1
|
Vanheusden C, Samyn P, Vackier T, Steenackers H, D'Haen J, Peeters R, Buntinx M. Fabrication of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ZnO Nanocomposite Films for Active Packaging Applications: Impact of ZnO Type on Structure-Property Dynamics. Polymers (Basel) 2024; 16:1861. [PMID: 39000717 PMCID: PMC11243840 DOI: 10.3390/polym16131861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.
Collapse
Affiliation(s)
- Chris Vanheusden
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Pieter Samyn
- Department Circular Economy and Renewable Materials, SIRRIS, Gaston Geenslaan 8, 3001 Leuven, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Jan D'Haen
- Analytical & Microscopical Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Roos Peeters
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Hazarika D, Chakraborty G, Kumar A, Katiyar V. Role of silk nanocrystal (SNC)-ZnO as an antibacterial nucleating nanohybrid for a patterned mimic poly(lactic acid) based nanofabric. Int J Biol Macromol 2023; 242:125126. [PMID: 37257545 DOI: 10.1016/j.ijbiomac.2023.125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This new investigation deals with the synthesis of an organic-inorganic nanohybrid using SNC with magnificent flower bud-shaped ZnO, termed SNC-ZnO by precipitation method. The nanohybrid (with concentrations 1 wt%, 3 wt%, and 5 wt%) was in situ incorporated into the PLA matrix to prepare the electrospun solution. The functionalized PLA composite nanofibres produced by electrospinning with SNC-ZnO nanohybrid were systematically studied using different structural and morphological analyses to meet the challenging processing requirements. The FESEM analysis gives an average diameter of nanofibres 246 ± 10.2 nm where nanohybrid tends to adhere on the surface of the PLA nanofabric increasing hydrophobicity up to water contact angle 135.3 ± 0.25 °C with 5 wt% nanohybrid incorporation. The nanofabric has significant antibacterial activity against E.Coli and S.Aureus bacteria. Further, an extensive study has been made on thermally stipulated processes using DSC on non-isothermal crystallization kinetics using different models: Avrami, Ozawa, Mo, and Tobin. The results revealed sites for heterogeneous nucleation and improvement in crystallinity, t1/2, and nucleation effects due to the incorporation of crystalline nanohybrid in PLA nanofibres. Further, the Avrami plot has confirmed both primary and secondary crystallization processes thereby considering its potential to utilize functionalized PLA nanofabric for applications in protective textile.
Collapse
Affiliation(s)
- Doli Hazarika
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gourhari Chakraborty
- Chemical Engineering Department, NIT Andhra Pradesh, Andhra Pradesh 534101, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Nasseri R, Moresoli C, Yu A, Yuan Z, Xu CC. Effect of Interphase Properties on Isothermal and Non-isothermal Crystallization Behavior of Poly(lactic acid)/Acetylated Starch Blends. ACS OMEGA 2022; 7:27851-27863. [PMID: 35990502 PMCID: PMC9386832 DOI: 10.1021/acsomega.2c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effect of interphase properties on the crystallization behavior of blends of poly(lactic acid) (PLA)/acetylated starch (AS) with different degrees of substitution (DSs) was investigated. Under isothermal crystallization conditions, the rate of crystallization was higher for PLA/DS0.5 and lower for PLA/DS1.5 and PLA/DS2.5 when compared to PLA. In contrast, non-isothermal crystallization behavior indicated a slower rate of crystallization of PLA/DS0.5 and a faster rate of crystallization of PLA/DS1.5 and PLA/DS2.5 compared to PLA at the highest cooling rate (5 °C/min). The potential relationship between crystallization behavior and interphase properties and interphase thickness and formation of rigid amorphous fraction in the interphase, was investigated. The formation of a rigid amorphous fraction in PLA/DS1.5 and a thick interphase in PLA/DS2.5 prevented the formation of crystals on the dispersed phase and interrupted the crystallization under isothermal conditions. Hydrogen bonding in the PLA/DS1.5 blend and hydrophobic interactions in the PLA/DS2.5 blend may facilitate the crystallization at high cooling rates under non-isothermal conditions. Small-angle X-ray scattering analysis revealed the presence of a smaller lamellar structure in PLA/AS blends. The largest amorphous phase among blends was observed for the PLA/DS1.5 blend, which can be attributed to the hydrogen bonding in the interphase region of this blend.
Collapse
Affiliation(s)
- Rasool Nasseri
- Department
of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Christine Moresoli
- Department
of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Aiping Yu
- Department
of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
- Waterloo
Institute for Nanotechnology, University
of Waterloo, 200 University
Avenue West, Waterloo N2L
3G1, Ontario, Canada
| | - Zhongshun Yuan
- Institute
for Chemicals and Fuels from Alternative Resources, Department of
Chemical & Biochemical Engineering, Western University, London N6A 5B9, Ontario, Canada
| | - Chunbao Charles Xu
- Institute
for Chemicals and Fuels from Alternative Resources, Department of
Chemical & Biochemical Engineering, Western University, London N6A 5B9, Ontario, Canada
| |
Collapse
|
4
|
Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. MATERIALS 2022; 15:ma15124312. [PMID: 35744371 PMCID: PMC9228835 DOI: 10.3390/ma15124312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.
Collapse
|
5
|
Loyo C, Moreno-Serna V, Fuentes J, Amigo N, Sepúlveda FA, Ortiz JA, Rivas LM, Ulloa MT, Benavente R, Zapata PA. PLA/CaO nanocomposites with antimicrobial and photodegradation properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Sepúlveda FA, Rivera F, Loyo C, Canales D, Moreno‐Serna V, Benavente R, Rivas LM, Ulloa MT, Gil‐Castell O, Ribes‐Greus A, Ortiz JA, Zapata PA. Poly (lactic acid)/D‐limonene/
ZnO bio‐nanocomposites
with antimicrobial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Francesca Antonella Sepúlveda
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Francisca Rivera
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Carlos Loyo
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Daniel Canales
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | - Viviana Moreno‐Serna
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| | | | - Lina María Rivas
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - María Teresa Ulloa
- Programa de Microbiología y Micología ICBM‐Facultad de Medicina Universidad de Chile Chile
| | - Oscar Gil‐Castell
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - Amparo Ribes‐Greus
- Instituto de Tecnología de Materiales (ITM) Universitat Politècnica de València (UPV) Spain
| | - J. Andrés Ortiz
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile Chile
| | - Paula A. Zapata
- Universidad de Santiago de Chile (USACH) Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Grupo Polímeros Chile
| |
Collapse
|
7
|
Mechanical properties of fibre/ filler based poly(Lactic Acid) (Pla) composites : A brief review. ACTA INNOVATIONS 2021. [DOI: 10.32933/actainnovations.41.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Being a biodegradable polymer, poly(lactic acid) (PLA) based composites receive greater preference over non-biodegradable plastics. Poly(lactic acid) has to find its place in various applications such as polymer composites, agriculture, biomedical, etc. Polymer composites based on PLA possess comparable mechanical strength, endurance, flexibility and endures future opportunities. Several combinations of natural fibers and filler-based PLA composites have been fabricated and investigated for physical and mechanical changes. Moreover, several biopolymers and compatibilizers are added to PLA to provide rigidity. The paper presents a tabulated review of the various natural fiber/filter-based PLA composites and the preparation and outcomes. In addition, enhancement made by the reinforcement of nano filler in the PLA are also discussed in brief. The significance of PLA in the biomedical application has been discussed in brief. The paper also shed lights in the social and economic aspects of PLA.
Collapse
|
8
|
Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poly(lactic acid) (PLA) nanocomposites with antimicrobial fillers have been increasingly explored as food packaging materials that are made of a biobased matrix and can minimize food loss due to spoilage. Some of the most commonly studied fillers are zinc oxide (ZnO), titanium dioxide (TiO2), and silver nanoparticles (AgNPs). In this work, nanocomposites with 1 wt.% of each filler were prepared by melt mixing. An extensive study of thermally stimulated processes such as crystallization, nucleation, degradation, and their kinetics was carried out using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). In detail, non-isothermal cold crystallization studies were performed with DSC and polarized light microscopy (PLM), and kinetics were analyzed with multiple equations. The activation energy of the non-isothermal cold crystallization was calculated with the methods of Kissinger and Friedman. The latter was used to also determine the Hoffman–Lauritzen parameters (Kg and U*) by applying the Vyazovkin method. Additionally, effective activation energy and kinetic parameters of the thermal decomposition process were determined by applying the isoconversional differential method and multivariate non-linear regression method. According to TGA results, metal oxide nanofillers affected the thermal stability of PLA and caused a decrease in the activation energy values. Moreover, the fillers acted as heterogenous nucleating agents, accelerating the non-isothermal crystallization of PLA, thus reducing its activation energy. It can be concluded that metal oxide nanofillers catalytically affect the thermal degradation and crystallization of PLA samples.
Collapse
|
9
|
Marathe YN, Ramesh C, Badiger MV. Isothermal cold crystallization kinetics of borassus powder/poly(lactic acid) biocomposites. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogesh Nana Marathe
- Polymer Science and Engineering DivisionCSIR‐National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Chellaswamy Ramesh
- Polymer Science and Engineering DivisionCSIR‐National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Manohar Virupax Badiger
- Polymer Science and Engineering DivisionCSIR‐National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 Maharashtra India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
10
|
Rashidi H, Najaf Oshani B, Hejazi I, Seyfi J. Tuning crystallization and hydrolytic degradation behaviors of poly(lactic acid) by using silver phosphate, zinc oxide and their nano-hybrids. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1625382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hamed Rashidi
- Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Behnaz Najaf Oshani
- Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Iman Hejazi
- Applied Science Nano Research Group, ASNARKA, Tehran, Iran
| | - Javad Seyfi
- Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
11
|
Shojaeiarani J, Bajwa D, Jiang L, Liaw J, Hartman K. Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly(lactic acid)– zinc oxide composites. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jamileh Shojaeiarani
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota, 58102
| | - Dilpreet Bajwa
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota, 58102
| | - Long Jiang
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota, 58102
| | - Joshua Liaw
- Department of Mechanical EngineeringNorth Dakota State University Fargo North Dakota, 58102
| | - Kerry Hartman
- Nueta Hidatsa Sahnish College New Town North Dakota, 58763
| |
Collapse
|
12
|
Keshavarzi S, Babaei A, Goudarzi A, Shakeri A. ZnO nanoparticles as chain elasticity reducer and structural elasticity enhancer: Correlating the degradating role and localization of ZnO with the morphological and mechanical properties of PLA/PP/ZnO nanocomposite. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sahar Keshavarzi
- Department of Polymer Engineering, Faculty of Engineering; Golestan University; PO Box 4913815759 Gorgan Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering; Golestan University; PO Box 4913815759 Gorgan Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering, Faculty of Engineering; Golestan University; PO Box 4913815759 Gorgan Iran
| | - Alireza Shakeri
- Department of chemistry, Faculty of Chemistry; University of Tehran; Tehran Iran
| |
Collapse
|
13
|
Ahmadzadeh Y, Babaei A, Goudarzi A. Assessment of localization and degradation of ZnO nano-particles in the PLA/PCL biocompatible blend through a comprehensive rheological characterization. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Peng Y, Zhang H, Huang XW, Huang JH, Luo MB. Monte Carlo simulation on the dynamics of a semi-flexible polymer in the presence of nanoparticles. Phys Chem Chem Phys 2018; 20:26333-26343. [PMID: 30303200 DOI: 10.1039/c8cp05136d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of a semi-flexible polymer chain in the presence of periodically distributed nanoparticles is simulated by using off-lattice Monte Carlo simulations. For repulsive or weak attractive nanoparticles, the dynamics are slowed down monotonically by increasing the chain stiffness kθ or decreasing the inter-particle distance d. For strong attractive nanoparticles, however, the dynamics show nonmonotonic behaviors with kθ and d. An interesting result is that a stiff polymer may move faster than a flexible one. The underlying mechanism is that the nanoparticle's attraction is weakened by the chain stiffness. The nonmonotonic behavior of the polymer's dynamics with kθ is explained by the competition between the weakening effect of the chain stiffness on the nanoparticle's attraction and the intrinsic effect of chain stiffness which reduces the dynamics of the polymer. In addition, the nonmonotonic behavior of the polymer's dynamics with d is explained by the competition between the nanoparticle-exchange motion of the polymer dominated at small d and the desorption-and-adsorption motion at large d. The excluded volume effect of the nanoparticles plays a more important role for stiffer polymers as the attraction of the nanoparticles is weakened by the chain stiffness.
Collapse
Affiliation(s)
- Yi Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Huan Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiao-Wei Huang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jian-Hua Huang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Restrepo I, Flores P, Rodríguez-Llamazares S. Antibacterial Nanocomposite of Poly(Lactic Acid) and ZnO Nanoparticles Stabilized with Poly(Vinyl Alcohol): Thermal and Morphological Characterization. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1466168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- I. Restrepo
- Materials Engineering Department, University of Concepción, Concepción, Chile
| | - P. Flores
- Materials Engineering Department, University of Concepción, Concepción, Chile
- Mechanical Engineering Department, University of Concepción, Concepción, Chile
| | - S. Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Concepción, Chile
| |
Collapse
|
16
|
Anžlovar A, Kržan A, Žagar E. Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Tsehay DA, Luo M. Static and dynamic properties of a semiflexible polymer in a crowded environment with randomly distributed immobile nanoparticles. Phys Chem Chem Phys 2018; 20:9582-9590. [DOI: 10.1039/c7cp08341f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dimensions, diffusivity, and relaxation of a polymer are dependent on the attraction strength and concentration of nanoparticles.
Collapse
Affiliation(s)
| | - Mengbo Luo
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- China
- Collaborative Innovation Center of Advanced Microstructures
| |
Collapse
|
18
|
Simulation study on the conformational properties of an adsorbed polymer on a nanoparticle. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Hesami M, Jalali-Arani A. Cold crystallization behavior of poly(lactic acid) in its blend with acrylic rubber; the effect of acrylic rubber content. POLYM INT 2017. [DOI: 10.1002/pi.5414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahdis Hesami
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - Azam Jalali-Arani
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
20
|
Huang XW, Peng Y, Huang JH, Luo MB. A study on the diffusivity of polymers in crowded environments with periodically distributed nanoparticles. Phys Chem Chem Phys 2017; 19:29975-29983. [DOI: 10.1039/c7cp05514e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel diffusion behaviors of polymers at low temperature: a minimum at an intermediate inter-particle distance and oscillation with polymer length.
Collapse
Affiliation(s)
- Xiao-Wei Huang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yi Peng
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jian-Hua Huang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Meng-Bo Luo
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
21
|
Effect of different ionic liquids on the dispersion and phase selective wetting of carbon nanotubes in rubber blends. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.10.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Arias V, Odelius K, Höglund A, Albertsson AC. Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2015; 3:2220-2231. [PMID: 26523245 PMCID: PMC4613739 DOI: 10.1021/acssuschemeng.5b00498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/28/2015] [Indexed: 06/05/2023]
Abstract
The demand for "green" degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of "green" homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300-500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young's modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable.
Collapse
|
23
|
Li CY, Luo MB, Huang JH, Li H. Equilibrium and dynamical properties of polymer chains in random medium filled with randomly distributed nano-sized fillers. Phys Chem Chem Phys 2015; 17:31877-86. [DOI: 10.1039/c5cp06189j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of randomly distributed nano-sized fillers on the equilibrium and dynamical properties of linear polymers is studied by using off-lattice Monte Carlo simulation.
Collapse
Affiliation(s)
- Chao-Yang Li
- Department of Physics
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Meng-Bo Luo
- Department of Physics
- Zhejiang University
- Hangzhou 310027
- China
| | - Jian-Hua Huang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Hong Li
- Department of Physics
- Wenzhou University
- Wenzhou 325035
- China
| |
Collapse
|
24
|
You J, Yu W, Zhou C. Accelerated Crystallization of Poly(lactic acid): Synergistic Effect of Poly(ethylene glycol), Dibenzylidene Sorbitol, and Long-Chain Branching. Ind Eng Chem Res 2014. [DOI: 10.1021/ie402358h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jinxiu You
- Advanced Rheology
Institute, Department of Polymer
Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wei Yu
- Advanced Rheology
Institute, Department of Polymer
Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chixing Zhou
- Advanced Rheology
Institute, Department of Polymer
Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
25
|
Qu M, Tu H, Amarante M, Song YQ, Zhu SS. Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci 2013. [DOI: 10.1002/app.40287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meng Qu
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - Huilin Tu
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - Miranda Amarante
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - Yi-Qiao Song
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| | - S. Sherry Zhu
- Mechanics and Materials Department; Schlumberger-Doll Research; Cambridge Massachusetts 02139
| |
Collapse
|
26
|
|