1
|
Wang J, Li H, Warr GG, Chen F, Atkin R. Nanostructure and Dynamics of Aprotic Ionic Liquids at Graphite Electrodes as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311353. [PMID: 38573945 DOI: 10.1002/smll.202311353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.
Collapse
Affiliation(s)
- Jianan Wang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Prakash K, Sathian SP. Temperature-dependent differential capacitance of an ionic liquid-graphene-based supercapacitor. Phys Chem Chem Phys 2024; 26:4657-4667. [PMID: 38251719 DOI: 10.1039/d3cp05039d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
One of the critical factors affecting the performance of supercapacitors is thermal management. The design of supercapacitors that operate across a broad temperature range and at high charge/discharge rates necessitates understanding the correlation of the molecular characteristics of the device (such as interfacial structure and inter-ionic and ion-electrode interactions) with its macroscopic properties. In this study, we use molecular dynamics (MD) simulations to investigate the influence of Joule heating on the structure and dynamics of the ionic liquid (IL)/graphite-based supercapacitors. The temperature-dependent electrical double layer (EDL) and differential capacitance-potential (CD-V) curves of two different ([Bmim][BF4] and [Bmim][PF6]) IL-graphene pairs were studied under various thermal gradients. For the [Bmim][BF4] system, the differential capacitance curves transition from 'U' to bell shape under an applied thermal gradient (∇T) in the range from 3.3 K nm-1 to 16.7 K nm-1. Whereas in [Bmim][PF6], we find a positive dependence of differential capacitance with ∇T with a U-shaped CD-V curve. We examine changes in the EDL structure and screening potential (ϕ(z)) as a function of ∇T and correlate them with the trends observed in the CD-V curve. The identified correlation between the interfacial charge density and differential capacitance with thermal gradient would be helpful for the molecular design of the IL-electrode interface in supercapacitors or other chemical engineering applications.
Collapse
Affiliation(s)
- Kiran Prakash
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Sarith P Sathian
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
3
|
Sitlapersad RS, Thornton AR, den Otter WK. A simple efficient algorithm for molecular simulations of constant potential electrodes. J Chem Phys 2024; 160:034107. [PMID: 38235800 DOI: 10.1063/5.0171502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Increasingly, society requires high power, high energy storage devices for applications ranging from electric vehicles to buffers on the electric grid. Supercapacitors are a promising contribution to meeting these demands, though there still remain unsolved practical problems. Molecular dynamics simulations can shed light on the relevant molecular level processes in electric double layer capacitors, but these simulations are computationally very demanding. Our focus here is on the algorithmic complexity of the constant potential method (CPM), which uses dedicated electrostatics solvers to maintain a fixed potential difference between two conducting electrodes. We show how any standard electrostatics solver-capable of calculating the energies and forces on all atoms-can be used to implement CPM with a minimum of coding. As an example, we compare our generalized implementation of CPM, based on invocations of the particle-particle-particle-mesh routine of the Large-scale Atomic/Molecular Massively Parallel Simulator, with a traditional implementation based on a dedicated re-implementation of Ewald summation. Both methods yield comparable results on four test systems, with the former achieving a substantial gain in speed and improved scalability. The step from dedicated electrostatic solvers to generic routines is made possible by noting that CPM's traditional narrow Gaussian point-spread of atomic charges on the electrodes effectively endows point-like atoms with chemical hardness, i.e., an intra-atomic energy quadratic in the charge.
Collapse
Affiliation(s)
- Ranisha S Sitlapersad
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Anthony R Thornton
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- Department of Fluid and Thermal Engineering and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Zheng Q, Goodwin ZAH, Gopalakrishnan V, Hoane AG, Han M, Zhang R, Hawthorne N, Batteas JD, Gewirth AA, Espinosa-Marzal RM. Water in the Electrical Double Layer of Ionic Liquids on Graphene. ACS NANO 2023; 17:9347-9360. [PMID: 37163519 DOI: 10.1021/acsnano.3c01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The performance of electrochemical devices using ionic liquids (ILs) as electrolytes can be impaired by water uptake. This work investigates the influence of water on the behavior of hydrophilic and hydrophobic ILs─with ethylsulfate and tris(perfluoroalkyl)trifluorophosphate or bis(trifluoromethyl sulfonyl)imide (TFSI) anions, respectively─on electrified graphene, a promising electrode material. The results show that water uptake slightly reduces the IL electrochemical stability and significantly influences graphene's potential of zero charge, which is justified by the extent of anion depletion from the surface. Experiments confirm the dominant contribution of graphene's quantum capacitance (CQ) to the total interfacial capacitance (Cint) near the PZC, as expected from theory. Combining theory and experiments reveals that the hydrophilic IL efficiently screens surface charge and exhibits the largest double layer capacitance (CIL ∼ 80 μF cm-2), so that CQ governs the charge stored. The hydrophobic ILs are less efficient in charge screening and thus exhibit a smaller capacitance (CIL ∼ 6-9 μF cm-2), which governs Cint already at small potentials. An increase in the total interfacial capacitance is observed at positive voltages for humid TFSI-ILs relative to dry ones, consistent with the presence of a satellite peak. Short-range surface forces reveal the change of the interfacial layering with potential and water uptake owing to reorientation of counterions, counterion binding, co-ion repulsion, and water enrichment. These results are consistent with the charge being mainly stored in a ∼2 nm-thick double layer, which implies that ILs behave as highly concentrated electrolytes. This knowledge will advance the design of IL-graphene-based electrochemical devices.
Collapse
Affiliation(s)
- Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Varun Gopalakrishnan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexis G Hoane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ruixian Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Ers H, Voroshylova IV, Pikma P, Ivaništšev VB. Double layer in ionic liquids: Temperature effect and bilayer model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Kim M, Park S, Chung TD. Heterogeneous electron transfer reorganization energy at the inner Helmholtz plane in a polybromide redox-active ionic liquid. Chem Sci 2022; 13:8821-8828. [PMID: 35975145 PMCID: PMC9350599 DOI: 10.1039/d2sc01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
In ionic liquids (ILs), the electric double layer (EDL) is where heterogeneous electron transfer (ET) occurs. Nevertheless, the relationship between the EDL structure and its kinetics has been rarely studied, especially for ET taking place in the inner Helmholtz plane (IHP). This is largely because of the lack of an appropriate model system for experiments. In this work, we determined the reorganization energy (λ) of Br2 reduction in a redox-active IL 1-ethyl-1-methylpyrrolidinium polybromide (MEPBr2n+1) based on the Marcus-Hush-Chidsey model. Exceptionally fast mass transport of Br2 in MEPBr2n+1 allows voltammograms to be obtained in which the current plateau is regulated by electron-transfer kinetics. This enables investigation of the microscopic environment in the IHP of the IL affecting electrocatalytic reactions through reorganization energy. As a demonstration, TiO2-modified Pt was employed to show pH-dependent reorganization energy, which suggests the switch of major ions at the IHP as a function of surface charges of electrodes.
Collapse
Affiliation(s)
- Moonjoo Kim
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Sangmee Park
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| |
Collapse
|
7
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
8
|
Zhao J, Gorbatovski G, Oll O, Anderson E, Lust E. Influence of water on the electrochemical characteristics and nanostructure of Bi(hkl)│Ionic liquid interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang S, Baba H, Sakka T, Nishi N. Interfacial Viscosity and Ionic Reorientation Probed Using Electrochemical Surface Plasmon Resonance at the Gold Electrode Interface of Ionic Liquids. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
|
11
|
Wang Y, Tian G. The Influence of Anion Structure on the Ionic Liquids/Au (100) Interface by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14059-14071. [PMID: 34797668 DOI: 10.1021/acs.langmuir.1c02129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microstructure of electrical double layers (EDLs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-butyl-3-methylimidazoliumhexafluorophosphate ([Bmim]PF6), and 1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide ([Bmim]TFSI) were studied by quantum chemical calculation and molecular dynamics simulation. For the set of ionic liquids investigated here, we found some interesting universal laws due to differences geometry and electronic structure of anions. We show that the morphology of the three anions on the electrode surface is different due to the different geometric structure. The plane formed by the bottom three atoms of the symmetrically tetrahedral BF4- and the bottom atom of the symmetrically octahedral PF6- face the electrode whether the electrode is charged or not, while the conformation of twisted V-shaped TFSI- changes with different surface charges on the electrode. Meanwhile, we also demonstrate that the energy of highest occupied molecular orbital (EHOMO), the energy of lowest unoccupied molecular orbital (ELUMO) and their energies gap (ΔE) are very interesting due to different electronic structure of anions. Specially, the EHOMO, ELUMO, and ΔE were related to the electronegativity of the central atom in the case of the same symmetry on the neutral surface. The more electronegative the central atom is, the lower EHOMO, ELUMO and higher ΔE values are. However, on the charged surface, the interaction between anion and electrode is opposite to ΔE. Moreover, different arrangements of anion and cation are related to the interaction between particles. The stronger interaction leads a double-row structure and the weak interaction lead worm-like and island patterns on Au (100) surface. In general, we observed that the higher ΔE cause stronger interaction, which lead to different patterns on Au (100) surface. Meanwhile, we also confirmed that the stronger interaction between particles and electrode lead to the thinner effective EDL and a large differential capacitance value. These results provide a new perspective for double-layer structure in atomic and molecular level. This is helpful to deepen the understanding of the interface phenomena and characteristics of [Bmim]BF4, [Bmim]PF6, and [Bmim]TFSI on Au (100) system and provide theoretical basis for the application of these kind of systems.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Yunnan, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- Yunnan Open University, Kunming, 650223, China
| | - Guocai Tian
- State Key Laboratory of Complex Non-ferrous Metal Resource Clean Utilization, Kunming University of Science and Technology, Yunnan, Kunming 650093, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| |
Collapse
|
12
|
Cruz C, Ciach A. Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid-Solvent Mixtures. Molecules 2021; 26:3668. [PMID: 34208542 PMCID: PMC8234089 DOI: 10.3390/molecules26123668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in studies of ionic liquids (IL) and ionic liquid-solvent mixtures are reviewed. Selected experimental, simulation, and theoretical results for electrochemical, thermodynamical, and structural properties of IL and IL-solvent mixtures are described. Special attention is paid to phenomena that are not predicted by the classical theories of the electrical double layer or disagree strongly with these theories. We focus on structural properties, especially on distribution of ions near electrodes, on electrical double layer capacitance, on effects of confinement, including decay length of a dissjoining pressure between confinig plates, and on demixing phase transition. In particular, effects of the demixing phase transition on electrochemical properties of ionic liquid-solvent mixtures for different degrees of confinement are presented.
Collapse
Affiliation(s)
| | - Alina Ciach
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
13
|
Gu C, Yin L, Li S, Zhang B, Liu X, Yan T. Differential capacitance of ionic liquid and mixture with organic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Al-Zubaidi A, Asai N, Ishii Y, Kawasaki S. The effect of diameter size of single-walled carbon nanotubes on their high-temperature energy storage behaviour in ionic liquid-based electric double-layer capacitors. RSC Adv 2020; 10:41209-41216. [PMID: 35519187 PMCID: PMC9057770 DOI: 10.1039/d0ra08579k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
We investigated the effect of the diameter size of single-walled carbon nanotubes (SWCNTs), on their high-temperature energy storage behavior in an electric double layer capacitor (EDLC) using the ionic liquid triethyl(2-methoxyethyl) phosphonium bis(trifluoromethylsulfonyl)imide (P222(2O1)-TFSI). We used four SWCNT samples with diameter sizes ranging from 0.8 to 5 nm, and evaluated their electrochemical charge storage behavior through galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). We found that for the SWCNTs with small average diameter of 1 nm, the value of the electrode capacitance measured at a current density of 5 mA g−1 increased from 15.8 at room temperature to 27.5 F g−1 at 150 °C, and the value measured at a current density of 80 mA g−1 increased from 14.0 at room temperature to 22.1 F g−1 at 150 °C. The larger diameter samples on the other hand did not show any significant change in their capacitance with temperature. We calculated the size of the interstitial tube spaces from the Raman spectra of the samples, and used density functional theory (DFT) calculations to estimate the sizes of the cation and anion of the electrolyte. The obtained results suggest that the temperature-induced changes in the electrolyte properties improved the ion accessibility into the otherwise constrained space inside the small diameter SWCNTs, while the spaces inside the larger SWCNTs already provided easily accessible storage sites hence good performance at room temperature, making the increase in temperature of little to no effect on the charge storage performance in such SWCNTs. Temperature-induced changes in electrolyte improved ion accessibility inside small SWCNTs, while spaces inside larger SWCNTs provided accessible storage sites and good performance at RT, rendering temperature of little effect on their charge storage performance.![]()
Collapse
Affiliation(s)
- Ayar Al-Zubaidi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Nanami Asai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Yosuke Ishii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shinji Kawasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
15
|
Al-Masri D, Yunis R, Hollenkamp AF, Doherty CM, Pringle JM. The influence of alkyl chain branching on the properties of pyrrolidinium-based ionic electrolytes. Phys Chem Chem Phys 2020; 22:18102-18113. [PMID: 32760990 DOI: 10.1039/d0cp03046e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids and plastic crystals based on pyrrolidinium cations are recognised for their advantageous properties such as high conductivity, low viscosity, and good electrochemical and thermal stability. The pyrrolidinium ring can be substituted with symmetric or asymmetric alkyl chain substituents to form a range of ionic liquids or plastic crystals depending on the anion. However, reports into the use of branched alkyl chains and how this influences the material properties are limited. Here, we report the synthesis of six salts - ionic liquids and organic ionic plastic crystals - where the typically used linear propyl chain substituent is replaced by the branched alternative, isopropyl, to form the cation [C(i3)mpyr]+, in combination with six different anions: dicyanamide, (fluorosulfonyl)(trifluoromethanesulfonyl)imide, bis(trifluoromethanesulfonyl)imide, bis(fluorosulfonyl)imide, tetrafluoroborate and hexafluorophosphate. The thermal and transport properties of these salts are compared to those of the analogous N-propyl-N-methylpyrrolidinium and N,N-diethylpyrrolidinium-based salts. Finally, a high lithium salt content ionic liquid electrolyte based on the bis(fluorosulfonyl)imide salt was developed. This electrolyte showed high coulombic efficiencies of lithium plating/stripping and high lithium ion transference number, making it a strong candidate for use in lithium metal batteries.
Collapse
Affiliation(s)
- Danah Al-Masri
- Institute for Frontier Materials, Deakin University, Melbourne, Victoria 3125, Australia.
| | - Ruhamah Yunis
- Institute for Frontier Materials, Deakin University, Melbourne, Victoria 3125, Australia.
| | - Anthony F Hollenkamp
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Energy, Clayton, 3168, VIC, Australia
| | - Cara M Doherty
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing, Clayton, 3168, VIC, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, Melbourne, Victoria 3125, Australia.
| |
Collapse
|
16
|
Kumar R, Mahalik JP, Silmore KS, Wojnarowska Z, Erwin A, Ankner JF, Sokolov AP, Sumpter BG, Bocharova V. Capacitance of thin films containing polymerized ionic liquids. SCIENCE ADVANCES 2020; 6:eaba7952. [PMID: 32637617 PMCID: PMC7319767 DOI: 10.1126/sciadv.aba7952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Electrode-polymer interfaces dictate many of the properties of thin films such as capacitance, the electric field experienced by polymers, and charge transport. However, structure and dynamics of charged polymers near electrodes remain poorly understood, especially in the high concentration limit representative of the melts. To develop an understanding of electric field-induced transformations of electrode-polymer interfaces, we have studied electrified interfaces of an imidazolium-based polymerized ionic liquid (PolyIL) using combinations of broadband dielectric spectroscopy, specular neutron reflectivity, and simulations based on the Rayleigh's dissipation function formalism. Overall, we obtained the camel-shaped dependence of the capacitance on applied voltage, which originated from the responses of an adsorbed polymer layer to applied voltages. This work provides additional insights related to the effects of molecular weight in affecting structure and properties of electrode-polymer interfaces, which are essential for designing next-generation energy storage and harvesting devices.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Jyoti P. Mahalik
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - Kevin S. Silmore
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zaneta Wojnarowska
- Institute of Physics,University of Silesia,SMCEBI, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Andrew Erwin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Materials Science and Engineering, Georgia Tech, Atlanta, GA 30332, USA
| | - John F. Ankner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
17
|
Islam MS, Lamperski S, Islam MM, Henderson D, Bhuiyan LB. Temperature dependence of differential capacitance in the electric double layer.Symmetric valency 1:1 electrolytes. J Chem Phys 2020; 152:204702. [PMID: 32486666 DOI: 10.1063/5.0005966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The differential capacitance of an electric double layer formed by an aqueous solution of KNO3 on a glassy carbon electrode is measured by impedance analysis at constant frequency. Results are obtained at electrolyte concentrations of 0.1 mol/dm3, 0.5 mol/dm3, and 1.0 mol/dm3, and at a series of temperatures, viz., 288 K, 298 K, 308 K, 318 K, and 328 K. The differential capacitance envelopes reveal a rich, complex pattern of maxima, minima, and local minima, whose magnitude and position change with a change in solution concentration. At the two lower concentrations, the temperature dependence of the capacitance, for example, at zero electrode potential, shows an alternating positive-negative behavior, while at the highest concentration of 1.0 mol/dm3, the slope of the differential capacitance-electrode potential curve is always positive. The experimental results are supplemented by a numerical grand canonical Monte Carlo simulation study of a restricted primitive model double layer but with an off-center cationic charge achieved by displacing the charge center from the ion sphere center toward its surface. The simulations, performed at the electrolyte concentration of 1.0 mol/dm3 and constant cation charge center displacement, and at varying electrode potentials and temperatures, show, in general, a negative temperature dependence of the differential capacitance. However, this temperature dependence can also be positive for a negative electrode charge and for a sufficiently large gradient of the cation charge center displacement with temperature. This feature is seen to be associated with an increase in the entropy of formation of the double layer.
Collapse
Affiliation(s)
- Md Siful Islam
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Stanisław Lamperski
- Department of Physical Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Md Mominul Islam
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Douglas Henderson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, USA
| | - Lutful Bari Bhuiyan
- Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, 17 University Avenue, Suite 1701, San Juan, Puerto Rico 00925-2537, USA
| |
Collapse
|
18
|
Zhang D, Nagayama G. Effective Wetting Area Based on Electrochemical Impedance Analysis: Hydrophilic Structured Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16508-16513. [PMID: 31756299 DOI: 10.1021/acs.langmuir.9b03349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wettability on nano/microstructured surfaces is gaining remarkable interest for a wide range of applications; however, little is known about the effective wetting area of the solid-liquid interface. In this study, the effect of wettability on electrochemical impedance was experimentally investigated to obtain a better understanding of the effective wetting area. We demonstrate that the water contact angle decreases significantly at hydrophilic surfaces with denser nano/microstructures. Based on the analysis of equivalent electrical circuits, we found that the electrochemical impedance decreases with reducing the water contact angle, showing a dependence on the effective wetting area, i.e., the real solid-liquid contact area. Also, the charge transfer resistance at low frequency was found to be the dominant parameter to estimate the effective wetting area at the solid-liquid interface.
Collapse
Affiliation(s)
- Dejian Zhang
- Graduate School of Engineering , Kyushu Institute of Technology , Sensui 1-1 , Tobata, Kitakyushu , Fukuoka 804-8550 , Japan
| | - Gyoko Nagayama
- Department of Mechanical Engineering , Kyushu Institute of Technology , Sensui 1-1 , Tobata, Kitakyushu , Fukuoka 804-8550 , Japan
| |
Collapse
|
19
|
Greco F, Shin S, Williams FJ, Heller BSJ, Maier F, Steinrück H. Potential Screening at Electrode/Ionic Liquid Interfaces from In Situ X-ray Photoelectron Spectroscopy. ChemistryOpen 2019; 8:1365-1368. [PMID: 31844602 PMCID: PMC6892450 DOI: 10.1002/open.201900211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/12/2022] Open
Abstract
A new approach to investigate potential screening at the interface of ionic liquids (ILs) and charged electrodes in a two-electrode electrochemical cell by in situ X-ray photoelectron spectroscopy has been introduced. Using identical electrodes, we deduce the potential screening at the working and the counter electrodes as a function of applied voltage from the potential change of the bulk IL, as derived from corresponding core level binding energy shifts for different IL/electrode combinations. For imidazolium-based ILs and Pt electrodes, we find a significantly larger potential screening at the anode than at the cathode, which we attribute to strong attractive interactions between the imidazolium cation and Pt. In the absence of specific ion/electrode interactions, asymmetric potential screening only occurs for ILs with different cation and anion sizes as demonstrated for an imidazolium chloride IL and Au electrodes, which we assign to the different thicknesses of the electrical double layers. Our results imply that potential screening in ILs is mainly established by a single layer of counterions at the electrode.
Collapse
Affiliation(s)
- Francesco Greco
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Sunghwan Shin
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Federico J. Williams
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE-CONICETUniversidad de Buenos Aires, Ciudad UniversitariaPabellón 2Buenos AiresC1428EHAArgentina
| | - Bettina S. J. Heller
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Hans‐Peter Steinrück
- Lehrstuhl für Physikalische Chemie 2Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
20
|
|
21
|
Electric double layer structure and capacitance of imidazolium-based ionic liquids with FSI− and Tf− anions at graphite electrode by molecular dynamic simulations. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Voroshylova IV, Lembinen M, Ers H, Mišin M, Koverga VA, Pereira CM, Ivaništšev VB, Cordeiro MND. On the role of the surface charge plane position at Au(hkl)–BMImPF6 interfaces. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Raberg JH, Vatamanu J, Harris SJ, van Oversteeg CHM, Ramos A, Borodin O, Cuk T. Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations. J Phys Chem Lett 2019; 10:3381-3389. [PMID: 31141378 DOI: 10.1021/acs.jpclett.9b00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4- ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.
Collapse
Affiliation(s)
- Jonathan H Raberg
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Jenel Vatamanu
- Electrochemistry Branch, Sensor and Electron Devices Directorate, Power and Energy Division , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
- Joint Center for Energy Storage Research , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Stephen J Harris
- Materials Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | - Axel Ramos
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Oleg Borodin
- Electrochemistry Branch, Sensor and Electron Devices Directorate, Power and Energy Division , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
- Joint Center for Energy Storage Research , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Tanja Cuk
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
- Chemical Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
24
|
Klein JM, Panichi E, Gurkan B. Potential dependent capacitance of [EMIM][TFSI], [N1114][TFSI] and [PYR13][TFSI] ionic liquids on glassy carbon. Phys Chem Chem Phys 2019; 21:3712-3720. [DOI: 10.1039/c8cp04631j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Potential dependent capacitance of [N1114][TFSI] suggests the crowding mechanism at the wings of the potential range and overscreening near PZC.
Collapse
Affiliation(s)
- Jeffrey M. Klein
- Department of Chemical and Biomolecular Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Evio Panichi
- Department of Chemical and Biomolecular Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering
- Case Western Reserve University
- Cleveland
- USA
| |
Collapse
|
25
|
Chen M, Goodwin ZA, Feng G, Kornyshev AA. On the temperature dependence of the double layer capacitance of ionic liquids. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Nishi N, Ikeda Y, Sakka T. Electrochemical surface plasmon resonance as a probe of redox reactions at the ionic liquid|gold interface. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Zhang Q, Liu X, Yin L, Chen P, Wang Y, Yan T. Electrochemical impedance spectroscopy on the capacitance of ionic liquid–acetonitrile electrolytes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Go D, Opitz M, Lott P, Rahimi K, Stollenwerk J, Thomas H, Möller M, Roling B, Kuehne AJC. Electrochemical characterization of laser-carbonized polyacrylonitrile nanofiber nonwovens. J Appl Polym Sci 2018. [DOI: 10.1002/app.46398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dennis Go
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Martin Opitz
- Department of Chemistry; University of Marburg, Hans-Meerwein-Straße 4; Marburg 35032 Germany
| | - Philipp Lott
- Fraunhofer Institute for Laser Technology, Steinbachstraße 15; Aachen 52074 Germany
| | - Khosrow Rahimi
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Jochen Stollenwerk
- Fraunhofer Institute for Laser Technology, Steinbachstraße 15; Aachen 52074 Germany
| | - Helga Thomas
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| | - Bernhard Roling
- Department of Chemistry; University of Marburg, Hans-Meerwein-Straße 4; Marburg 35032 Germany
| | - Alexander J. C. Kuehne
- DWI-Leibniz Institute for Interactive Materials; RWTH Aachen University, Forckenbeckstraße 50; Aachen 52076 Germany
| |
Collapse
|
29
|
Lucio AJ, Shaw SK. Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate-polycrystalline gold interface. Anal Bioanal Chem 2018; 410:4575-4586. [PMID: 29492622 DOI: 10.1007/s00216-018-0962-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/24/2022]
Abstract
We report potential-dependent capacitance curves over a 2-V potential range for the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate (Emim FAP)-polycrystalline gold interface, and examine the effect of potential scan direction on results. We find very small levels of capacitive hysteresis in the Emim FAP-polycrystalline Au electrochemical system, where capacitance curves show minor dependence on the potential scan direction employed. This is a considerably different response than that reported for the Emim FAP-Au(111) interface where significant hysteresis is observed based on the potential scan direction (Drüschler et al. in J Phys Chem C 115 (14):6802-6808, 2011). Hysteresis effects have previously been suggested to be a general feature of an ionic liquid (IL) at electrified interfaces due to slow interfacial processes and has been demonstrated for numerous electrochemical systems. We provide new evidence that the experimental procedure used to acquire capacitance data and data workup could also have implications on capacitance-potential relationships in ILs. This work serves to progress our understanding of the nature of capacitive hysteresis at the IL-electrode interface. Graphical abstract Subtle changes in experimental methods can lead to significantly different capacitance measurements in ionic liquids. Which is the best approach?
Collapse
Affiliation(s)
- Anthony J Lucio
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Scott K Shaw
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
30
|
Lu H, Nordholm S, Woodward CE, Forsman J. Ionic liquid interface at an electrode: simulations of electrochemical properties using an asymmetric restricted primitive model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:074004. [PMID: 29300174 DOI: 10.1088/1361-648x/aaa524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use Monte Carlo simulations of a coarse-grained model to investigate structure and electrochemical behaviours at an electrode immersed in room temperature ionic liquids (RTILs). The simple RTIL model, which we denote the asymmetric restricted primitive model (ARPM), is composed of monovalent hard-sphere ions, all of the same size, in which the charge is asymmetrically placed. Not only the hard-sphere size (d), but also the charge displacement (b), is identical for all species, i.e. the monovalent RTIL ions are fully described by only two parameters (d, b). In earlier work, it was demonstrated that the ARPM can capture typical static RTIL properties in bulk solutions with remarkable accuracy. Here, we investigate its behaviour at an electrode surface. The electrode is assumed to be a perfect conductor and image charge methods are utilized to handle polarization effects. We find that the ARPM of the ionic liquid reproduces typical (static) electrochemical properties of RTILs. Our model predicts a declining differential capacitance with increasing temperature, which is expected from simple physical arguments. We also compare our ARPM, with the corresponding RPM description, at an elevated temperature (1000 K). We conclude that, even though ion pairing occurs in the ARPM system, reducing the concentration of 'free' ions, it is still better able to screen charge than a corresponding RPM melt. Finally, we evaluate the option to coarse-grain the model even further, by treating the fraction of the ions that form ion pairs implicitly, only through the contribution to the dielectric constant of the corresponding dipolar (ion pair) fluid. We conclude that this primitive representation of ion pairing is not able to reproduce the structures and differential capacitances of the system with explicit ion pairs. The main problem seems to be due to a limited dielectric screening in a layer near the electrode surface, resulting from a combination of orientational restrictions and a depleted dipole density.
Collapse
Affiliation(s)
- Hongduo Lu
- Theoretical Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
31
|
García Rey N, Dlott DD. Effects of water on low-overpotential CO 2 reduction in ionic liquid studied by sum-frequency generation spectroscopy. Phys Chem Chem Phys 2018; 19:10491-10501. [PMID: 28383582 DOI: 10.1039/c7cp00118e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We used vibrational sum-frequency generation spectroscopy (SFG) to investigate low-overpotential CO2 reduction on a polycrystalline Ag electrode using room temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium tetrafluorborate (EMIM-BF4) electrolyte mixtures with 0.3 mol%, 45 mol% and 77 mol% water. Adding water dramatically increases CO2 reduction efficiency up to 87.5 mol%. We found added water reduces the (negative) threshold potential for CO2 reduction from -1.33 V to -0.9 V. Added water also moved the potentials of the nonresonant (NR) SFG minima and caused the CO Stark shift to increase in concert with the reduction threshold. In previous work (N. García Rey and D. D. Dlott, J. Phys. Chem. C, 2015, 119, 20892-20899), with nearly-dry RTIL electrolyte (0.3 mol% water), we concluded a potential-driven structural transition of RTIL in the double layer controlled CO2 reduction. At lower water concentrations, where CO2 reduction was less efficient, CO product appeared primarily on Ag atop sites. At higher water concentrations where CO2 reduction efficiency was greater, adsorbed CO was observed on multiply-bonded sites, which are likely more efficient catalytic sites.
Collapse
Affiliation(s)
- Natalia García Rey
- School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Il 61801, USA.
| | | |
Collapse
|
32
|
Reichert P, Kjær KS, Brandt van Driel T, Mars J, Ochsmann JW, Pontoni D, Deutsch M, Nielsen MM, Mezger M. Molecular scale structure and dynamics at an ionic liquid/electrode interface. Faraday Discuss 2018; 206:141-157. [DOI: 10.1039/c7fd00171a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural arrangement and dynamics of ions near the IL/electrode interface during charging and discharging was studied by a combination of time resolved X-ray reflectivity and impedance spectroscopy.
Collapse
Affiliation(s)
- Peter Reichert
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Institute of Physics and MAINZ Graduate School
- Johannes Gutenberg University Mainz
| | - Kasper Skov Kjær
- Centre for Molecular Movies
- Department of Physics
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - Tim Brandt van Driel
- Centre for Molecular Movies
- Department of Physics
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - Julian Mars
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Institute of Physics and MAINZ Graduate School
- Johannes Gutenberg University Mainz
| | | | - Diego Pontoni
- ESRF – The European Synchrotron and Partnership for Soft Condensed Matter (PSCM)
- 38043 Grenoble
- France
| | - Moshe Deutsch
- Department of Physics
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Martin Meedom Nielsen
- Centre for Molecular Movies
- Department of Physics
- Technical University of Denmark
- DK-2800 Lyngby
- Denmark
| | - Markus Mezger
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Institute of Physics and MAINZ Graduate School
- Johannes Gutenberg University Mainz
| |
Collapse
|
33
|
Pajkossy T, Müller C, Jacob T. The metal–ionic liquid interface as characterized by impedance spectroscopy and in situ scanning tunneling microscopy. Phys Chem Chem Phys 2018; 20:21241-21250. [DOI: 10.1039/c8cp02074d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrochemical measurements including impedance spectroscopy and in situ scanning tunneling microscopy were performed to study the interface between solid electrodes and ionic liquids. We could reveal that the double layer rearrangement processes are not instantaneous, but that the ions can form ordered clusters at the interface.
Collapse
Affiliation(s)
- Tamás Pajkossy
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - Claus Müller
- Institute of Electrochemistry
- Ulm University
- Ulm 89081
- Germany
| | - Timo Jacob
- Institute of Electrochemistry
- Ulm University
- Ulm 89081
- Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage
| |
Collapse
|
34
|
NISHI N, KOJIMA Y, KATAKURA S, SAKKA T. Static Capacitance at the Electrochemical Liquid-liquid Interface Between Ionic Liquids and Eutectic Ga-In Alloy Measured Using the Pendant Drop Method. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.17-00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Naoya NISHI
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Yasuro KOJIMA
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Seiji KATAKURA
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Tetsuo SAKKA
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
35
|
Wippermann K, Giffin J, Kuhri S, Lehnert W, Korte C. The influence of water content in a proton-conducting ionic liquid on the double layer properties of the Pt/PIL interface. Phys Chem Chem Phys 2017; 19:24706-24723. [PMID: 28861561 DOI: 10.1039/c7cp04003b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence of the water content of 2-sulfoethylmethylammonium trifluoromethanesulfonate [2-Sema][TfO] on the double layer properties of the interface of platinum and the proton conducting ionic liquid (PIL) is investigated by means of impedance spectroscopy and cyclic voltammetry. By fitting the impedance spectra as complex capacitances, up to four differential double layer capacitances and corresponding time constants are obtained, depending on the potential (U = 0-1.6 V/RHE), water content (0.7-6.1 wt%) and temperature (T = 70-110 °C). Within the whole potential range investigated, a high frequency capacitance, C1, and a low frequency capacitance, C2, can be calculated. In the potential region of hydrogen underpotential deposition (HUPD), C1 can be separated into two parts, C1a and C1b. Whereas the high frequency capacitive processes can mainly be attributed to ion transport processes in the double layer, the low frequency process is ascribed to changes in the interfacial layer, including ad-/desorption and Faradaic processes. Alternative interpretations regarding the reorientation of ions, reconstruction of the metal surface and partial electron transfer between anions and Pt are considered.
Collapse
Affiliation(s)
- K Wippermann
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research - Fuel Cells (IEK-3), 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
36
|
Rey NG, Dlott DD. Studies of electrochemical interfaces by broadband sum frequency generation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Ionic Liquids for Supercapacitor Applications. Top Curr Chem (Cham) 2017; 375:63. [PMID: 28560657 DOI: 10.1007/s41061-017-0150-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Supercapacitors are electrochemical energy storage devices in which the charge is accumulated through the adsorption of ions from an electrolyte on the surface of the electrode. Because of their large ionic concentrations, ionic liquids have widely been investigated for such applications. The main properties that have to be optimized are the electrochemical window, the electrical conductivity, and the interfacial capacitances. Ionic liquids allow a significant improvement of the former, but they suffer from their high viscosity. In this review, I will discuss the advantages and the inconvenience of using ionic liquids in supercapacitors. Some innovative approaches using mixtures of ionic liquids or redox-active ions will also be critically addressed.
Collapse
|
38
|
Maier F, Niedermaier I, Steinrück HP. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface. J Chem Phys 2017; 146:170901. [DOI: 10.1063/1.4982355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Maier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen,
Germany
| | - I. Niedermaier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen,
Germany
| | - H.-P. Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen,
Germany
| |
Collapse
|
39
|
Vatamanu J, Bedrov D, Borodin O. On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1279287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jenel Vatamanu
- Materials Science & Engineering Department, University of Utah, Salt Lake City, UT, USA
- Electrochemistry Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, MD, USA
| | - Dmitry Bedrov
- Materials Science & Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Oleg Borodin
- Electrochemistry Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
40
|
Martínez-Romero N, Aguilar-Sánchez R, Fu YC, Homberger M, Simon U. Electrochemical stability and electron transfer across 4-methyl-4′-(n-mercaptoalkyl) biphenyl monolayers on Au(100)-(1×1) electrodes in 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquid. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Nishi N, Yasui S, Hashimoto A, Sakka T. Anion dependence of camel-shape capacitance at the interface between mercury and ionic liquids studied using pendant drop method. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Wang YL, Golets M, Li B, Sarman S, Laaksonen A. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4976-4987. [PMID: 28099800 DOI: 10.1021/acsami.6b14429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P6,6,6,14][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P6,6,6,14] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P6,6,6,14] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P6,6,6,14][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P6,6,6,14] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm2), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P6,6,6,14] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Mikhail Golets
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Bin Li
- Theoretical Chemistry, Chemical Center, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sten Sarman
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Marchante E, Maglione MS, Crivillers N, Rovira C, Mas-Torrent M. A four-state capacitance molecular switch based on a redox active tetrathiafulvalene self-assembled monolayer. RSC Adv 2017. [DOI: 10.1039/c6ra27011e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A tetrathiafulvalene self-assembled monolayer has been successfully exploited as a 4-state electrochemical switch using the capacitance as output signal.
Collapse
Affiliation(s)
- E. Marchante
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - M. S. Maglione
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - N. Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - C. Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| | - M. Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
- 08193 Bellaterra
- Spain
| |
Collapse
|
44
|
Vatamanu J, Vatamanu M, Borodin O, Bedrov D. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:464002. [PMID: 27623976 DOI: 10.1088/0953-8984/28/46/464002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structural properties of electrolytes consisting of solutions of ionic liquids in a polar solvent at charged electrode surfaces are investigated using classical atomistic simulations. The studied electrolytes consisted of tetraethylammonium tetrafluoroborate (NEt4-BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate (c2mim-BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate (c8mim-BF4) salts dissolved in acetonitrile solvent. We discuss the influence of electrolyte concentration, chemical structure of the ionic salt, temperature, conducting versus semiconducting nature of the electrode, electrode geometry and surface roughness on the electric double layer structure and capacitance and compare these properties with those obtained for pure room temperature ionic liquids. We show that electrolytes consisting of solutions of ions can behave quite differently from pure ionic liquid electrolytes.
Collapse
Affiliation(s)
- Jenel Vatamanu
- University of Utah, MSE Department, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
45
|
Rietzler F, May B, Steinrück HP, Maier F. Switching adsorption and growth behavior of ultrathin [C 2C 1Im][OTf] films on Au(111) by Pd deposition. Phys Chem Chem Phys 2016; 18:25143-25150. [PMID: 27711556 DOI: 10.1039/c6cp04938a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining in vacuo deposition of ultrathin ionic liquid (UTIL) films with angle-resolved X-ray photoelectron spectroscopy (ARXPS), we demonstrate that by deposition of submonolayer amounts of Pd onto Au(111) the initial growth mode of the ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([C2C1Im][OTf]) can be switched from three-dimensional (3D) to two-dimensional (2D) growth, that is, from non-wetting to wetting. On clean Au(111), pronounced 3D growth occurs on top of an initially formed 2D wetting layer with cations and anions next to each other in a checkerboard arrangement. After pre- or postdeposition of only 0.7 ML Pd, two-dimensional layer-by-layer growth is found, which is attributed to strong attractive interactions between [C2C1Im][OTf] and surface Pd. For Pd post deposition onto the IL, the ARXPS data revealed particularly strong interactions between the dialkylimidazolium cation and Pd atoms, which considerably reduce the regular surface alloying of Pd with the Au substrate stabilizing Pd at the metal surface. In the context of heterogeneous catalysis using the SCILL (solid catalyst coated with ionic liquid layer) concept, these results directly provide a possible explanation on the molecular level for the beneficial influence of the IL layer in case of heterogeneous metal alloy catalysts.
Collapse
Affiliation(s)
- F Rietzler
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - B May
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - H-P Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| | - F Maier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
46
|
Anaredy RS, Shaw SK. Long-Range Ordering of Ionic Liquid Fluid Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5147-54. [PMID: 27138261 DOI: 10.1021/acs.langmuir.6b00304] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the transformation of ionic liquid films from isotropic bulk to a fluid-ordered state over micrometer length scales. Data from infrared and nonlinear spectroscopy measurements show clear transitions that, for varying ionic liquids, occur over time frames of 10 min to 2 h. These maturation times depend linearly on the chosen ionic liquids' bulk viscosities. Interestingly, the ionic liquids do not form solids upon ordering but do exhibit strong preferential alignments of molecules that persist throughout the fluid films' thicknesses. Our measurements characterize this ordering process and show that it is largely insensitive to substrate surface chemistry or small amounts of absorbed water. Additional experiments show the transition is observed across several of the most common ionic liquid cations and that the process is completely reversible. The driving force for this organization is attributed to electrostatic and steric forces combined with a slow shearing of the viscous ionic liquid. These interactions work together to slowly bring the molecules within the film to a preferred, global orientation. The physical length and time scales of this transformation are unexpected and intriguing and invite additional studies to develop an understanding and control of ionic liquid materials' behavior, particularly near surfaces, to benefit their uses in lubrication, capacitive energy storage, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Radhika S Anaredy
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Scott K Shaw
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
47
|
Theoretical Studies on the Adsorption of 1-Butyl-3-methyl-imidazolium-hexafluorophosphate (BMI/PF $$_6$$ 6 ) on Au(100) Surfaces. Top Catal 2016. [DOI: 10.1007/s11244-016-0552-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
In situ scanning tunneling microscopy (STM), atomic force microscopy (AFM) and quartz crystal microbalance (EQCM) studies of the electrochemical deposition of tantalum in two different ionic liquids with the 1-butyl-1-methylpyrrolidinium cation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.07.178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe microscopy and impedance study. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Buchner F, Forster-Tonigold K, Bozorgchenani M, Gross A, Behm RJ. Interaction of a Self-Assembled Ionic Liquid Layer with Graphite(0001): A Combined Experimental and Theoretical Study. J Phys Chem Lett 2016; 7:226-233. [PMID: 26713562 DOI: 10.1021/acs.jpclett.5b02449] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interaction between (sub)monolayers of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide [BMP](+)[TFSA](-) and graphite(0001), which serves as a model for the anode|electolyte interface in Li-ion batteries, was investigated under ultrahigh vacuum conditions in a combined experimental and theoretical approach. High-resolution scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and dispersion-corrected density functional theory (DFT-D) calculations were employed. After vapor deposition at 300 K, XPS indicates molecular adsorbates with a 1:1 ratio of cations/anions. Cool down to ∼100 K leads to the formation of an ordered (2D) crystalline phase, which coexists with a mobile (2D) liquid. DFT-D calculations reveal that adsorbed [BMP](+) and [TFSA](-) species are arranged alternately in a row-like adsorption structure (cation-anion-cation-anion) and that adsorption is dominated by dispersion interactions between adlayer and substrate, on the one hand, and electrostatic interactions between the ions in a row, on the other hand. Simulated STM images of that structure closely resemble the experimental molecular resolved STM images and show that the resolved features mostly stem from the cations.
Collapse
Affiliation(s)
- Florian Buchner
- Helmholtz-Institute-Ulm (HIU) , Electrochemical Energy Storage, Helmholtzstraße 11, D-89081 Ulm, Germany
| | - Katrin Forster-Tonigold
- Helmholtz-Institute-Ulm (HIU) , Electrochemical Energy Storage, Helmholtzstraße 11, D-89081 Ulm, Germany
| | - Maral Bozorgchenani
- Ulm University , Institute of Surface Chemistry and Catalysis, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Axel Gross
- Helmholtz-Institute-Ulm (HIU) , Electrochemical Energy Storage, Helmholtzstraße 11, D-89081 Ulm, Germany
- Ulm University , Institute of Theoretical Chemistry, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - R Jürgen Behm
- Helmholtz-Institute-Ulm (HIU) , Electrochemical Energy Storage, Helmholtzstraße 11, D-89081 Ulm, Germany
- Ulm University , Institute of Surface Chemistry and Catalysis, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| |
Collapse
|