biosensor based on GR-5 DNAzyme for rapid lead ion detection. Colloids Surf B Biointerfaces 2018; 169:305-312. [DOI: 10.1016/j.colsurfb.2018.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
25
|
Chen J, Chen S, Li F. DNA Probes for Implementation of Multiple Molecular Computations Using a Lateral Flow Strip Biosensor as the Sensing Platform. Anal Chem 2018; 90:10311-10317. [DOI: 10.1021/acs.analchem.8b02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Shu Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Fengling Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
26
|
Li Y, Jiao X, Du X, Wang F, Wei Q, Wen Y, Zhang X. Wettability alteration in a functional capillary tube for visual quantitative point of care testing. Analyst 2018; 143:3001-3005. [PMID: 29888353 DOI: 10.1039/c8an00735g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Capillarity is an extremely common physical-chemical phenomenon related to wettability in nature, which has wide theoretical and practical interest. Herein, we reported a facile sensing device based on capillary force change in a vertical capillary tube. In this height-based capillary sensor (HCS), the inner surface of the capillary tube was modified with a layer of molecules with wetting responsibility based on the well-known simple surface chemistry. With targets in different concentrations, the wettability of the surface modified with responsive molecules would produce different changes. The responsive surfaces would change the capillary force of the vertical capillary tube, and result in different column heights. Like a thermometer, H+ and phenol have been quantified visually based on the height of the liquid inside the capillary tube.
Collapse
Affiliation(s)
- Yansheng Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xin Du
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Fang Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Qianhui Wei
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
27
|
Wang D, Ge C, Lv K, Zou Q, Liu Q, Liu L, Yang Q, Bao S. A simple lateral flow biosensor for rapid detection of lead(ii) ions based on G-quadruplex structure-switching. Chem Commun (Camb) 2018; 54:13718-13721. [PMID: 30452026 DOI: 10.1039/c8cc06810k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strip biosensor equipped with a colorimetric card shows great promise for in-field Pb2+ detection.
Collapse
Affiliation(s)
- Dou Wang
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Chenchen Ge
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Kongpeng Lv
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Qingshuang Zou
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Quan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
| | - Qinhe Yang
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University
- Guangzhou 510632
- China
- School of Traditional Chinese Medicine, Jinan University
- Guangzhou, 510632
| | - Shiyun Bao
- Department of Hepatobiliary and Pancreatic Surgery, The 2nd Clinical medicine College (Shenzhen People's Hospital) of Jinan University
- Shenzhen 518020
- China
| |
Collapse
|
28
|
Ma LH, Wang HB, Fang BY, Tan F, Cao YC, Zhao YD. Visual detection of trace lead ion based on aptamer and silver staining nano-metal composite. Colloids Surf B Biointerfaces 2017; 162:415-419. [PMID: 29247914 DOI: 10.1016/j.colsurfb.2017.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
In this paper, visual detection of trace lead ion was established by aptamer and silver staining. The basic strategy was that aminated PS2.M aptamer was immobilized onto slide and formed stable G-quadruplex structure. PbS was generated by adding S2-, and it catalyzed subsequent silver staining reaction, through the silver staining amplification effect, the slide presented visible ash black. The gray value of slide after silver staining was analyzed and the semi-quantitative detection of Pb2+ in solution was realized. The results showed that optical darkness ratio (ODR) and logarithmic value of Pb2+ concentration had a good linear relationship (R2 = 0.951) over the range of 0.5-10 μM. In addition, there was no obvious interference of other common metal ions for the detection, indicating that this method presented outstanding selectivity. And it was also used for qualitative and semi-quantitative determination of Pb2+ in soil sample successfully.
Collapse
Affiliation(s)
- Li-Hong Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Biomedical Photonics (HUST, Ministry of Education), Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hai-Bo Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Biomedical Photonics (HUST, Ministry of Education), Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bi-Yun Fang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Biomedical Photonics (HUST, Ministry of Education), Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Tan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Yuan-Cheng Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Biomedical Photonics (HUST, Ministry of Education), Collaborative Innovation Center for Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
29
|
Park Y, Lee CY, Park KS, Park HG. Enzyme-Free Colorimetric Detection of Cu2+by Utilizing Target-Triggered DNAzymes and Toehold-Mediated DNA Strand Displacement Events. Chemistry 2017; 23:17379-17383. [DOI: 10.1002/chem.201704346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yeonkyung Park
- Department of Chemical and Biomolecular; Engineering (BK21+ Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular; Engineering (BK21+ Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular; Engineering (BK21+ Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
30
|
Ultrasensitive chemiluminescence assay for the lung cancer biomarker cytokeratin 21-1 via a dual amplification scheme based on the use of encoded gold nanoparticles and a toehold-mediated strand displacement reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2430-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Chen J, Tang L, Chu X, Jiang J. Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis. Analyst 2017; 142:3048-3061. [DOI: 10.1039/c7an00967d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enzyme-free, signal-amplified nucleic acid circuits utilize programmed assembly reactions between nucleic acid substrates to transduce a chemical input into an amplified detection signal.
Collapse
Affiliation(s)
- Jiyun Chen
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Lijuan Tang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xia Chu
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Jianhui Jiang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| |
Collapse
|
32
|
A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens Bioelectron 2016; 86:353-368. [DOI: 10.1016/j.bios.2016.06.075] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
|
33
|
Zhao J, Jing P, Xue S, Xu W. Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy. Biosens Bioelectron 2016; 87:157-163. [PMID: 27551995 DOI: 10.1016/j.bios.2016.08.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022]
Abstract
In this work, a sensitive electrochemical biosensing to Pb2+ was proposed based on the high specificity of DNAzymes to Pb2+. The response signal was efficiently amplified by the catalytic hairpin assembly induced by strand replacement reaction and the formation of dendritic structure DNA (DSDNA) by layer-by-layer assembly. Firstly, in the presence of Pb2+, the substrate strand (S1) of the Pb2+-specific DNAzymes was specifically cleaved by Pb2+. Secondly, one of the two fragments (rS1) introduced into the electrode surface was hybridized with a hairpin DNA (H1) and further replaced by another hairpin DNA (H2) by the hybridization reaction of H1 with H2. The released rS1 then induced the next hybridization with H1. After repeated cycles, the catalytic recycling assembly of H2 with H1 was completed. Thirdly, two bioconjugates of Pt@Pd nanocages (Pt@PdNCs) labeled with DNA S3/S4 and electroactive toluidine blue (Tb) (Tb-S3-Pt@PdNCs and Tb-S4-Pt@PdNCs) were captured onto the resultant electrode surface through the hybridization of S3 and H2, S3 and S4, resulting in the formation of DSDNA triggered by layer-by-layer assembly. This formed DSDNA greatly facilitated the immobilization of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP) as mimicking enzyme. Under the synergistic catalysis of Pt@PdNCs and MnTMPyP to H2O2 reduction, the effective signal amplification of the developed Pb2+ biosensor was achieved. As a result, the sensitive detection of the proposed electrochemical strategy for Pb2+ was greatly improved in the range of 0.1pM-200nM with a detection limit of 0.033pM.
Collapse
Affiliation(s)
- Jianmin Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Pei Jing
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Shuyan Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China.
| |
Collapse
|
34
|
Zhang Y, Zhang L, Kong Q, Ge S, Yan M, Yu J. Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions. Anal Bioanal Chem 2016; 408:7181-91. [DOI: 10.1007/s00216-016-9718-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 02/02/2023]
|
35
|
Yun W, Cai D, Jiang J, Zhao P, Huang Y, Sang G. Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy. Biosens Bioelectron 2016; 80:187-193. [DOI: 10.1016/j.bios.2016.01.053] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
|
36
|
|
37
|
Label-free DNA Y junction for bisphenol A monitoring using exonuclease III-based signal protection strategy. Biosens Bioelectron 2016; 77:277-83. [DOI: 10.1016/j.bios.2015.09.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
|
38
|
Qin C, Gao Y, Wen W, Zhang X, Wang S. Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. Biosens Bioelectron 2015; 79:522-30. [PMID: 26749095 DOI: 10.1016/j.bios.2015.12.096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 11/25/2022]
Abstract
We developed a strip biosensors array based on aptamer-modified gold nanoparticles as receptors and combined the protein-aptamer binding reaction with the streptavidin-biotin interaction as well as the sandwich format. We found that a series of protein receptors obtained a distinct response pattern to each target protein. Three proteins have been well distinguished with the naked eyes and a portable reader without mutual interference, accompanying with lower limit of detection and wider linear range. A complete set of four elementary logic gates (AND, OR, INH, and NAND) and eight combinative logic gates (AND-OR; AND-INH; OR-INH; INH-NAND; AND-OR-INH; AND-INH-NAND; OR-INH-NAND; AND-OR-INH-NAND) are thoroughly realized using this array, which could eventually be applicable to the keypad-lock system with enhanced complexity in the near future. Moreover, this array shows excellent linear relationships, anti-interference capability, real human serum samples applicability, long-term storage stability and reproducibility. All indicate that this design has very good prospects for development.
Collapse
Affiliation(s)
- Chunyan Qin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ya Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
39
|
Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 2015; 78:530-537. [PMID: 26669705 DOI: 10.1016/j.bios.2015.11.099] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
User-friendly lateral flow (LF) strips have been extensively used for point-of-care (POC) self-diagnostics, but they have some limitations in their detection sensitivity and quantitative analysis because they only identify the high cut-off value of a biomarker by utilizing color changes that are detected with the naked eye. To resolve these problems associated with LF strips, we developed a novel surface-enhanced Raman scattering (SERS)-based LF assay for the quantitative analysis of a specific biomarker in the low concentration range. Herein, human immunodeficiency virus type 1 (HIV-1) DNA was chosen as the specific biomarker. Raman reporter-labeled gold nanoparticles (AuNPs) were employed as SERS nano tags for targeting and detecting the HIV-1 DNA marker, as opposed to using bare AuNPs in LF strips. It was possible to quantitatively analyze HIV-1 DNA with high sensitivity by monitoring the characteristic Raman peak intensity of the DNA-conjugated AuNPs. Under optimized conditions, the detection limit of our SERS-based lateral flow assay was 0.24 pg/mL, which was at least 1000 times more sensitive compared to colorimetric or fluorescent detection methods. These results demonstrate the potential feasibility of the proposed SERS-based lateral flow assay to quantitatively detect a broad range of genetic diseases with high sensitivity.
Collapse
Affiliation(s)
- Xiuli Fu
- Department of Bionano Technology, Hanyang University, Ansan 426-791, South Korea
| | - Ziyi Cheng
- Department of Bionano Technology, Hanyang University, Ansan 426-791, South Korea
| | - Jimin Yu
- Department of Bionano Technology, Hanyang University, Ansan 426-791, South Korea
| | - Priscilla Choo
- Department of Chemistry, Indiana University, Bloomington, IN 47405-102, USA
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
40
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
41
|
Liao Y, Fu Y, Wu Y, Huang R, Zhou X, Xing D. Ultrasensitive Detection of MicroRNA in Tumor Cells and Tissues via Continuous Assembly of DNA Probe. Biomacromolecules 2015; 16:3543-51. [DOI: 10.1021/acs.biomac.5b00959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuhui Liao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University; Guangzhou, China
| | - Yu Fu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University; Guangzhou, China
| | - Yunxia Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University; Guangzhou, China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University; Guangzhou, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University; Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University; Guangzhou, China
| |
Collapse
|
42
|
Paper-based scanometric assay for lead ion detection using DNAzyme. Anal Chim Acta 2015; 896:152-9. [DOI: 10.1016/j.aca.2015.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 11/18/2022]
|
43
|
Zhu G, Zhang CY. Functional nucleic acid-based sensors for heavy metal ion assays. Analyst 2015; 139:6326-42. [PMID: 25356810 DOI: 10.1039/c4an01069h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heavy metal contaminants such as lead ions (Pb(2+)), mercury ions (Hg(2+)) and silver ions (Ag(+)) can cause significant harm to humans and generate enduring bioaccumulation in ecological systems. Even though a variety of methods have been developed for Pb(2+), Hg(2+) and Ag(+) assays, most of them are usually laborious and time-consuming with poor sensitivity. Due to their unique advantages of excellent catalytic properties and high affinity for heavy metal ions, functional nucleic acids such as DNAzymes and aptamers show great promise in the development of novel sensors for heavy metal ion assays. In this review, we summarize the development of functional nucleic acid-based sensors for the detection of Pb(2+), Hg(2+) and Ag(+), and especially focus on two categories including the direct assay and the amplification-based assay. We highlight the emerging trends in the development of sensitive and selective sensors for heavy metal ion assays as well.
Collapse
Affiliation(s)
- Guichi Zhu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | | |
Collapse
|
44
|
Yao GH, Liang RP, Huang CF, Zhang L, Qiu JD. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Anal Chim Acta 2015; 871:28-34. [PMID: 25847158 DOI: 10.1016/j.aca.2015.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
Herein, we combine the advantage of aptamer technique with the amplifying effect of an enzyme-free signal-amplification and Au nanoparticles (NPs) to design a sensitive surface plasmon resonance (SPR) aptasensor for detecting small molecules. This detection system consists of aptamer, detection probe (c-DNA1) partially hybridizing to the aptamer strand, Au NPs-linked hairpin DNA (Au-H-DNA1), and thiolated hairpin DNA (H-DNA2) previously immobilized on SPR gold chip. In the absence of target, the H-DNA1 possessing hairpin structure cannot hybridize with H-DNA2 and thereby Au NPs will not be captured on the SPR gold chip surface. Upon addition of target, the detection probe c-DNA1 is forced to dissociate from the c-DNA1/aptamer duplex by the specific recognition of the target to its aptamer. The released c-DNA1 hybridizes with Au-H-DNA1 and opens the hairpin structure, which accelerate the hybridization between Au-H-DNA1 and H-DNA2, leading to the displacement of the c-DNA1 through a branch migration process. The released c-DNA1 then hybridizes with another Au-H-DNA1 probe, and the cycle starts anew, resulting in the continuous immobilization of Au-H-DNA1 probes on the SPR chip, generating a significant change of SPR signal due to the electronic coupling interaction between the localized surface plasma of the Au NPs and the surface plasma wave. With the use of adenosine as a proof-of-principle analyte, this sensing platform can detect adenosine specifically with a detection limit as low as 0.21 pM, providing a simple, sensitive and selective protocol for small target molecules detection.
Collapse
Affiliation(s)
- Gui-Hong Yao
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Ru-Ping Liang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Chun-Fang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Li Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jian-Ding Qiu
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China; Department of Chemical Engineering, Pingxiang College, Pingxiang 337055, PR China.
| |
Collapse
|
45
|
Chen J, Wen J, Yang G, Zhou S. A target-induced three-way G-quadruplex junction for 17β-estradiol monitoring with a naked-eye readout. Chem Commun (Camb) 2015; 51:12373-6. [DOI: 10.1039/c5cc04347f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A three-way G-quadruplex junction for 17β-estradiol monitoring has been constructed based on split G-quadruplex DNAzyme and toehold-mediated strand displacement.
Collapse
Affiliation(s)
- Junhua Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control
- Guangdong Institute of Eco-Environmental and Soil Sciences
- Guangzhou 510650
- China
| | - Junlin Wen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control
- Guangdong Institute of Eco-Environmental and Soil Sciences
- Guangzhou 510650
- China
| | - Guiqin Yang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control
- Guangdong Institute of Eco-Environmental and Soil Sciences
- Guangzhou 510650
- China
| | - Shungui Zhou
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control
- Guangdong Institute of Eco-Environmental and Soil Sciences
- Guangzhou 510650
- China
| |
Collapse
|
46
|
Guo Y, Liu J, Yang G, Sun X, Chen HY, Xu JJ. Multiple turnovers of DNAzyme for amplified detection of ATP and reduced thiol in cell homogenates. Chem Commun (Camb) 2014; 51:862-5. [PMID: 25429374 DOI: 10.1039/c4cc08428d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A conveniently amplified DNAzyme-based fluorescence strategy was designed for highly sensitive detection of ATP or reduced thiol based on the introduction of an ATP aptamer or a disulfide bond in the bioconjugates of magnetic nanoparticles (MNP) and polystyrene microsphere-DNAzyme complexes (PSM-DNAzyme).
Collapse
Affiliation(s)
- Yingshu Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | |
Collapse
|
47
|
Chen J, Zhou S, Wen J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with Visible Readout and an Automatic Reset Function. Angew Chem Int Ed Engl 2014; 54:446-50. [DOI: 10.1002/anie.201408334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/27/2014] [Indexed: 12/19/2022]
|
48
|
Chen J, Zhou S, Wen J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with Visible Readout and an Automatic Reset Function. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Liu J, Lai T, Mu K, Zhou Z. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit. Analyst 2014; 139:4874-8. [DOI: 10.1039/c4an00908h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Abstract
CONSPECTUS: While the field of DNA computing and molecular programming was engendered in large measure as a curiosity-driven exercise, it has taken on increasing importance for analytical applications. This is in large measure because of the modularity of DNA circuitry, which can serve as a programmable intermediate between inputs and outputs. These qualities may make nucleic acid circuits useful for making decisions relevant to diagnostic applications. This is especially true given that nucleic acid circuits can potentially directly interact with and be triggered by diagnostic nucleic acids and other analytes. Chemists are, by and large, unaware of many of these advances, and this Account provides a means of touching on what might seem to be an arcane field. We begin by explaining nucleic acid amplification reactions that can lead to signal amplification, such as catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR). In these circuits, a single-stranded input acts on kinetically trapped substrates via exposed toeholds and strand exchange reactions, refolding the substrates and allowing them to interact with one another. As multiple duplexes (CHA) or concatemers of increasing length (HCR) are generated, there are opportunities to couple these outputs to different analytical modalities, including transduction to fluorescent, electrochemical, and colorimetric signals. Because both amplification and transduction are at their root dependent on the programmability of Waston-Crick base pairing, nucleic acid circuits can be much more readily tuned and adapted to new applications than can many other biomolecular amplifiers. As an example, robust methods for real-time monitoring of isothermal amplification reactions have been developed recently. Beyond amplification, nucleic acid circuits can include logic gates and thresholding components that allow them to be used for analysis and decision making. Scalable and complex DNA circuits (seesaw gates) capable of carrying out operations such as taking square roots or implementing neural networks capable of learning have now been constructed. Into the future, we can expect that molecular circuitry will be designed to make decisions on the fly that reconfigure diagnostic devices or lead to new treatment options.
Collapse
Affiliation(s)
- Cheulhee Jung
- Institute for Cellular and
Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Institute for Cellular and
Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|